organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A hydrogen-bridged adduct 3,4,6,7,8,9-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium [1,3-bis­­(tert-butyl­di­methyl­sil­yl­oxy)-1,3-bis­­(pyridin-2-yl)propan-2-yl­­idene]nitro­nate aceto­nitrile monosolvate

aInstitut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität, Jena, Humboldt-Strasse 8, 07743 Jena, Germany
*Correspondence e-mail: martin.schulz@dcu.ie

(Received 18 July 2011; accepted 19 August 2011; online 27 August 2011)

The title compound, C7H14N3+·C25H40N3O4Si2·CH3CN, was obtained by the reaction of 2-nitro-1,3-di(pyridin-2-yl)-1,3-di(tert-butyl­dimethyl­sil­yloxy)propane with 1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidine. Two hydrogen bonds stabilize the Lewis acid/base pair of the nitro­nate and the guanidinium moiety with N⋯O distances of 2.772 (3) and 2.732 (3) Å. Both hydrogen atoms are more closely bound to the guanidinium [N—H distances of 0.83 (3) and 0.93 (3) Å] than to the nitro­nate moiety. The nitro­nate is double-bonded to the respective carbon with an N=C bond length of 1.316 (3) Å.

Related literature

For the synthesis of 2-nitro-1,3-di(pyridin-2-yl)-1,3-di(tert-butyl­dimethyl­sil­yloxy)propane, see: Schulz et al. (2011[Schulz, M., Wimmer, K., Görls, H. & Westerhausen, M. (2011). Z. Naturforsch. B Chem. Sci. 66b, 611-623.]). For Nef reactions (conversion of nitro compounds into carbonyl compounds) with amidines or guanidines, see: Ballini et al. (2002[Ballini, R., Bosica, G., Fiorini, D. & Petrini, M. (2002). Tetrahedron Lett. 43, 5233-5235.]). For a general review of Nef reactions, see: Ballini & Petrini (2004[Ballini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017-1047.]). For a comparison of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H14N3+·C25H40N3O4Si2·CH3CN

  • Mr = 684.05

  • Triclinic, [P \overline 1]

  • a = 9.4335 (8) Å

  • b = 11.1149 (9) Å

  • c = 19.4529 (14) Å

  • α = 103.062 (4)°

  • β = 98.098 (4)°

  • γ = 95.197 (5)°

  • V = 1951.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 183 K

  • 0.06 × 0.06 × 0.04 mm

Data collection
  • KappaCCD diffractometer

  • 12006 measured reflections

  • 8497 independent reflections

  • 3820 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.141

  • S = 0.92

  • 8497 reflections

  • 442 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯O3 0.83 (3) 1.94 (3) 2.772 (3) 172 (3)
N6—H1N6⋯O4 0.93 (3) 1.80 (3) 2.732 (3) 178 (3)

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Secondary aliphatic nitrocompounds can be transformed into the respective ketone with amidine or guanidine bases (Ballini et al. 2002, Ballini et al. 2004). This procedure represents a valuable route to synthetically important ketones, especially in the presence of functionalities, which are sensitive towards oxidants, reductants or acids. Compound 1 was previously described and the title compound 3 was found as a white precipitate from the reaction of 1 with 2 in acetonitrile (Schulz et al. (2011)). The title compound 3 represents an adduct between a nitronate anion and a guanidinium cation held together by two hydrogen bonds between the nitronate oxygen atoms and the guanidinium nitrogen atoms. The donor-donor distances (N4—O3 2.772 (3) Å and N6—O4 2.732 (3) Å) indicate a strong interaction. Both nitronate N—O bond lengths are similar (N3—O3 1.312 (3) Å and N3—O4 1.319 (3) Å) with values intermediate between a single and a double bond. The nitronate C7=N3 bond length (1.316 (3) Å) indicates a double bond, and this conclusion is supported by an angle sum of 359.84° for C7. The guanidinium cation shows the typical C—N bond lengths. All other bond lengths and angles are within the expected range.(Allen et al. 1987)

Related literature top

For the synthesis of 2-nitro-1,3-di(pyridin-2-yl)-1,3-di(tert-butyldimethylsilyloxy)propane, see: Schulz et al. (2011). For Nef reactions with amidines or guanidines, see: Ballini et al. (2002). For a general review on Nef reactions, see: Ballini & Petrini (2004). For a comparison of bond lengths, see: Allen et al. (1987).

Experimental top

Compound 1 was prepared according to the procedure given in (Schulz et al. (2011)) and compound 2 was commercially obtained. 1 (0.20 g, 0.4 mmol) and 2 (0.12 g, 0.4 mmol) were dissolved in 1.5 ml of acetonitrile and stirred at room temperature. The solution turned yellow immediately and after 10 min the title compound 3 crystallized as a colorless solid. Subsequently, the crystalline product was collected by filtration yielding 0.10 g (31%).

Refinement top

N-bound H atoms were located by difference Fourier synthesis and freely refined. The refined N-H distances are 0.83 (3) Å for N(4)-H(1N4) and 0.93 (3) Å for N(6)-H(1N6) respectively. All other hydrogen atoms were set to idealized positions and were refined with 1.2 times (1.5 for methyl groups) the isotropic displacement parameter of the corresponding carbon atom. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor 1997); data reduction: DENZO (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The synthetic pathway to 3.
[Figure 2] Fig. 2. Molecular structure of the title compound 3; displacement ellipsoids are at the 40% probability level. Solvent acetonitrile and H atoms are omitted.
3,4,6,7,8,9-hexahydro-2H- pyrimido[1,2-a]pyrimidin-1-ium [1,3-bis(tert- butyldimethylsilyloxy)-1,3-bis(pyridin-2-yl)propan-2-ylidene]nitronate acetonitrile monosolvate top
Crystal data top
C7H14N3+·C25H40N3O4Si2·CH3CNZ = 2
Mr = 684.05F(000) = 740
Triclinic, P1Dx = 1.164 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4335 (8) ÅCell parameters from 12006 reflections
b = 11.1149 (9) Åθ = 1.9–27.5°
c = 19.4529 (14) ŵ = 0.14 mm1
α = 103.062 (4)°T = 183 K
β = 98.098 (4)°Prism, colourless
γ = 95.197 (5)°0.06 × 0.06 × 0.04 mm
V = 1951.2 (3) Å3
Data collection top
KappaCCD
diffractometer
3820 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
ϕ and ω scanh = 1211
12006 measured reflectionsk = 1413
8497 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0529P)2]
where P = (Fo2 + 2Fc2)/3
8497 reflections(Δ/σ)max = 0.001
442 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C7H14N3+·C25H40N3O4Si2·CH3CNγ = 95.197 (5)°
Mr = 684.05V = 1951.2 (3) Å3
Triclinic, P1Z = 2
a = 9.4335 (8) ÅMo Kα radiation
b = 11.1149 (9) ŵ = 0.14 mm1
c = 19.4529 (14) ÅT = 183 K
α = 103.062 (4)°0.06 × 0.06 × 0.04 mm
β = 98.098 (4)°
Data collection top
KappaCCD
diffractometer
3820 reflections with I > 2σ(I)
12006 measured reflectionsRint = 0.048
8497 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.25 e Å3
8497 reflectionsΔρmin = 0.27 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.28003 (8)0.83299 (8)0.16632 (4)0.0308 (2)
Si20.25909 (9)0.49919 (8)0.28617 (4)0.0333 (2)
O10.15141 (19)0.72021 (17)0.16400 (8)0.0291 (5)
O20.18244 (19)0.55522 (17)0.22672 (9)0.0315 (5)
O30.1918 (2)0.81398 (19)0.36422 (9)0.0404 (5)
O40.0422 (2)0.81554 (19)0.36965 (9)0.0411 (6)
N10.1652 (3)0.4769 (2)0.25806 (13)0.0444 (7)
N20.1677 (2)0.8364 (2)0.16444 (12)0.0360 (6)
N30.0581 (3)0.7801 (2)0.33126 (11)0.0325 (6)
C10.1591 (4)0.3524 (4)0.2417 (2)0.0578 (10)
H1A0.18230.31300.27960.069*
C20.1212 (4)0.2784 (3)0.1734 (2)0.0640 (11)
H2A0.11660.19040.16460.077*
C30.0904 (4)0.3351 (3)0.1186 (2)0.0562 (10)
H3A0.06470.28680.07060.067*
C40.0971 (3)0.4633 (3)0.13363 (16)0.0422 (8)
H4A0.07730.50440.09620.051*
C50.1330 (3)0.5307 (3)0.20375 (14)0.0314 (7)
C60.1453 (3)0.6715 (3)0.22614 (13)0.0270 (7)
H6A0.23820.70250.25990.032*
C70.0243 (3)0.7157 (2)0.26432 (13)0.0260 (7)
C80.1330 (3)0.6834 (3)0.23320 (13)0.0288 (7)
H8A0.18730.73380.26750.035*
C90.1740 (3)0.7144 (3)0.16117 (13)0.0296 (7)
C100.2241 (3)0.6228 (3)0.09868 (14)0.0380 (8)
H10A0.22600.53710.09830.046*
C110.2711 (3)0.6599 (4)0.03691 (16)0.0477 (9)
H11A0.30560.59980.00680.057*
C120.2673 (3)0.7845 (4)0.03977 (17)0.0501 (9)
H12A0.30060.81230.00170.060*
C130.2142 (3)0.8685 (3)0.10378 (17)0.0441 (8)
H13A0.21030.95470.10500.053*
C140.4593 (3)0.7866 (3)0.19464 (16)0.0518 (9)
H14A0.46820.78080.24460.078*
H14B0.53560.84900.19020.078*
H14C0.46870.70550.16410.078*
C150.2491 (4)0.9748 (3)0.23070 (16)0.0540 (10)
H15A0.25820.95990.27880.081*
H15B0.15190.99520.21680.081*
H15C0.32071.04430.23060.081*
C160.2656 (3)0.8527 (3)0.07238 (14)0.0350 (7)
C170.2813 (4)0.7296 (3)0.02151 (15)0.0590 (10)
H17A0.27790.74130.02710.088*
H17B0.20230.66630.02200.088*
H17C0.37390.70220.03700.088*
C180.3861 (4)0.9523 (4)0.06847 (19)0.0620 (10)
H18A0.38100.95970.01900.093*
H18B0.48020.92830.08480.093*
H18C0.37411.03250.09920.093*
C190.1206 (3)0.8948 (3)0.04847 (15)0.0486 (9)
H19A0.11590.90530.00040.073*
H19B0.11090.97420.08070.073*
H19C0.04190.83180.04980.073*
C200.1201 (3)0.4739 (3)0.35725 (15)0.0481 (9)
H20A0.06450.55390.38340.072*
H20B0.05520.41820.33550.072*
H20C0.16730.43610.39050.072*
C210.3779 (4)0.6056 (3)0.33040 (16)0.0529 (9)
H21A0.32360.68860.35040.079*
H21B0.41200.57340.36890.079*
H21C0.46090.61100.29520.079*
C220.3662 (3)0.3496 (3)0.23180 (16)0.0407 (8)
C230.4412 (4)0.2833 (3)0.28070 (19)0.0689 (11)
H23A0.49440.20380.25230.103*
H23B0.50840.33580.30300.103*
H23C0.36850.26820.31800.103*
C240.4825 (3)0.3756 (3)0.17450 (17)0.0600 (10)
H24A0.53830.29680.14660.090*
H24B0.43570.41700.14260.090*
H24C0.54710.42960.19800.090*
C250.2680 (4)0.2638 (3)0.19317 (17)0.0537 (9)
H25A0.32660.18790.16320.081*
H25B0.19690.24190.22860.081*
H25C0.21790.30710.16310.081*
N40.2139 (3)0.9307 (3)0.50788 (14)0.0444 (7)
N50.1491 (3)0.9190 (2)0.61673 (11)0.0392 (7)
N60.0099 (3)0.8051 (3)0.50982 (14)0.0418 (7)
C260.3300 (4)1.0306 (3)0.54181 (16)0.0527 (9)
H26A0.29151.11170.55110.063*
H26B0.40321.03380.51020.063*
C270.3971 (3)1.0049 (3)0.61136 (15)0.0548 (10)
H27A0.47571.07220.63650.066*
H27B0.43860.92520.60180.066*
C280.2810 (3)0.9979 (3)0.65717 (15)0.0485 (9)
H28A0.31800.96420.69820.058*
H28B0.25791.08290.67640.058*
C290.0369 (4)0.8974 (3)0.65895 (15)0.0492 (9)
H29A0.03360.97480.69540.059*
H29B0.06130.83210.68420.059*
C300.1094 (4)0.8573 (3)0.61245 (15)0.0484 (9)
H30A0.14610.92960.59730.058*
H30B0.17840.82490.63990.058*
C310.0971 (4)0.7569 (3)0.54713 (15)0.0481 (9)
H31A0.06740.68200.56190.058*
H31B0.19160.73310.51510.058*
C320.1243 (4)0.8866 (3)0.54528 (15)0.0380 (8)
C1AN0.5773 (5)0.6466 (4)0.4939 (2)0.0603 (10)
N1AN0.4736 (4)0.6891 (4)0.5320 (2)0.0942 (13)
C2AN0.7089 (4)0.5903 (4)0.44558 (18)0.0683 (11)
H2A10.79140.60360.47070.102*
H2A20.70550.50080.42860.102*
H2A30.71920.62840.40470.102*
H1N40.204 (3)0.901 (3)0.4638 (16)0.056 (10)*
H1N60.007 (4)0.810 (3)0.4622 (18)0.074 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0295 (5)0.0311 (5)0.0322 (4)0.0002 (4)0.0076 (4)0.0086 (4)
Si20.0347 (5)0.0350 (5)0.0333 (4)0.0039 (4)0.0088 (4)0.0125 (4)
O10.0322 (11)0.0313 (12)0.0242 (9)0.0030 (9)0.0057 (8)0.0097 (8)
O20.0400 (12)0.0235 (11)0.0305 (10)0.0029 (9)0.0091 (9)0.0067 (8)
O30.0369 (13)0.0497 (14)0.0270 (10)0.0021 (11)0.0029 (9)0.0003 (10)
O40.0444 (13)0.0528 (14)0.0257 (10)0.0167 (11)0.0093 (9)0.0029 (10)
N10.0491 (17)0.0402 (18)0.0563 (16)0.0162 (14)0.0234 (14)0.0237 (14)
N20.0319 (14)0.0387 (17)0.0441 (14)0.0093 (13)0.0126 (12)0.0178 (12)
N30.0382 (16)0.0344 (15)0.0259 (12)0.0072 (13)0.0066 (12)0.0074 (11)
C10.057 (2)0.050 (3)0.086 (3)0.022 (2)0.031 (2)0.037 (2)
C20.065 (3)0.027 (2)0.109 (3)0.0078 (19)0.043 (3)0.014 (2)
C30.054 (2)0.035 (2)0.072 (2)0.0049 (18)0.025 (2)0.0088 (19)
C40.045 (2)0.035 (2)0.0443 (18)0.0015 (16)0.0165 (16)0.0023 (16)
C50.0291 (17)0.0323 (18)0.0365 (16)0.0025 (14)0.0147 (14)0.0108 (14)
C60.0285 (16)0.0309 (18)0.0219 (14)0.0009 (14)0.0025 (12)0.0093 (12)
C70.0335 (17)0.0240 (16)0.0216 (14)0.0040 (13)0.0062 (12)0.0064 (12)
C80.0337 (17)0.0277 (18)0.0261 (14)0.0040 (14)0.0097 (13)0.0057 (13)
C90.0247 (16)0.037 (2)0.0303 (15)0.0055 (14)0.0088 (13)0.0122 (14)
C100.0391 (18)0.044 (2)0.0307 (16)0.0040 (16)0.0071 (14)0.0081 (15)
C110.041 (2)0.070 (3)0.0325 (17)0.0064 (19)0.0035 (15)0.0138 (17)
C120.035 (2)0.082 (3)0.043 (2)0.018 (2)0.0075 (16)0.031 (2)
C130.039 (2)0.050 (2)0.057 (2)0.0173 (17)0.0149 (17)0.0301 (18)
C140.037 (2)0.074 (3)0.0483 (19)0.0051 (19)0.0053 (16)0.0241 (18)
C150.068 (2)0.037 (2)0.054 (2)0.0059 (19)0.0232 (18)0.0021 (17)
C160.0286 (17)0.042 (2)0.0399 (17)0.0033 (15)0.0111 (14)0.0189 (15)
C170.079 (3)0.068 (3)0.0347 (17)0.023 (2)0.0213 (18)0.0094 (17)
C180.044 (2)0.078 (3)0.076 (2)0.003 (2)0.0122 (19)0.046 (2)
C190.040 (2)0.064 (2)0.0456 (18)0.0090 (18)0.0063 (15)0.0205 (17)
C200.050 (2)0.058 (2)0.0393 (17)0.0073 (18)0.0073 (16)0.0190 (16)
C210.059 (2)0.056 (2)0.054 (2)0.0141 (19)0.0268 (18)0.0206 (18)
C220.0390 (19)0.036 (2)0.0484 (18)0.0039 (16)0.0052 (16)0.0176 (16)
C230.071 (3)0.056 (3)0.080 (3)0.017 (2)0.016 (2)0.025 (2)
C240.045 (2)0.060 (3)0.068 (2)0.0090 (19)0.0033 (19)0.015 (2)
C250.060 (2)0.041 (2)0.054 (2)0.0020 (19)0.0021 (18)0.0050 (17)
N40.0462 (18)0.0513 (19)0.0281 (14)0.0029 (15)0.0030 (14)0.0029 (14)
N50.0502 (17)0.0420 (17)0.0238 (13)0.0143 (14)0.0027 (12)0.0035 (12)
N60.0517 (18)0.0429 (18)0.0277 (14)0.0035 (15)0.0027 (14)0.0056 (13)
C260.045 (2)0.065 (3)0.0428 (19)0.005 (2)0.0051 (17)0.0057 (18)
C270.047 (2)0.062 (3)0.0430 (19)0.0157 (19)0.0073 (16)0.0066 (17)
C280.058 (2)0.048 (2)0.0341 (17)0.0195 (19)0.0021 (16)0.0007 (16)
C290.073 (3)0.048 (2)0.0300 (16)0.0137 (19)0.0096 (18)0.0129 (16)
C300.065 (2)0.049 (2)0.0371 (17)0.0108 (19)0.0170 (17)0.0168 (16)
C310.061 (2)0.047 (2)0.0390 (17)0.0090 (19)0.0049 (17)0.0176 (16)
C320.046 (2)0.039 (2)0.0300 (17)0.0201 (17)0.0057 (16)0.0047 (15)
C1AN0.061 (3)0.056 (3)0.063 (3)0.009 (2)0.018 (2)0.008 (2)
N1AN0.068 (3)0.105 (3)0.092 (3)0.005 (2)0.010 (2)0.007 (2)
C2AN0.066 (3)0.072 (3)0.068 (2)0.013 (2)0.006 (2)0.022 (2)
Geometric parameters (Å, º) top
Si1—O11.652 (2)C18—H18C0.9800
Si1—C151.853 (3)C19—H19A0.9800
Si1—C141.858 (3)C19—H19B0.9800
Si1—C161.877 (3)C19—H19C0.9800
Si2—O21.6516 (18)C20—H20A0.9800
Si2—C201.855 (3)C20—H20B0.9800
Si2—C211.857 (3)C20—H20C0.9800
Si2—C221.872 (3)C21—H21A0.9800
O1—C61.438 (3)C21—H21B0.9800
O2—C81.431 (3)C21—H21C0.9800
O3—N31.312 (3)C22—C251.537 (4)
O4—N31.319 (3)C22—C231.536 (4)
N1—C51.339 (3)C22—C241.546 (4)
N1—C11.342 (4)C23—H23A0.9800
N2—C131.336 (3)C23—H23B0.9800
N2—C91.339 (4)C23—H23C0.9800
N3—C71.316 (3)C24—H24A0.9800
C1—C21.374 (5)C24—H24B0.9800
C1—H1A0.9500C24—H24C0.9800
C2—C31.367 (5)C25—H25A0.9800
C2—H2A0.9500C25—H25B0.9800
C3—C41.382 (4)C25—H25C0.9800
C3—H3A0.9500N4—C321.320 (4)
C4—C51.378 (4)N4—C261.454 (4)
C4—H4A0.9500N4—H1N40.83 (3)
C5—C61.516 (4)N5—C321.335 (3)
C6—C71.507 (3)N5—C291.463 (4)
C6—H6A1.0000N5—C281.467 (4)
C7—C81.500 (4)N6—C321.339 (4)
C8—C91.523 (4)N6—C311.455 (4)
C8—H8A1.0000N6—H1N60.93 (3)
C9—C101.389 (4)C26—C271.510 (4)
C10—C111.385 (4)C26—H26A0.9900
C10—H10A0.9500C26—H26B0.9900
C11—C121.371 (5)C27—C281.513 (4)
C11—H11A0.9500C27—H27A0.9900
C12—C131.374 (4)C27—H27B0.9900
C12—H12A0.9500C28—H28A0.9900
C13—H13A0.9500C28—H28B0.9900
C14—H14A0.9800C29—C301.509 (4)
C14—H14B0.9800C29—H29A0.9900
C14—H14C0.9800C29—H29B0.9900
C15—H15A0.9800C30—C311.516 (4)
C15—H15B0.9800C30—H30A0.9900
C15—H15C0.9800C30—H30B0.9900
C16—C171.529 (4)C31—H31A0.9900
C16—C191.531 (4)C31—H31B0.9900
C16—C181.536 (4)C1AN—N1AN1.133 (5)
C17—H17A0.9800C1AN—C2AN1.442 (5)
C17—H17B0.9800C2AN—H2A10.9800
C17—H17C0.9800C2AN—H2A20.9800
C18—H18A0.9800C2AN—H2A30.9800
C18—H18B0.9800
O1—Si1—C15108.18 (12)H19A—C19—H19B109.5
O1—Si1—C14109.79 (13)C16—C19—H19C109.5
C15—Si1—C14110.35 (15)H19A—C19—H19C109.5
O1—Si1—C16105.85 (12)H19B—C19—H19C109.5
C15—Si1—C16112.70 (14)Si2—C20—H20A109.5
C14—Si1—C16109.84 (13)Si2—C20—H20B109.5
O2—Si2—C20110.59 (13)H20A—C20—H20B109.5
O2—Si2—C21112.33 (13)Si2—C20—H20C109.5
C20—Si2—C21107.53 (14)H20A—C20—H20C109.5
O2—Si2—C22103.46 (11)H20B—C20—H20C109.5
C20—Si2—C22112.02 (15)Si2—C21—H21A109.5
C21—Si2—C22110.96 (15)Si2—C21—H21B109.5
C6—O1—Si1119.55 (16)H21A—C21—H21B109.5
C8—O2—Si2125.65 (15)Si2—C21—H21C109.5
C5—N1—C1117.1 (3)H21A—C21—H21C109.5
C13—N2—C9116.7 (3)H21B—C21—H21C109.5
O3—N3—C7123.0 (2)C25—C22—C23109.5 (3)
O3—N3—O4115.57 (19)C25—C22—C24108.0 (3)
C7—N3—O4121.5 (2)C23—C22—C24108.8 (3)
N1—C1—C2124.0 (3)C25—C22—Si2110.7 (2)
N1—C1—H1A118.0C23—C22—Si2109.7 (2)
C2—C1—H1A118.0C24—C22—Si2110.1 (2)
C3—C2—C1118.1 (3)C22—C23—H23A109.5
C3—C2—H2A121.0C22—C23—H23B109.5
C1—C2—H2A121.0H23A—C23—H23B109.5
C2—C3—C4119.3 (3)C22—C23—H23C109.5
C2—C3—H3A120.4H23A—C23—H23C109.5
C4—C3—H3A120.4H23B—C23—H23C109.5
C5—C4—C3119.1 (3)C22—C24—H24A109.5
C5—C4—H4A120.5C22—C24—H24B109.5
C3—C4—H4A120.5H24A—C24—H24B109.5
N1—C5—C4122.5 (3)C22—C24—H24C109.5
N1—C5—C6114.1 (2)H24A—C24—H24C109.5
C4—C5—C6123.4 (3)H24B—C24—H24C109.5
O1—C6—C7111.7 (2)C22—C25—H25A109.5
O1—C6—C5108.84 (19)C22—C25—H25B109.5
C7—C6—C5112.2 (2)H25A—C25—H25B109.5
O1—C6—H6A108.0C22—C25—H25C109.5
C7—C6—H6A108.0H25A—C25—H25C109.5
C5—C6—H6A108.0H25B—C25—H25C109.5
N3—C7—C8117.4 (2)C32—N4—C26121.4 (3)
N3—C7—C6117.9 (2)C32—N4—H1N4120 (2)
C8—C7—C6124.6 (2)C26—N4—H1N4119 (2)
O2—C8—C7111.9 (2)C32—N5—C29122.0 (3)
O2—C8—C9109.0 (2)C32—N5—C28121.8 (3)
C7—C8—C9114.3 (2)C29—N5—C28115.3 (2)
O2—C8—H8A107.1C32—N6—C31121.5 (3)
C7—C8—H8A107.1C32—N6—H1N6110 (2)
C9—C8—H8A107.1C31—N6—H1N6125 (2)
N2—C9—C10123.3 (3)N4—C26—C27107.7 (3)
N2—C9—C8114.3 (2)N4—C26—H26A110.2
C10—C9—C8122.2 (3)C27—C26—H26A110.2
C11—C10—C9118.2 (3)N4—C26—H26B110.2
C11—C10—H10A120.9C27—C26—H26B110.2
C9—C10—H10A120.9H26A—C26—H26B108.5
C12—C11—C10119.1 (3)C26—C27—C28108.4 (3)
C12—C11—H11A120.5C26—C27—H27A110.0
C10—C11—H11A120.5C28—C27—H27A110.0
C13—C12—C11118.6 (3)C26—C27—H27B110.0
C13—C12—H12A120.7C28—C27—H27B110.0
C11—C12—H12A120.7H27A—C27—H27B108.4
N2—C13—C12124.0 (3)N5—C28—C27112.0 (2)
N2—C13—H13A118.0N5—C28—H28A109.2
C12—C13—H13A118.0C27—C28—H28A109.2
Si1—C14—H14A109.5N5—C28—H28B109.2
Si1—C14—H14B109.5C27—C28—H28B109.2
H14A—C14—H14B109.5H28A—C28—H28B107.9
Si1—C14—H14C109.5N5—C29—C30111.5 (2)
H14A—C14—H14C109.5N5—C29—H29A109.3
H14B—C14—H14C109.5C30—C29—H29A109.3
Si1—C15—H15A109.5N5—C29—H29B109.3
Si1—C15—H15B109.5C30—C29—H29B109.3
H15A—C15—H15B109.5H29A—C29—H29B108.0
Si1—C15—H15C109.5C29—C30—C31109.5 (3)
H15A—C15—H15C109.5C29—C30—H30A109.8
H15B—C15—H15C109.5C31—C30—H30A109.8
C17—C16—C19109.4 (3)C29—C30—H30B109.8
C17—C16—C18108.9 (2)C31—C30—H30B109.8
C19—C16—C18108.0 (3)H30A—C30—H30B108.2
C17—C16—Si1109.8 (2)N6—C31—C30108.6 (3)
C19—C16—Si1110.93 (18)N6—C31—H31A110.0
C18—C16—Si1109.7 (2)C30—C31—H31A110.0
C16—C17—H17A109.5N6—C31—H31B110.0
C16—C17—H17B109.5C30—C31—H31B110.0
H17A—C17—H17B109.5H31A—C31—H31B108.4
C16—C17—H17C109.5N4—C32—N5121.1 (3)
H17A—C17—H17C109.5N4—C32—N6118.3 (3)
H17B—C17—H17C109.5N5—C32—N6120.5 (3)
C16—C18—H18A109.5N1AN—C1AN—C2AN178.9 (5)
C16—C18—H18B109.5C1AN—C2AN—H2A1109.5
H18A—C18—H18B109.5C1AN—C2AN—H2A2109.5
C16—C18—H18C109.5H2A1—C2AN—H2A2109.5
H18A—C18—H18C109.5C1AN—C2AN—H2A3109.5
H18B—C18—H18C109.5H2A1—C2AN—H2A3109.5
C16—C19—H19A109.5H2A2—C2AN—H2A3109.5
C16—C19—H19B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···O30.83 (3)1.94 (3)2.772 (3)172 (3)
N6—H1N6···O40.93 (3)1.80 (3)2.732 (3)178 (3)

Experimental details

Crystal data
Chemical formulaC7H14N3+·C25H40N3O4Si2·CH3CN
Mr684.05
Crystal system, space groupTriclinic, P1
Temperature (K)183
a, b, c (Å)9.4335 (8), 11.1149 (9), 19.4529 (14)
α, β, γ (°)103.062 (4), 98.098 (4), 95.197 (5)
V3)1951.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.06 × 0.06 × 0.04
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12006, 8497, 3820
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.141, 0.92
No. of reflections8497
No. of parameters442
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.27

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···O30.83 (3)1.94 (3)2.772 (3)172 (3)
N6—H1N6···O40.93 (3)1.80 (3)2.732 (3)178 (3)
 

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft (DFG, Bonn–Bad Godesberg, Germany) for generous financial support. The authors also acknowledge funding from the Fonds der Chemischen Industrie (Frankfurt/Main, Germany).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–S19.  Google Scholar
First citationBallini, R., Bosica, G., Fiorini, D. & Petrini, M. (2002). Tetrahedron Lett. 43, 5233–5235.  CrossRef CAS Google Scholar
First citationBallini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017–1047.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchulz, M., Wimmer, K., Görls, H. & Westerhausen, M. (2011). Z. Naturforsch. B Chem. Sci. 66b, 611–623.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds