organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Iodo­triptycene

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 28 July 2011; accepted 12 August 2011; online 17 August 2011)

The title compound, C20H13I, is a halogenated derivative of triptycene. The mol­ecule shows crystallographic as well as non-crystallographic C3 symmetry. The asymmetric unit comprises one third of the mol­ecule. Dispersive I⋯I contacts [I⋯I = 3.6389 (3) Å] connect the mol­ecules into dimers. The shortest centroid–centroid distance between two π-systems is 3.8403 (12) Å.

Related literature

For the crystal structures of 1-bromo­triptycene, 9,10-di­bromo­triptycene and 10-bromo-9-triptycyl iodo­formate, see: Palmer & Templeton (1968[Palmer, K. J. & Templeton, D. H. (1968). Acta Cryst. B24, 1048-1052.]), Abergel & Dinca (2004[Abergel, R. J. & Dinca, M. (2004). Acta Cryst. E60, o1248-o1249.]) and de Wet et al. (1978[Wet, F. de, Goosen, A. & Mergehenn, R. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 104-108.]), respectively. For the preparation, see: Bartel et al. (1971[Bartel, K., Goosen, A. & Scheffer, A. (1971). J. Chem. Soc. C, pp. 3766-3769.]).

[Scheme 1]

Experimental

Crystal data
  • C20H13I

  • Mr = 380.20

  • Hexagonal, [R \overline 3]

  • a = 11.8820 (4) Å

  • c = 17.6800 (5) Å

  • V = 2161.68 (12) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 200 K

  • 0.56 × 0.51 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.568, Tmax = 0.746

  • 4033 measured reflections

  • 1184 independent reflections

  • 1156 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.059

  • S = 1.15

  • 1184 reflections

  • 64 parameters

  • H-atom parameters constrained

  • Δρmax = 1.52 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The chemistry of molecules featuring double and triple bonds involving elements from the third row of the periodic system of the elements (or below) is affected by the marked tendency of oligo- and polymerization. The introduction of sterically demanding, "bulky" protective groups in proximity to such bonding systems allowed the isolation and characterization of respective compounds on grounds of steric shielding and, as a consequence, markedly decreased rate of polymerization. It seemed of interest for us to study whether the presence of such aforementioned bonding systems has an influence on the metrical parameters of the applied protection groups as well. Therefore, we determined the crystal structure of the title compound. So far, the molecular and crystal stuctures of 1-bromotriptycene (Palmer & Templeton, 1968), 9,10-dibromotriptycene (Abergel & Dinca, 2004) as well as 10-bromo-9-triptycyl iodoformate (de Wet et al., 1978) are the only examples of structurally characterized triptycene compounds bearing a halogenido substituent on the bridgehead carbon atom present in the literature.

Halogenation took place on one of the bridgehead carbon atoms of the triptycene molecule (Figure 1). The least-squares planes defined by the atoms of the three aromatic moieties enclose angles of 60.03 (4) ° and 60.03 (7), respectively.

In the molecules, dispersive I···I contacts whose range falls by more than 0.3 Å below the sum of van der Waals radii can be observed (Figure 2). These connect two molecules to dimeric units whose I···I vector is pointing along the crystallographic c axis. The aromatic moieties of one molecule in such a dimer adopt a staggered conformation towards the aromatic moieties in the other molecule when projected along the I···I axis. The closest intercentroid distance between two π-systems was measured at 3.8403 (12) Å.

Related literature top

For the crystal structure of 1-bromotriptycene, see: Palmer & Templeton (1968). For the crystal structure of 9,10-dibromotriptycene, see: Abergel & Dinca (2004). For the crystal structure of 10-bromo-9-triptycyl iodoformate, see: de Wet et al. (1978). For the preparation, see: Bartel et al. (1971).

Experimental top

The compound was formed through the thermolysis of 9-triptycyl iodoformate according to a published procedure (Bartel et al., 1971).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms, C—H 1.00 Å for the bridgehead carbon atom) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, anisotropic displacement ellipsoids are drawn at 50% probability level. Symmetry operators: i -y, x-y, z; ii -x + y, -x, z.
[Figure 2] Fig. 2. Intermolecular I···I contact, viewed along [0 - 1 0]. Symmetry operator: i -x, -y, -z.
9-iodo-9,10-dihydro-9,10[1',2']-benzenoanthracene top
Crystal data top
C20H13IDx = 1.752 Mg m3
Mr = 380.20Mo Kα radiation, λ = 0.71069 Å
Hexagonal, R3Cell parameters from 3561 reflections
Hall symbol: -R 3θ = 4.1–28.3°
a = 11.8820 (4) ŵ = 2.21 mm1
c = 17.6800 (5) ÅT = 200 K
V = 2161.68 (12) Å3Block, colourless
Z = 60.56 × 0.51 × 0.25 mm
F(000) = 1116
Data collection top
Bruker APEXII CCD
diffractometer
1184 independent reflections
Radiation source: fine-focus sealed tube1156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scansθmax = 28.3°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1510
Tmin = 0.568, Tmax = 0.746k = 1315
4033 measured reflectionsl = 2023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0366P)2 + 2.801P]
where P = (Fo2 + 2Fc2)/3
1184 reflections(Δ/σ)max < 0.001
64 parametersΔρmax = 1.52 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C20H13IZ = 6
Mr = 380.20Mo Kα radiation
Hexagonal, R3µ = 2.21 mm1
a = 11.8820 (4) ÅT = 200 K
c = 17.6800 (5) Å0.56 × 0.51 × 0.25 mm
V = 2161.68 (12) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1184 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1156 reflections with I > 2σ(I)
Tmin = 0.568, Tmax = 0.746Rint = 0.011
4033 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.15Δρmax = 1.52 e Å3
1184 reflectionsΔρmin = 0.51 e Å3
64 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.00000.00000.102907 (11)0.03354 (10)
C10.11904 (15)0.11668 (15)0.33674 (10)0.0219 (3)
C20.12090 (15)0.11714 (15)0.25794 (10)0.0207 (3)
C30.22522 (17)0.21626 (17)0.21950 (11)0.0264 (3)
H30.22740.21690.16580.032*
C40.32674 (18)0.31494 (17)0.26061 (13)0.0330 (4)
H40.39880.38260.23460.040*
C50.32397 (18)0.31565 (18)0.33846 (14)0.0337 (4)
H50.39330.38420.36570.040*
C60.21961 (18)0.21594 (17)0.37755 (12)0.0284 (4)
H60.21740.21600.43130.034*
C70.00000.00000.22412 (15)0.0188 (5)
C80.00000.00000.37075 (17)0.0224 (5)
H80.00000.00000.42730.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04045 (12)0.04045 (12)0.01971 (13)0.02022 (6)0.0000.000
C10.0206 (7)0.0206 (7)0.0262 (8)0.0115 (6)0.0022 (6)0.0016 (6)
C20.0177 (7)0.0176 (7)0.0276 (8)0.0094 (6)0.0006 (6)0.0004 (6)
C30.0230 (7)0.0231 (7)0.0318 (9)0.0107 (6)0.0039 (6)0.0044 (6)
C40.0212 (8)0.0203 (8)0.0530 (12)0.0071 (6)0.0005 (7)0.0042 (8)
C50.0238 (8)0.0206 (7)0.0538 (12)0.0089 (7)0.0117 (8)0.0056 (8)
C60.0280 (8)0.0254 (8)0.0349 (9)0.0157 (7)0.0098 (7)0.0072 (7)
C70.0202 (7)0.0202 (7)0.0162 (12)0.0101 (4)0.0000.000
C80.0242 (8)0.0242 (8)0.0189 (13)0.0121 (4)0.0000.000
Geometric parameters (Å, º) top
I1—C72.143 (3)C4—H40.9500
C1—C61.389 (2)C5—C61.396 (3)
C1—C21.393 (2)C5—H50.9500
C1—C81.524 (2)C6—H60.9500
C2—C31.388 (2)C7—C2i1.5359 (19)
C2—C71.5359 (19)C7—C2ii1.5359 (19)
C3—C41.394 (3)C8—C1i1.524 (2)
C3—H30.9500C8—C1ii1.524 (2)
C4—C51.377 (4)C8—H81.0000
C6—C1—C2120.71 (16)C1—C6—C5119.03 (19)
C6—C1—C8125.48 (18)C1—C6—H6120.5
C2—C1—C8113.81 (16)C5—C6—H6120.5
C3—C2—C1119.92 (16)C2—C7—C2i105.82 (13)
C3—C2—C7127.75 (17)C2—C7—C2ii105.82 (13)
C1—C2—C7112.33 (16)C2i—C7—C2ii105.82 (13)
C2—C3—C4119.24 (18)C2—C7—I1112.92 (11)
C2—C3—H3120.4C2i—C7—I1112.92 (11)
C4—C3—H3120.4C2ii—C7—I1112.92 (11)
C5—C4—C3120.87 (17)C1i—C8—C1ii105.46 (14)
C5—C4—H4119.6C1i—C8—C1105.46 (14)
C3—C4—H4119.6C1ii—C8—C1105.46 (14)
C4—C5—C6120.22 (17)C1i—C8—H8113.2
C4—C5—H5119.9C1ii—C8—H8113.2
C6—C5—H5119.9C1—C8—H8113.2
C6—C1—C2—C31.2 (2)C3—C2—C7—C2i122.9 (2)
C8—C1—C2—C3178.53 (13)C1—C2—C7—C2i56.63 (15)
C6—C1—C2—C7179.19 (13)C3—C2—C7—C2ii125.1 (2)
C8—C1—C2—C71.07 (16)C1—C2—C7—C2ii55.38 (16)
C1—C2—C3—C40.4 (2)C3—C2—C7—I11.06 (17)
C7—C2—C3—C4179.98 (14)C1—C2—C7—I1179.37 (9)
C2—C3—C4—C50.6 (3)C6—C1—C8—C1i124.7 (2)
C3—C4—C5—C60.9 (3)C2—C1—C8—C1i55.02 (16)
C2—C1—C6—C50.9 (2)C6—C1—C8—C1ii124.0 (2)
C8—C1—C6—C5178.79 (14)C2—C1—C8—C1ii56.30 (16)
C4—C5—C6—C10.1 (3)
Symmetry codes: (i) x+y, x, z; (ii) y, xy, z.

Experimental details

Crystal data
Chemical formulaC20H13I
Mr380.20
Crystal system, space groupHexagonal, R3
Temperature (K)200
a, c (Å)11.8820 (4), 17.6800 (5)
V3)2161.68 (12)
Z6
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.56 × 0.51 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.568, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
4033, 1184, 1156
Rint0.011
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.059, 1.15
No. of reflections1184
No. of parameters64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.52, 0.51

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Dr Marc van der Vywer for helpful discussions.

References

First citationAbergel, R. J. & Dinca, M. (2004). Acta Cryst. E60, o1248–o1249.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBartel, K., Goosen, A. & Scheffer, A. (1971). J. Chem. Soc. C, pp. 3766–3769.  Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPalmer, K. J. & Templeton, D. H. (1968). Acta Cryst. B24, 1048–1052.  CSD CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWet, F. de, Goosen, A. & Mergehenn, R. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 104–108.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds