metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1249-m1250

catena-Poly[[aqua­bis­­(N6-benzyl­adenine-κN3)copper(II)]-μ-benzene-1,4-di­carboxyl­ato-κ2O1:O4]

aDepartment of Chemistry, Dezhou University, Dezhou, Shandong 253023, People's Republic of China
*Correspondence e-mail: dzwbli@163.com

(Received 16 July 2011; accepted 8 August 2011; online 17 August 2011)

In the title compound, [Cu(C8H4O4)(C12H11N5)2(H2O)]n, the CuII ion is five-coordinated by two carboxyl­ate O atoms from two symmetry-related benzene-1,4-dicarboxyl­ate ligands, two N atoms from two symmetry-related N6-benzyl­adenine ligands and one water O atom in a square-pyramidal environment. The CuII and water O atoms lie on a twofold rotation axis, and the benzene-1,4-dicarboxyl­ate ligand lies on an inversion center. The water O atom occupies the apical position and the basal plane is occupied by two O atoms and two N atoms. Each benzene-1,4-dicarboxyl­ate anion acts as a bis-monodentate ligand that binds two CuII cations, forming an infinite chain extending parallel to [001]. The N6-benzyl­adenine ligands are attached on both sides of the chain. Neighboring chains are further inter­connected into the resulting three-dimensional supra­molecular architecture via O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds.

Related literature

For examples of the use of biomolecules in metal-organic frameworks, see: An et al. (2009[An, J. H., Geib, S. J. & Rosi, N. L. (2009). J. Am. Chem. Soc. 131, 8376-8377.]); Lee et al. (2008[Lee, H. Y., Kampf, J. W., Park, K. S. & Marsh, E. N. G. (2008). Cryst. Growth Des. 8, 296-303.]); Xie et al. (2007[Xie, Y., Yu, Z. P., Huang, X. Y., Wang, Z. Y., Niu, L. W., Teng, M. & Li, J. (2007). Chem. Eur. J. 13, 9399-9405.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H4O4)(C12H11N5)2(H2O)]

  • Mr = 696.18

  • Monoclinic, C 2/c

  • a = 28.171 (2) Å

  • b = 5.554 (1) Å

  • c = 22.102 (1) Å

  • β = 115.868 (1)°

  • V = 3111.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 296 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.897

  • 7556 measured reflections

  • 2744 independent reflections

  • 2455 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.069

  • S = 1.03

  • 2744 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2i 0.86 1.80 2.6388 (17) 164
N6—H6⋯O2ii 0.85 2.07 2.855 (2) 154
N8—H8⋯N7iii 0.86 2.20 3.018 (3) 160
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+1, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, biomolecules such as 2-amino-3-(4-aminophenyl)-propionic acid (Xie et al., 2007), glycine and alanine(Lee et al., 2008) and adenine (An et al., 2009) were used to construct metal-organic frameworks (MOFs) due potential biomedical usefulness. During the synthesis of bio-MOFs using a biomolecule and CuII ion, the title compound (I) was obtained, and here its crystal structure is reported.

The asymmetric unit of (I) is composed of one CuII cation, one N6-benzyladenine molecule, half of benzene-1,4-dicarboxylate anion and one water molecule. As shown in Figure 1, the CuII ion is five-coordinated by two carboxylate O atoms from two different benzene-1,4-dicarboxylate ligands, two N atoms from two different N6-benzyladenine ligands and one water O atom in a square-pyramidal coordination environment. The CuII and water O atoms lie on a twofold rotation axis, and the benzene-1,4-dicarboxylate moiety lies on inversion center. The water O atom occupies the apical position and the basal plane is occupied by two O atoms and two N atoms. Each benzene-1,4- dicarboxylate anion acts as a bis-monodentate ligand that binds two CuII cations, forming an infinite chain extending parallel to [001] (Fig. 2). The N6-benzyladenine ligands are attached on both sides of the chain. The neighbouring chains are connected into two dimensional layers via O—H···O and N—H···O hydrogen bonds, and the adjacent layers are further packed via N—H···N hydrogen bonds into the three dimensional supramolecular architecture (Table 1, Fig. 3).

