organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2-Chloro­benzyl­­idene)amino]-4,5,6,7-tetra­hydro-1-benzo­thio­phene-3-carbo­nitrile

aThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, King Abduaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 24 July 2011; accepted 9 August 2011; online 17 August 2011)

In the title compound, C16H13ClN2S, the mean planes fitted through all non-H atoms of the heterocyclic five-membered and the benzene rings are oriented at a dihedral angle of 5.19 (7)°. In the crystal, a weak C—H⋯π inter­action occurs, along with weak ππ inter­actions [cenroid–centroid distance = 3.7698 (11) Å].

Related literature

For information on the use of Schiff bases in pharmaceutical chemistry, see: Lewinski et al. (2005[Lewinski, J., Zachara, J., Justyniak, I. & Dranka, M. (2005). Coord. Chem. Rev. 249, 1185-1199.]). For related structures, see: Asiri et al. (2011a[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2011a). Acta Cryst. E67, o2162.],b[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2011b). Acta Cryst. E67, o2254.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClN2S

  • Mr = 300.79

  • Triclinic, [P \overline 1]

  • a = 8.3383 (4) Å

  • b = 8.6885 (4) Å

  • c = 10.5746 (5) Å

  • α = 85.975 (2)°

  • β = 80.806 (2)°

  • γ = 73.003 (2)°

  • V = 723.00 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.40 × 0.25 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.951

  • 10003 measured reflections

  • 2600 independent reflections

  • 2308 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.03

  • 2600 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5ACgi 0.97 2.87 3.744 (3) 151
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Schiff-base compounds have been used as intermediate for various reactions (Lewinski, et al., 2005) and medical substrates. The title compound (I), (Fig. 1) has been prepared as a Pharmaceutical intermediate.

We have reported the crystal structure of 2-[(benzo[1,3]dioxol-5-ylmethylene)-amino]-4,5,6,7-tetrahydro-benzo[b]thiophene -3-carbonitrile (Asiri et al., 2011a) and 2-[(4-Chloro-benzylidene)-amino]-4,5,6,7-tetrahydro-benzo[b]thiophene -3-carbonitrile (Asiri et al., 2011b) which are related to the title compound.

In (I), the five membered ring A (C1/C2/C3/C8/S1) of 2-amino-4,5,6,7- tetrahydro-1-benzothiophene-3-carbonitrile and the group B (C10–C16/CL1) of 2-chlorobenzaldehyde are planar with r. m. s. deviation of 0.0097 and 0.0020 Å, respectively. The dihedral angle between A/B is 5.19 (7)°. A C—H···π interaction between the six membered rings of 2-amino-4,5,6,7-tetrahydro-1- benzothiophene-3-carbonitrile and the 2-chlorobenzaldehyde group is present (Table 1). ππ interactions [separation: 3.7698 (11) Å] between the heterocyclic five membered and benzene rings are also present.

Related literature top

For information on the use of Schiff bases in pharmaceutical chemistry, see: Lewinski et al. (2005). For related structures, see: Asiri et al. (2011a,b).

Experimental top

A mixture of 2-chloro benzaldehyde (0.46 g, 2.4 mmol) and 2-amino-4,5,6,7-tetrahydro-benzo[b]thiophene-carbonitrile (0.32 g, 3.3 mmol) in ethanol (15 ml) was heated for 3 h. The progress of the reaction was monitored by TLC. The solid that separated from the cooled mixture was collected and recrystallized from a methanol-chloroform mixture (8:2) to give yellow needles of the title compound (I).

Yellow solid: Yield: 82%, m.p. 450 K.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.2 for all H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title compounds with displacement ellipsoids at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that C—H···π interactions are present. Only the H-atom involved in π-interaction is present.
2-[(2-Chlorobenzylidene)amino]-4,5,6,7-tetrahydro-1-benzothiophene- 3-carbonitrile top
Crystal data top
C16H13ClN2SZ = 2
Mr = 300.79F(000) = 312
Triclinic, P1Dx = 1.382 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3383 (4) ÅCell parameters from 2308 reflections
b = 8.6885 (4) Åθ = 3.0–25.3°
c = 10.5746 (5) ŵ = 0.40 mm1
α = 85.975 (2)°T = 296 K
β = 80.806 (2)°Rod, yellow
γ = 73.003 (2)°0.40 × 0.25 × 0.25 mm
V = 723.00 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2600 independent reflections
Radiation source: fine-focus sealed tube2308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.20 pixels mm-1θmax = 25.3°, θmin = 3.0°
ω scansh = 910
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.931, Tmax = 0.951l = 1212
10003 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.253P]
where P = (Fo2 + 2Fc2)/3
2600 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H13ClN2Sγ = 73.003 (2)°
Mr = 300.79V = 723.00 (6) Å3
Triclinic, P1Z = 2
a = 8.3383 (4) ÅMo Kα radiation
b = 8.6885 (4) ŵ = 0.40 mm1
c = 10.5746 (5) ÅT = 296 K
α = 85.975 (2)°0.40 × 0.25 × 0.25 mm
β = 80.806 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2600 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2308 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.951Rint = 0.019
10003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
2600 reflectionsΔρmin = 0.34 e Å3
181 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51410 (9)0.59840 (7)0.31788 (6)0.0866 (2)
S10.05883 (6)0.76273 (6)0.05536 (4)0.0534 (2)
N10.0435 (3)0.2524 (2)0.3132 (2)0.0764 (7)
N20.24264 (18)0.44103 (18)0.02432 (13)0.0474 (5)
C10.1187 (2)0.5590 (2)0.09452 (16)0.0444 (5)
C20.0275 (2)0.53040 (19)0.20896 (15)0.0409 (5)
C30.0859 (2)0.67215 (19)0.26797 (15)0.0402 (5)
C40.1898 (2)0.6775 (2)0.39739 (16)0.0481 (6)
C50.3072 (3)0.8451 (2)0.42743 (19)0.0596 (6)
C60.2276 (3)0.9751 (2)0.3795 (2)0.0639 (7)
C70.1776 (3)0.9748 (2)0.23394 (18)0.0563 (6)
C80.0812 (2)0.8060 (2)0.19563 (16)0.0450 (5)
C90.0415 (2)0.3740 (2)0.26452 (17)0.0490 (6)
C100.3285 (2)0.4785 (2)0.07655 (17)0.0515 (6)
C110.4641 (2)0.3591 (2)0.15131 (16)0.0467 (5)
C120.5574 (2)0.4006 (2)0.26298 (18)0.0505 (6)
C130.6858 (2)0.2868 (3)0.33329 (18)0.0553 (6)
C140.7236 (2)0.1295 (3)0.29270 (19)0.0581 (6)
C150.6354 (3)0.0838 (3)0.1829 (2)0.0631 (7)
C160.5064 (3)0.1976 (2)0.11318 (19)0.0580 (6)
H4A0.114930.643590.461820.0577*
H4B0.256840.602460.401220.0577*
H5A0.409130.860580.389000.0715*
H5B0.340270.853370.519470.0715*
H6A0.127470.961480.419710.0766*
H6B0.306541.078550.404100.0766*
H7A0.278191.011820.192340.0676*
H7B0.107541.046410.208120.0676*
H100.304340.585810.103910.0618*
H130.746000.317180.407820.0664*
H140.809980.052640.339900.0697*
H150.662330.023580.155440.0757*
H160.446560.165600.039150.0696*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0933 (4)0.0609 (3)0.0809 (4)0.0090 (3)0.0284 (3)0.0135 (3)
S10.0620 (3)0.0531 (3)0.0391 (3)0.0172 (2)0.0119 (2)0.0022 (2)
N10.0988 (15)0.0503 (10)0.0746 (12)0.0181 (10)0.0035 (11)0.0008 (9)
N20.0421 (8)0.0579 (9)0.0393 (8)0.0130 (7)0.0043 (6)0.0117 (6)
C10.0419 (9)0.0528 (10)0.0373 (8)0.0138 (7)0.0020 (7)0.0100 (7)
C20.0393 (8)0.0441 (9)0.0375 (8)0.0108 (7)0.0007 (7)0.0052 (7)
C30.0376 (8)0.0446 (9)0.0365 (8)0.0113 (7)0.0013 (6)0.0051 (7)
C40.0494 (10)0.0483 (10)0.0400 (9)0.0107 (8)0.0082 (7)0.0042 (7)
C50.0584 (11)0.0571 (11)0.0507 (11)0.0076 (9)0.0146 (9)0.0069 (9)
C60.0718 (13)0.0486 (10)0.0587 (12)0.0092 (9)0.0165 (10)0.0123 (9)
C70.0635 (12)0.0425 (10)0.0542 (11)0.0095 (8)0.0064 (9)0.0009 (8)
C80.0466 (9)0.0467 (9)0.0384 (8)0.0130 (7)0.0044 (7)0.0044 (7)
C90.0521 (10)0.0460 (10)0.0447 (9)0.0099 (8)0.0009 (8)0.0091 (8)
C100.0462 (10)0.0592 (11)0.0445 (10)0.0129 (8)0.0065 (8)0.0092 (8)
C110.0413 (9)0.0547 (10)0.0413 (9)0.0130 (8)0.0040 (7)0.0077 (7)
C120.0461 (10)0.0547 (10)0.0462 (10)0.0130 (8)0.0041 (8)0.0027 (8)
C130.0453 (10)0.0701 (12)0.0447 (10)0.0151 (9)0.0099 (8)0.0062 (9)
C140.0477 (10)0.0625 (12)0.0548 (11)0.0054 (9)0.0064 (8)0.0156 (9)
C150.0634 (12)0.0543 (11)0.0604 (12)0.0074 (9)0.0070 (10)0.0042 (9)
C160.0578 (11)0.0596 (12)0.0486 (10)0.0146 (9)0.0120 (9)0.0018 (9)
Geometric parameters (Å, º) top
Cl1—C121.7277 (18)C12—C131.381 (3)
S1—C11.7322 (17)C13—C141.364 (3)
S1—C81.7243 (18)C14—C151.371 (3)
N1—C91.139 (2)C15—C161.380 (3)
N2—C11.383 (2)C4—H4A0.9700
N2—C101.265 (2)C4—H4B0.9700
C1—C21.371 (2)C5—H5A0.9700
C2—C31.428 (2)C5—H5B0.9700
C2—C91.422 (2)C6—H6A0.9700
C3—C41.494 (2)C6—H6B0.9700
C3—C81.353 (2)C7—H7A0.9700
C4—C51.521 (2)C7—H7B0.9700
C5—C61.491 (3)C10—H100.9300
C6—C71.529 (3)C13—H130.9300
C7—C81.500 (2)C14—H140.9300
C10—C111.457 (2)C15—H150.9300
C11—C121.393 (3)C16—H160.9300
C11—C161.390 (2)
C1—S1—C892.06 (8)C3—C4—H4A109.00
C1—N2—C10120.23 (15)C3—C4—H4B109.00
S1—C1—N2126.07 (13)C5—C4—H4A109.00
S1—C1—C2109.88 (12)C5—C4—H4B109.00
N2—C1—C2124.04 (15)H4A—C4—H4B108.00
C1—C2—C3114.07 (14)C4—C5—H5A109.00
C1—C2—C9123.61 (15)C4—C5—H5B109.00
C3—C2—C9122.32 (15)C6—C5—H5A109.00
C2—C3—C4125.31 (14)C6—C5—H5B109.00
C2—C3—C8111.71 (15)H5A—C5—H5B108.00
C4—C3—C8122.86 (15)C5—C6—H6A109.00
C3—C4—C5112.01 (14)C5—C6—H6B109.00
C4—C5—C6112.83 (19)C7—C6—H6A109.00
C5—C6—C7112.49 (17)C7—C6—H6B109.00
C6—C7—C8108.21 (14)H6A—C6—H6B108.00
S1—C8—C3112.24 (13)C6—C7—H7A110.00
S1—C8—C7122.74 (13)C6—C7—H7B110.00
C3—C8—C7124.94 (16)C8—C7—H7A110.00
N1—C9—C2175.9 (2)C8—C7—H7B110.00
N2—C10—C11122.19 (16)H7A—C7—H7B108.00
C10—C11—C12122.04 (15)N2—C10—H10119.00
C10—C11—C16120.95 (16)C11—C10—H10119.00
C12—C11—C16117.01 (16)C12—C13—H13120.00
Cl1—C12—C11120.35 (13)C14—C13—H13120.00
Cl1—C12—C13117.94 (15)C13—C14—H14120.00
C11—C12—C13121.71 (17)C15—C14—H14120.00
C12—C13—C14119.53 (18)C14—C15—H15120.00
C13—C14—C15120.6 (2)C16—C15—H15120.00
C14—C15—C16119.8 (2)C11—C16—H16119.00
C11—C16—C15121.36 (19)C15—C16—H16119.00
C8—S1—C1—N2176.35 (16)C4—C3—C8—C70.2 (3)
C8—S1—C1—C22.04 (14)C3—C4—C5—C638.3 (2)
C1—S1—C8—C7175.39 (17)C4—C5—C6—C760.9 (2)
C1—S1—C8—C31.37 (15)C5—C6—C7—C848.8 (3)
C10—N2—C1—C2175.64 (17)C6—C7—C8—S1156.62 (16)
C1—N2—C10—C11177.94 (16)C6—C7—C8—C319.7 (3)
C10—N2—C1—S12.5 (3)N2—C10—C11—C12179.42 (17)
S1—C1—C2—C32.3 (2)N2—C10—C11—C160.9 (3)
S1—C1—C2—C9176.99 (14)C10—C11—C12—Cl10.3 (2)
N2—C1—C2—C3176.19 (16)C10—C11—C12—C13179.96 (17)
N2—C1—C2—C94.6 (3)C16—C11—C12—Cl1179.97 (15)
C9—C2—C3—C8177.98 (16)C16—C11—C12—C130.3 (3)
C9—C2—C3—C45.9 (3)C10—C11—C16—C15179.6 (2)
C1—C2—C3—C4174.81 (16)C12—C11—C16—C150.1 (3)
C1—C2—C3—C81.3 (2)Cl1—C12—C13—C14179.92 (15)
C2—C3—C4—C5175.60 (17)C11—C12—C13—C140.3 (3)
C8—C3—C4—C58.7 (2)C12—C13—C14—C150.1 (3)
C2—C3—C8—S10.3 (2)C13—C14—C15—C160.5 (3)
C2—C3—C8—C7176.34 (18)C14—C15—C16—C110.5 (4)
C4—C3—C8—S1176.53 (13)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cgi0.972.873.744 (3)151
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H13ClN2S
Mr300.79
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.3383 (4), 8.6885 (4), 10.5746 (5)
α, β, γ (°)85.975 (2), 80.806 (2), 73.003 (2)
V3)723.00 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.40 × 0.25 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.931, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
10003, 2600, 2308
Rint0.019
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.03
No. of reflections2600
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cgi0.972.873.744 (3)151
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia, for providing research facilities and for the financial support of this work via grant No. 3–045/430.

References

First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2011a). Acta Cryst. E67, o2162.  Google Scholar
First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2011b). Acta Cryst. E67, o2254.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLewinski, J., Zachara, J., Justyniak, I. & Dranka, M. (2005). Coord. Chem. Rev. 249, 1185–1199.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds