organic compounds
1-Iodotriptycene
aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za
The title compound, C20H13I, is a halogenated derivative of triptycene. The molecule shows crystallographic as well as non-crystallographic C3 symmetry. The comprises one third of the molecule. Dispersive I⋯I contacts [I⋯I = 3.6389 (3) Å] connect the molecules into dimers. The shortest centroid–centroid distance between two π-systems is 3.8403 (12) Å.
Related literature
For the crystal structures of 1-bromotriptycene, 9,10-dibromotriptycene and 10-bromo-9-triptycyl iodoformate, see: Palmer & Templeton (1968), Abergel & Dinca (2004) and de Wet et al. (1978), respectively. For the preparation, see: Bartel et al. (1971).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S160053681103279X/nk2107sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: 10.1107/S160053681103279X/nk2107Isup2.cdx
Structure factors: contains datablock I. DOI: 10.1107/S160053681103279X/nk2107Isup3.hkl
The compound was formed through the thermolysis of 9-triptycyl iodoformate according to a published procedure (Bartel et al., 1971).
Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms, C—H 1.00 Å for the bridgehead carbon atom) and were included in the
in the riding model approximation, with U(H) set to 1.2Ueq(C).Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C20H13I | Dx = 1.752 Mg m−3 |
Mr = 380.20 | Mo Kα radiation, λ = 0.71069 Å |
Hexagonal, R3 | Cell parameters from 3561 reflections |
Hall symbol: -R 3 | θ = 4.1–28.3° |
a = 11.8820 (4) Å | µ = 2.21 mm−1 |
c = 17.6800 (5) Å | T = 200 K |
V = 2161.68 (12) Å3 | Block, colourless |
Z = 6 | 0.56 × 0.51 × 0.25 mm |
F(000) = 1116 |
Bruker APEXII CCD diffractometer | 1184 independent reflections |
Radiation source: fine-focus sealed tube | 1156 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.011 |
ϕ and ω scans | θmax = 28.3°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −15→10 |
Tmin = 0.568, Tmax = 0.746 | k = −13→15 |
4033 measured reflections | l = −20→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.059 | H-atom parameters constrained |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0366P)2 + 2.801P] where P = (Fo2 + 2Fc2)/3 |
1184 reflections | (Δ/σ)max < 0.001 |
64 parameters | Δρmax = 1.52 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
C20H13I | Z = 6 |
Mr = 380.20 | Mo Kα radiation |
Hexagonal, R3 | µ = 2.21 mm−1 |
a = 11.8820 (4) Å | T = 200 K |
c = 17.6800 (5) Å | 0.56 × 0.51 × 0.25 mm |
V = 2161.68 (12) Å3 |
Bruker APEXII CCD diffractometer | 1184 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1156 reflections with I > 2σ(I) |
Tmin = 0.568, Tmax = 0.746 | Rint = 0.011 |
4033 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 0 restraints |
wR(F2) = 0.059 | H-atom parameters constrained |
S = 1.15 | Δρmax = 1.52 e Å−3 |
1184 reflections | Δρmin = −0.51 e Å−3 |
64 parameters |
x | y | z | Uiso*/Ueq | ||
I1 | 0.0000 | 0.0000 | 0.102907 (11) | 0.03354 (10) | |
C1 | 0.11904 (15) | 0.11668 (15) | 0.33674 (10) | 0.0219 (3) | |
C2 | 0.12090 (15) | 0.11714 (15) | 0.25794 (10) | 0.0207 (3) | |
C3 | 0.22522 (17) | 0.21626 (17) | 0.21950 (11) | 0.0264 (3) | |
H3 | 0.2274 | 0.2169 | 0.1658 | 0.032* | |
C4 | 0.32674 (18) | 0.31494 (17) | 0.26061 (13) | 0.0330 (4) | |
H4 | 0.3988 | 0.3826 | 0.2346 | 0.040* | |
C5 | 0.32397 (18) | 0.31565 (18) | 0.33846 (14) | 0.0337 (4) | |
H5 | 0.3933 | 0.3842 | 0.3657 | 0.040* | |
C6 | 0.21961 (18) | 0.21594 (17) | 0.37755 (12) | 0.0284 (4) | |
H6 | 0.2174 | 0.2160 | 0.4313 | 0.034* | |
C7 | 0.0000 | 0.0000 | 0.22412 (15) | 0.0188 (5) | |
C8 | 0.0000 | 0.0000 | 0.37075 (17) | 0.0224 (5) | |
H8 | 0.0000 | 0.0000 | 0.4273 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.04045 (12) | 0.04045 (12) | 0.01971 (13) | 0.02022 (6) | 0.000 | 0.000 |
C1 | 0.0206 (7) | 0.0206 (7) | 0.0262 (8) | 0.0115 (6) | −0.0022 (6) | −0.0016 (6) |
C2 | 0.0177 (7) | 0.0176 (7) | 0.0276 (8) | 0.0094 (6) | −0.0006 (6) | −0.0004 (6) |
C3 | 0.0230 (7) | 0.0231 (7) | 0.0318 (9) | 0.0107 (6) | 0.0039 (6) | 0.0044 (6) |
C4 | 0.0212 (8) | 0.0203 (8) | 0.0530 (12) | 0.0071 (6) | 0.0005 (7) | 0.0042 (8) |
C5 | 0.0238 (8) | 0.0206 (7) | 0.0538 (12) | 0.0089 (7) | −0.0117 (8) | −0.0056 (8) |
C6 | 0.0280 (8) | 0.0254 (8) | 0.0349 (9) | 0.0157 (7) | −0.0098 (7) | −0.0072 (7) |
C7 | 0.0202 (7) | 0.0202 (7) | 0.0162 (12) | 0.0101 (4) | 0.000 | 0.000 |
C8 | 0.0242 (8) | 0.0242 (8) | 0.0189 (13) | 0.0121 (4) | 0.000 | 0.000 |
I1—C7 | 2.143 (3) | C4—H4 | 0.9500 |
C1—C6 | 1.389 (2) | C5—C6 | 1.396 (3) |
C1—C2 | 1.393 (2) | C5—H5 | 0.9500 |
C1—C8 | 1.524 (2) | C6—H6 | 0.9500 |
C2—C3 | 1.388 (2) | C7—C2i | 1.5359 (19) |
C2—C7 | 1.5359 (19) | C7—C2ii | 1.5359 (19) |
C3—C4 | 1.394 (3) | C8—C1i | 1.524 (2) |
C3—H3 | 0.9500 | C8—C1ii | 1.524 (2) |
C4—C5 | 1.377 (4) | C8—H8 | 1.0000 |
C6—C1—C2 | 120.71 (16) | C1—C6—C5 | 119.03 (19) |
C6—C1—C8 | 125.48 (18) | C1—C6—H6 | 120.5 |
C2—C1—C8 | 113.81 (16) | C5—C6—H6 | 120.5 |
C3—C2—C1 | 119.92 (16) | C2—C7—C2i | 105.82 (13) |
C3—C2—C7 | 127.75 (17) | C2—C7—C2ii | 105.82 (13) |
C1—C2—C7 | 112.33 (16) | C2i—C7—C2ii | 105.82 (13) |
C2—C3—C4 | 119.24 (18) | C2—C7—I1 | 112.92 (11) |
C2—C3—H3 | 120.4 | C2i—C7—I1 | 112.92 (11) |
C4—C3—H3 | 120.4 | C2ii—C7—I1 | 112.92 (11) |
C5—C4—C3 | 120.87 (17) | C1i—C8—C1ii | 105.46 (14) |
C5—C4—H4 | 119.6 | C1i—C8—C1 | 105.46 (14) |
C3—C4—H4 | 119.6 | C1ii—C8—C1 | 105.46 (14) |
C4—C5—C6 | 120.22 (17) | C1i—C8—H8 | 113.2 |
C4—C5—H5 | 119.9 | C1ii—C8—H8 | 113.2 |
C6—C5—H5 | 119.9 | C1—C8—H8 | 113.2 |
C6—C1—C2—C3 | 1.2 (2) | C3—C2—C7—C2i | 122.9 (2) |
C8—C1—C2—C3 | −178.53 (13) | C1—C2—C7—C2i | −56.63 (15) |
C6—C1—C2—C7 | −179.19 (13) | C3—C2—C7—C2ii | −125.1 (2) |
C8—C1—C2—C7 | 1.07 (16) | C1—C2—C7—C2ii | 55.38 (16) |
C1—C2—C3—C4 | −0.4 (2) | C3—C2—C7—I1 | −1.06 (17) |
C7—C2—C3—C4 | −179.98 (14) | C1—C2—C7—I1 | 179.37 (9) |
C2—C3—C4—C5 | −0.6 (3) | C6—C1—C8—C1i | −124.7 (2) |
C3—C4—C5—C6 | 0.9 (3) | C2—C1—C8—C1i | 55.02 (16) |
C2—C1—C6—C5 | −0.9 (2) | C6—C1—C8—C1ii | 124.0 (2) |
C8—C1—C6—C5 | 178.79 (14) | C2—C1—C8—C1ii | −56.30 (16) |
C4—C5—C6—C1 | −0.1 (3) |
Symmetry codes: (i) −x+y, −x, z; (ii) −y, x−y, z. |
Experimental details
Crystal data | |
Chemical formula | C20H13I |
Mr | 380.20 |
Crystal system, space group | Hexagonal, R3 |
Temperature (K) | 200 |
a, c (Å) | 11.8820 (4), 17.6800 (5) |
V (Å3) | 2161.68 (12) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 2.21 |
Crystal size (mm) | 0.56 × 0.51 × 0.25 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.568, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4033, 1184, 1156 |
Rint | 0.011 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.059, 1.15 |
No. of reflections | 1184 |
No. of parameters | 64 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.52, −0.51 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
The authors thank Dr Marc van der Vywer for helpful discussions.
References
Abergel, R. J. & Dinca, M. (2004). Acta Cryst. E60, o1248–o1249. Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bartel, K., Goosen, A. & Scheffer, A. (1971). J. Chem. Soc. C, pp. 3766–3769. Google Scholar
Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Palmer, K. J. & Templeton, D. H. (1968). Acta Cryst. B24, 1048–1052. CSD CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wet, F. de, Goosen, A. & Mergehenn, R. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 104–108. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of molecules featuring double and triple bonds involving elements from the third row of the periodic system of the elements (or below) is affected by the marked tendency of oligo- and polymerization. The introduction of sterically demanding, "bulky" protective groups in proximity to such bonding systems allowed the isolation and characterization of respective compounds on grounds of steric shielding and, as a consequence, markedly decreased rate of polymerization. It seemed of interest for us to study whether the presence of such aforementioned bonding systems has an influence on the metrical parameters of the applied protection groups as well. Therefore, we determined the crystal structure of the title compound. So far, the molecular and crystal stuctures of 1-bromotriptycene (Palmer & Templeton, 1968), 9,10-dibromotriptycene (Abergel & Dinca, 2004) as well as 10-bromo-9-triptycyl iodoformate (de Wet et al., 1978) are the only examples of structurally characterized triptycene compounds bearing a halogenido substituent on the bridgehead carbon atom present in the literature.
Halogenation took place on one of the bridgehead carbon atoms of the triptycene molecule (Figure 1). The least-squares planes defined by the atoms of the three aromatic moieties enclose angles of 60.03 (4) ° and 60.03 (7), respectively.
In the molecules, dispersive I···I contacts whose range falls by more than 0.3 Å below the sum of van der Waals radii can be observed (Figure 2). These connect two molecules to dimeric units whose I···I vector is pointing along the crystallographic c axis. The aromatic moieties of one molecule in such a dimer adopt a staggered conformation towards the aromatic moieties in the other molecule when projected along the I···I axis. The closest intercentroid distance between two π-systems was measured at 3.8403 (12) Å.