Related literature top

For examples of the use of biomolecules in metal-organic frameworks, see: An et al. (2009); Lee et al. (2008); Xie et al. (2007).

Experimental top

A mixture of benzene-1,4-dicarboxylate acid (0.017 g, 0.1 mmol), N6-benzyladenine (0.023 g, 0.1 mmol), and Cu(NO3)2.3H2O (0.024 g, 0.1 mmol) in H2O (10.0 ml) was placed in a 16 ml Teflon-lined stainless steel vessel and heated to 120 °C for 72 h, then cooled to room temperature at a rate of -5 °C/h. Afer filtration, dark blue block crystals are obtained.

Refinement top

All H atoms bonded to C and N atoms were added according to theoretical models, assigned isotropic displacement parameters and allowed to ride on their respective parent atoms [Uiso(H) =1.2Ueq(C)]. The H atoms attached to O atoms of the water were located from a difference Fourier map with the O—H distances being fixed at 0.85 Å and allowed to ride on their parent O atoms in the final cycles of refinement, with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot of (I) at the 50% probability level. H atoms are represented by circles of arbitrary size. Symmetry code: (i)-x + 1, -y, -z + 1; (ii)-x + 1, y, -z + 1/2.
[Figure 2] Fig. 2. The one-dimensional chain structure of (I). Non-associative H atoms are omitted.
[Figure 3] Fig. 3. The packing diagram of (I) showing hydrogen bonding interactions (light blue dashed lines).
catena-Poly[[aquabis(N6-benzyladenine- κN3)copper(II)]-µ-benzene-1,4-dicarboxylato- κ2O1:O4] top
Crystal data top
[Cu(C8H4O4)(C12H11N5)2(H2O)]F(000) = 1436
Mr = 696.18Dx = 1.486 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 28.171 (2) ÅCell parameters from 3162 reflections
b = 5.554 (1) Åθ = 3.0–27.3°
c = 22.102 (1) ŵ = 0.76 mm1
β = 115.868 (1)°T = 296 K
V = 3111.6 (6) Å3Block, blue
Z = 40.17 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2744 independent reflections
Radiation source: fine-focus sealed tube2455 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3033
Tmin = 0.884, Tmax = 0.897k = 66
7556 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0245P)2 + 4.4543P]
where P = (Fo2 + 2Fc2)/3
2744 reflections(Δ/σ)max = 0.012
218 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(C8H4O4)(C12H11N5)2(H2O)]V = 3111.6 (6) Å3
Mr = 696.18Z = 4
Monoclinic, C2/cMo Kα radiation
a = 28.171 (2) ŵ = 0.76 mm1
b = 5.554 (1) ÅT = 296 K
c = 22.102 (1) Å0.17 × 0.15 × 0.15 mm
β = 115.868 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2744 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2455 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.897Rint = 0.026
7556 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
2744 reflectionsΔρmin = 0.31 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21656 (11)0.0279 (5)0.16879 (14)0.0529 (7)
H10.24050.08650.16820.063*
C20.19178 (13)0.0055 (6)0.21029 (16)0.0680 (9)
H20.19920.14210.23720.082*
C30.15662 (13)0.1605 (7)0.21196 (17)0.0706 (9)
H30.14020.13810.24000.085*
C40.14592 (12)0.3596 (7)0.17203 (17)0.0688 (9)
H40.12210.47370.17310.083*
C50.17008 (10)0.3938 (5)0.12996 (14)0.0533 (7)
H50.16200.52920.10250.064*
C60.20617 (8)0.2284 (4)0.12849 (11)0.0375 (5)
C70.23445 (9)0.2828 (4)0.08544 (12)0.0398 (6)
H7A0.25980.41010.10700.048*
H7B0.20880.34390.04240.048*
C80.31312 (8)0.0374 (4)0.10970 (10)0.0305 (5)
C90.34020 (8)0.1452 (4)0.09326 (10)0.0302 (5)
C100.36693 (9)0.4238 (5)0.05042 (11)0.0424 (6)
H100.36800.54610.02230.051*
C110.39354 (8)0.1695 (4)0.13382 (9)0.0264 (5)
C120.39179 (8)0.1299 (4)0.20000 (10)0.0301 (5)
H120.40910.22690.23760.036*
C130.49770 (7)0.0984 (4)0.37039 (9)0.0243 (4)
C140.49924 (8)0.0458 (4)0.43782 (9)0.0249 (4)
C150.48078 (9)0.1719 (4)0.44969 (10)0.0321 (5)
H150.46790.28790.41600.039*
C160.48156 (9)0.2161 (4)0.51161 (10)0.0331 (5)
H160.46900.36220.51940.040*
Cu10.50000.07414 (6)0.25000.01886 (11)
N50.42174 (6)0.0364 (3)0.18941 (8)0.0254 (4)
N60.41010 (7)0.3488 (3)0.10540 (8)0.0344 (4)
H60.44070.40960.12040.041*
N70.32360 (7)0.3089 (4)0.04042 (9)0.0402 (5)
N80.26185 (7)0.0814 (4)0.07311 (9)0.0393 (5)
H80.24410.01470.04050.047*
N90.34090 (7)0.1755 (3)0.16430 (9)0.0326 (4)
O10.48680 (5)0.0769 (3)0.32972 (6)0.0249 (3)
O20.50664 (7)0.3073 (3)0.35810 (7)0.0418 (4)
O1W0.50000.4643 (4)0.25000.0417 (6)
H1W0.49750.55510.27990.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0511 (16)0.0493 (17)0.0595 (17)0.0067 (13)0.0253 (14)0.0023 (14)
C20.079 (2)0.067 (2)0.0635 (19)0.0095 (18)0.0359 (17)0.0076 (16)
C30.071 (2)0.089 (3)0.069 (2)0.0161 (19)0.0456 (18)0.0113 (19)
C40.0547 (18)0.085 (2)0.080 (2)0.0095 (17)0.0410 (17)0.0169 (19)
C50.0473 (15)0.0555 (18)0.0581 (17)0.0127 (13)0.0238 (13)0.0005 (14)
C60.0275 (11)0.0427 (14)0.0368 (12)0.0031 (10)0.0090 (10)0.0071 (11)
C70.0284 (11)0.0450 (15)0.0417 (13)0.0087 (11)0.0113 (10)0.0022 (11)
C80.0247 (10)0.0400 (13)0.0259 (11)0.0013 (10)0.0102 (9)0.0007 (10)
C90.0254 (11)0.0389 (13)0.0231 (10)0.0004 (9)0.0077 (9)0.0044 (9)
C100.0345 (12)0.0519 (15)0.0331 (12)0.0023 (12)0.0077 (10)0.0198 (12)
C110.0234 (10)0.0356 (12)0.0189 (10)0.0008 (9)0.0081 (8)0.0010 (9)
C120.0277 (11)0.0390 (13)0.0227 (10)0.0022 (9)0.0100 (9)0.0069 (9)
C130.0257 (10)0.0324 (12)0.0162 (9)0.0004 (9)0.0105 (8)0.0013 (9)
C140.0355 (11)0.0261 (11)0.0168 (9)0.0004 (9)0.0148 (8)0.0002 (8)
C150.0530 (14)0.0271 (11)0.0196 (10)0.0082 (10)0.0190 (10)0.0065 (9)
C160.0564 (14)0.0246 (11)0.0254 (11)0.0086 (10)0.0244 (10)0.0015 (9)
Cu10.02049 (18)0.02546 (19)0.01114 (16)0.0000.00736 (13)0.000
N50.0219 (8)0.0360 (10)0.0180 (8)0.0006 (8)0.0085 (7)0.0026 (7)
N60.0238 (9)0.0454 (12)0.0270 (9)0.0074 (8)0.0047 (8)0.0096 (8)
N70.0292 (10)0.0512 (13)0.0321 (10)0.0013 (9)0.0058 (8)0.0160 (9)
N80.0237 (9)0.0524 (13)0.0346 (10)0.0063 (9)0.0060 (8)0.0112 (10)
N90.0255 (9)0.0416 (11)0.0288 (10)0.0026 (8)0.0100 (8)0.0075 (8)
O10.0310 (7)0.0314 (8)0.0161 (6)0.0058 (6)0.0138 (6)0.0044 (6)
O20.0755 (12)0.0309 (9)0.0264 (8)0.0113 (8)0.0291 (8)0.0011 (7)
O1W0.0846 (18)0.0243 (12)0.0234 (11)0.0000.0305 (12)0.000
Geometric parameters (Å, º) top
C1—C61.375 (4)C11—N51.355 (2)
C1—C21.386 (4)C11—N61.364 (3)
C1—H10.9300C12—N91.325 (3)
C2—C31.366 (4)C12—N51.339 (3)
C2—H20.9300C12—H120.9300
C3—C41.364 (5)C13—O21.242 (2)
C3—H30.9300C13—O11.269 (2)
C4—C51.384 (4)C13—C141.501 (2)
C4—H40.9300C14—C16i1.382 (3)
C5—C61.381 (3)C14—C151.386 (3)
C5—H50.9300C15—C161.381 (3)
C6—C71.514 (3)C15—H150.9300
C7—N81.451 (3)C16—C14i1.382 (3)
C7—H7A0.9700C16—H160.9300
C7—H7B0.9700Cu1—O1ii1.9531 (12)
C8—N81.334 (3)Cu1—O11.9531 (12)
C8—N91.354 (3)Cu1—N5ii2.0301 (16)
C8—C91.409 (3)Cu1—N52.0301 (15)
C9—C111.380 (3)Cu1—O1W2.167 (2)
C9—N71.390 (3)N6—H60.8474
C10—N71.308 (3)N8—H80.8600
C10—N61.356 (3)O1W—H1W0.8593
C10—H100.9300
C6—C1—C2120.7 (3)N9—C12—H12115.5
C6—C1—H1119.6N5—C12—H12115.5
C2—C1—H1119.6O2—C13—O1124.85 (17)
C3—C2—C1120.5 (3)O2—C13—C14118.56 (18)
C3—C2—H2119.7O1—C13—C14116.59 (18)
C1—C2—H2119.7C16i—C14—C15119.42 (17)
C2—C3—C4119.2 (3)C16i—C14—C13120.10 (18)
C2—C3—H3120.4C15—C14—C13120.47 (18)
C4—C3—H3120.4C16—C15—C14119.85 (19)
C3—C4—C5120.8 (3)C16—C15—H15120.1
C3—C4—H4119.6C14—C15—H15120.1
C5—C4—H4119.6C15—C16—C14i120.73 (19)
C6—C5—C4120.5 (3)C15—C16—H16119.6
C6—C5—H5119.8C14i—C16—H16119.6
C4—C5—H5119.8O1ii—Cu1—O1179.10 (9)
C1—C6—C5118.3 (2)O1ii—Cu1—N5ii90.94 (6)
C1—C6—C7123.2 (2)O1—Cu1—N5ii89.15 (6)
C5—C6—C7118.5 (2)O1ii—Cu1—N589.15 (6)
N8—C7—C6115.7 (2)O1—Cu1—N590.94 (6)
N8—C7—H7A108.4N5ii—Cu1—N5168.16 (10)
C6—C7—H7A108.4O1ii—Cu1—O1W89.55 (4)
N8—C7—H7B108.4O1—Cu1—O1W89.55 (4)
C6—C7—H7B108.4N5ii—Cu1—O1W95.92 (5)
H7A—C7—H7B107.4N5—Cu1—O1W95.92 (5)
N8—C8—N9119.24 (19)C12—N5—C11111.72 (16)
N8—C8—C9122.70 (19)C12—N5—Cu1122.80 (13)
N9—C8—C9118.05 (18)C11—N5—Cu1125.48 (13)
C11—C9—N7110.70 (18)C10—N6—C11106.49 (17)
C11—C9—C8117.49 (19)C10—N6—H6126.1
N7—C9—C8131.77 (19)C11—N6—H6127.2
N7—C10—N6114.0 (2)C10—N7—C9103.31 (17)
N7—C10—H10123.0C8—N8—C7123.45 (19)
N6—C10—H10123.0C8—N8—H8118.3
N5—C11—N6129.28 (18)C7—N8—H8118.3
N5—C11—C9125.26 (19)C12—N9—C8118.51 (18)
N6—C11—C9105.46 (17)C13—O1—Cu1123.41 (12)
N9—C12—N5128.93 (19)Cu1—O1W—H1W126.0
C6—C1—C2—C30.1 (5)N6—C11—N5—Cu11.5 (3)
C1—C2—C3—C40.3 (5)C9—C11—N5—Cu1179.13 (16)
C2—C3—C4—C50.3 (5)O1ii—Cu1—N5—C12131.20 (16)
C3—C4—C5—C61.1 (5)O1—Cu1—N5—C1249.70 (16)
C2—C1—C6—C50.7 (4)N5ii—Cu1—N5—C1240.65 (16)
C2—C1—C6—C7176.0 (3)O1W—Cu1—N5—C12139.35 (16)
C4—C5—C6—C11.2 (4)O1ii—Cu1—N5—C1147.81 (16)
C4—C5—C6—C7175.6 (2)O1—Cu1—N5—C11131.29 (16)
C1—C6—C7—N817.5 (3)N5ii—Cu1—N5—C11138.35 (16)
C5—C6—C7—N8165.8 (2)O1W—Cu1—N5—C1141.65 (16)
N8—C8—C9—C11178.2 (2)N7—C10—N6—C110.0 (3)
N9—C8—C9—C110.5 (3)N5—C11—N6—C10179.7 (2)
N8—C8—C9—N70.9 (4)C9—C11—N6—C100.3 (2)
N9—C8—C9—N7177.8 (2)N6—C10—N7—C90.2 (3)
N7—C9—C11—N5179.9 (2)C11—C9—N7—C100.4 (3)
C8—C9—C11—N52.1 (3)C8—C9—N7—C10177.0 (2)
N7—C9—C11—N60.4 (2)N9—C8—N8—C74.9 (3)
C8—C9—C11—N6177.40 (19)C9—C8—N8—C7173.9 (2)
O2—C13—C14—C16i10.3 (3)C6—C7—N8—C895.4 (3)
O1—C13—C14—C16i170.24 (19)N5—C12—N9—C81.4 (3)
O2—C13—C14—C15168.8 (2)N8—C8—N9—C12179.8 (2)
O1—C13—C14—C1510.7 (3)C9—C8—N9—C121.0 (3)
C16i—C14—C15—C160.2 (4)O2—C13—O1—Cu116.8 (3)
C13—C14—C15—C16178.84 (19)C14—C13—O1—Cu1163.75 (12)
C14—C15—C16—C14i0.2 (4)O1ii—Cu1—O1—C13157.61 (15)
N9—C12—N5—C110.0 (3)N5ii—Cu1—O1—C1361.68 (15)
N9—C12—N5—Cu1179.12 (17)N5—Cu1—O1—C13106.48 (15)
N6—C11—N5—C12177.6 (2)O1W—Cu1—O1—C13157.61 (14)
C9—C11—N5—C121.8 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2iii0.861.802.6388 (17)164
N6—H6···O2iv0.852.072.855 (2)154
N8—H8···N7v0.862.203.018 (3)160
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z+1/2; (v) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H4O4)(C12H11N5)2(H2O)]
Mr696.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)28.171 (2), 5.554 (1), 22.102 (1)
β (°) 115.868 (1)
V3)3111.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.884, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
7556, 2744, 2455
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 1.03
No. of reflections2744
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.861.802.6388 (17)164.2
N6—H6···O2ii0.852.072.855 (2)153.9
N8—H8···N7iii0.862.203.018 (3)160.1
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1/2; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported financially by the Research Project of Dezhou University (grant No. 07012).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAn, J. H., Geib, S. J. & Rosi, N. L. (2009). J. Am. Chem. Soc. 131, 8376–8377.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLee, H. Y., Kampf, J. W., Park, K. S. & Marsh, E. N. G. (2008). Cryst. Growth Des. 8, 296–303.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y., Yu, Z. P., Huang, X. Y., Wang, Z. Y., Niu, L. W., Teng, M. & Li, J. (2007). Chem. Eur. J. 13, 9399–9405.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1249-m1250
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds