organic compounds
rac-cis-Cyclohexane-1,2-dicarboxylic acid–isoquinoline (1/1)
aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au
In the 9H7N·C8H12O4, the two species are linked through a carboxylic acid–isoquinoline O—H⋯N hydrogen bond. These molecular pairs then inter-associate through the second acid group of the cis-cyclohexane-1,2-dicarboxylic acid molecules, forming a classic centrosymmetric cyclic head-to-head carboxylic acid–carboxyl O—H⋯O hydrogen-bonding association [graph-set R22(8)], giving a zero-dimensional (cluster) structure, consisting of two of each species.
of the title molecular adduct, CRelated literature
For the structure of racemic cis-cyclohexane-1,2-dicarboxylic acid, see: Benedetti et al. (1970). For the structures of the racemic 1:1 ammonium and 2-aminopyridinium salts of this acid, see: Smith & Wermuth (2011a,b). For the structure of the 1:1 adduct with 4,4′-bipyridine, see: Bhogala et al. (2005). For hydrogen bonding in carboxylic acids and graph-set analysis, see: Leiserowitz (1976); Etter et al. (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811030613/nk2108sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811030613/nk2108Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811030613/nk2108Isup3.cml
The title compound was synthesized by heating a solution of 1 mmol of cyclohexane-1,2-dicarboxylic anhydride and 1 mmol of isoquinoline in 50 ml of 1:1 ethanol–water under reflux for 10 min. After concentration to 30 ml the solution was allowed to evaporate at room temperature, giving a viscous oil which eventually gave minor colourless crystals (m.p. 439–441 K) from which a specimen was cleaved for the X-ray analysis.
The carboxylic acid H atoms were located by difference methods and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the
at calculated positions [C—H = 0.93–0.98 Å and with Uiso(H) = 1.2Ueq(aromatic C), or 1.5Ueq(aliphatic C), using a riding-model approximation.Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010; data reduction: CrysAlis PRO (Oxford Diffraction, 2010; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).C9H7N·C8H12O4 | Z = 2 |
Mr = 301.33 | F(000) = 320 |
Triclinic, P1 | Dx = 1.331 Mg m−3 |
Hall symbol: -P 1 | Melting point = 439–441 K |
a = 6.2459 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.4238 (6) Å | Cell parameters from 4474 reflections |
c = 11.9970 (6) Å | θ = 3.3–28.7° |
α = 64.082 (5)° | µ = 0.10 mm−1 |
β = 77.793 (4)° | T = 200 K |
γ = 82.756 (4)° | Block, colourless |
V = 751.95 (7) Å3 | 0.40 × 0.28 × 0.20 mm |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2952 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2463 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.3° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −14→14 |
Tmin = 0.974, Tmax = 0.990 | l = −14→14 |
9094 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0354P)2 + 0.20P] where P = (Fo2 + 2Fc2)/3 |
2952 reflections | (Δ/σ)max < 0.001 |
207 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C9H7N·C8H12O4 | γ = 82.756 (4)° |
Mr = 301.33 | V = 751.95 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.2459 (3) Å | Mo Kα radiation |
b = 11.4238 (6) Å | µ = 0.10 mm−1 |
c = 11.9970 (6) Å | T = 200 K |
α = 64.082 (5)° | 0.40 × 0.28 × 0.20 mm |
β = 77.793 (4)° |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2952 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2463 reflections with I > 2σ(I) |
Tmin = 0.974, Tmax = 0.990 | Rint = 0.022 |
9094 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.17 e Å−3 |
2952 reflections | Δρmin = −0.18 e Å−3 |
207 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O11 | 0.70832 (16) | 1.07685 (11) | 0.86864 (10) | 0.0405 (4) | |
O12 | 0.37261 (16) | 1.01881 (10) | 0.88359 (9) | 0.0371 (3) | |
O21 | 0.49576 (18) | 0.88369 (10) | 0.70388 (12) | 0.0476 (4) | |
O22 | 0.17799 (18) | 0.95466 (11) | 0.63667 (11) | 0.0468 (4) | |
C1 | 0.5909 (2) | 1.13098 (13) | 0.67706 (12) | 0.0272 (4) | |
C2 | 0.4067 (2) | 1.11424 (13) | 0.61893 (12) | 0.0272 (4) | |
C3 | 0.1978 (2) | 1.19528 (13) | 0.63551 (13) | 0.0298 (4) | |
C4 | 0.2466 (2) | 1.33837 (14) | 0.58905 (14) | 0.0338 (4) | |
C5 | 0.4233 (2) | 1.35310 (13) | 0.65186 (13) | 0.0314 (4) | |
C6 | 0.6329 (2) | 1.27692 (13) | 0.62795 (13) | 0.0309 (4) | |
C11 | 0.5440 (2) | 1.06979 (12) | 0.81900 (13) | 0.0271 (4) | |
C21 | 0.3661 (2) | 0.97179 (14) | 0.65964 (13) | 0.0308 (4) | |
N2A | 0.1006 (2) | 0.70353 (12) | 0.71708 (12) | 0.0366 (4) | |
C1A | 0.2157 (2) | 0.61693 (14) | 0.79877 (14) | 0.0343 (5) | |
C3A | −0.0816 (3) | 0.66352 (15) | 0.69941 (14) | 0.0375 (5) | |
C4A | −0.1451 (2) | 0.53805 (15) | 0.76063 (14) | 0.0357 (5) | |
C5A | −0.0839 (3) | 0.31194 (15) | 0.92123 (15) | 0.0390 (5) | |
C6A | 0.0362 (3) | 0.22778 (16) | 1.00839 (16) | 0.0434 (5) | |
C7A | 0.2218 (3) | 0.26877 (16) | 1.02899 (15) | 0.0421 (5) | |
C8A | 0.2845 (2) | 0.39437 (15) | 0.96060 (14) | 0.0365 (5) | |
C9A | 0.1621 (2) | 0.48468 (14) | 0.87014 (13) | 0.0304 (4) | |
C10A | −0.0255 (2) | 0.44335 (14) | 0.84987 (13) | 0.0303 (4) | |
H1 | 0.72500 | 1.08880 | 0.64990 | 0.0410* | |
H2 | 0.46140 | 1.14950 | 0.52810 | 0.0410* | |
H11 | 0.669 (3) | 1.037 (2) | 0.959 (2) | 0.080 (7)* | |
H22 | 0.158 (3) | 0.862 (2) | 0.663 (2) | 0.078 (6)* | |
H31 | 0.09420 | 1.18840 | 0.58900 | 0.0450* | |
H32 | 0.13100 | 1.16090 | 0.72380 | 0.0450* | |
H41 | 0.29490 | 1.37600 | 0.49850 | 0.0510* | |
H42 | 0.11370 | 1.38550 | 0.60730 | 0.0510* | |
H51 | 0.37080 | 1.32150 | 0.74180 | 0.0470* | |
H52 | 0.45410 | 1.44450 | 0.61900 | 0.0470* | |
H61 | 0.74230 | 1.28670 | 0.66960 | 0.0460* | |
H62 | 0.68990 | 1.31220 | 0.53830 | 0.0460* | |
H1A | 0.34010 | 0.64420 | 0.81040 | 0.0410* | |
H3A | −0.16580 | 0.72460 | 0.64320 | 0.0450* | |
H4A | −0.26770 | 0.51450 | 0.74370 | 0.0430* | |
H5A | −0.20530 | 0.28290 | 0.90850 | 0.0470* | |
H6A | −0.00490 | 0.14190 | 1.05510 | 0.0520* | |
H7A | 0.30170 | 0.21020 | 1.08930 | 0.0510* | |
H8A | 0.40850 | 0.42070 | 0.97350 | 0.0440* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O11 | 0.0362 (6) | 0.0521 (7) | 0.0326 (6) | −0.0141 (5) | −0.0111 (5) | −0.0120 (5) |
O12 | 0.0331 (6) | 0.0448 (6) | 0.0305 (5) | −0.0113 (5) | −0.0061 (4) | −0.0105 (5) |
O21 | 0.0450 (6) | 0.0329 (6) | 0.0715 (8) | 0.0055 (5) | −0.0211 (6) | −0.0251 (6) |
O22 | 0.0487 (7) | 0.0313 (6) | 0.0680 (8) | −0.0050 (5) | −0.0269 (6) | −0.0197 (6) |
C1 | 0.0240 (7) | 0.0283 (7) | 0.0305 (7) | −0.0012 (5) | −0.0032 (5) | −0.0141 (6) |
C2 | 0.0303 (7) | 0.0285 (7) | 0.0247 (7) | −0.0036 (6) | −0.0036 (5) | −0.0128 (6) |
C3 | 0.0272 (7) | 0.0299 (7) | 0.0326 (7) | −0.0030 (6) | −0.0061 (6) | −0.0126 (6) |
C4 | 0.0332 (7) | 0.0284 (7) | 0.0380 (8) | −0.0008 (6) | −0.0084 (6) | −0.0116 (6) |
C5 | 0.0372 (8) | 0.0241 (7) | 0.0319 (7) | −0.0056 (6) | −0.0045 (6) | −0.0106 (6) |
C6 | 0.0300 (7) | 0.0322 (8) | 0.0298 (7) | −0.0085 (6) | −0.0029 (6) | −0.0116 (6) |
C11 | 0.0275 (7) | 0.0228 (7) | 0.0334 (7) | 0.0003 (5) | −0.0081 (6) | −0.0131 (6) |
C21 | 0.0345 (7) | 0.0326 (8) | 0.0300 (7) | −0.0022 (6) | −0.0053 (6) | −0.0174 (6) |
N2A | 0.0422 (7) | 0.0331 (7) | 0.0390 (7) | −0.0029 (5) | −0.0073 (6) | −0.0189 (6) |
C1A | 0.0326 (8) | 0.0379 (8) | 0.0420 (8) | −0.0036 (6) | −0.0051 (6) | −0.0256 (7) |
C3A | 0.0438 (9) | 0.0391 (8) | 0.0354 (8) | 0.0015 (7) | −0.0132 (7) | −0.0190 (7) |
C4A | 0.0350 (8) | 0.0431 (9) | 0.0393 (8) | −0.0030 (6) | −0.0101 (6) | −0.0249 (7) |
C5A | 0.0368 (8) | 0.0376 (8) | 0.0493 (9) | −0.0062 (6) | −0.0046 (7) | −0.0247 (8) |
C6A | 0.0498 (10) | 0.0316 (8) | 0.0468 (9) | −0.0026 (7) | −0.0025 (8) | −0.0172 (7) |
C7A | 0.0483 (9) | 0.0386 (9) | 0.0417 (9) | 0.0091 (7) | −0.0118 (7) | −0.0201 (7) |
C8A | 0.0347 (8) | 0.0414 (9) | 0.0429 (9) | 0.0045 (6) | −0.0108 (7) | −0.0262 (7) |
C9A | 0.0308 (7) | 0.0347 (8) | 0.0333 (7) | 0.0003 (6) | −0.0037 (6) | −0.0225 (6) |
C10A | 0.0312 (7) | 0.0345 (8) | 0.0330 (7) | −0.0015 (6) | −0.0025 (6) | −0.0226 (6) |
O11—C11 | 1.3175 (17) | C4—H41 | 0.9700 |
O12—C11 | 1.2237 (17) | C5—H51 | 0.9700 |
O21—C21 | 1.2082 (19) | C5—H52 | 0.9700 |
O22—C21 | 1.3178 (18) | C6—H62 | 0.9700 |
O11—H11 | 0.96 (2) | C6—H61 | 0.9700 |
O22—H22 | 0.98 (2) | C1A—C9A | 1.415 (2) |
N2A—C3A | 1.366 (2) | C3A—C4A | 1.361 (2) |
N2A—C1A | 1.314 (2) | C4A—C10A | 1.413 (2) |
C1—C2 | 1.5356 (19) | C5A—C6A | 1.361 (3) |
C1—C11 | 1.5081 (19) | C5A—C10A | 1.415 (2) |
C1—C6 | 1.543 (2) | C6A—C7A | 1.408 (3) |
C2—C21 | 1.519 (2) | C7A—C8A | 1.365 (3) |
C2—C3 | 1.532 (2) | C8A—C9A | 1.414 (2) |
C3—C4 | 1.527 (2) | C9A—C10A | 1.420 (2) |
C4—C5 | 1.5243 (19) | C1A—H1A | 0.9300 |
C5—C6 | 1.525 (2) | C3A—H3A | 0.9300 |
C1—H1 | 0.9800 | C4A—H4A | 0.9300 |
C2—H2 | 0.9800 | C5A—H5A | 0.9300 |
C3—H31 | 0.9700 | C6A—H6A | 0.9300 |
C3—H32 | 0.9700 | C7A—H7A | 0.9300 |
C4—H42 | 0.9700 | C8A—H8A | 0.9300 |
C11—O11—H11 | 109.3 (12) | C6—C5—H51 | 110.00 |
C21—O22—H22 | 110.7 (12) | C4—C5—H51 | 109.00 |
C1A—N2A—C3A | 118.09 (14) | H51—C5—H52 | 108.00 |
C2—C1—C6 | 110.04 (11) | C6—C5—H52 | 110.00 |
C6—C1—C11 | 109.54 (12) | C1—C6—H61 | 109.00 |
C2—C1—C11 | 113.10 (11) | C1—C6—H62 | 109.00 |
C1—C2—C21 | 112.12 (11) | C5—C6—H62 | 109.00 |
C3—C2—C21 | 113.55 (11) | H61—C6—H62 | 108.00 |
C1—C2—C3 | 113.23 (12) | C5—C6—H61 | 109.00 |
C2—C3—C4 | 111.43 (11) | N2A—C1A—C9A | 124.04 (13) |
C3—C4—C5 | 111.18 (12) | N2A—C3A—C4A | 122.78 (15) |
C4—C5—C6 | 110.73 (13) | C3A—C4A—C10A | 120.23 (14) |
C1—C6—C5 | 111.33 (11) | C6A—C5A—C10A | 120.47 (17) |
O11—C11—C1 | 112.94 (11) | C5A—C6A—C7A | 121.01 (17) |
O12—C11—C1 | 124.77 (12) | C6A—C7A—C8A | 120.05 (16) |
O11—C11—O12 | 122.29 (13) | C7A—C8A—C9A | 120.39 (14) |
O22—C21—C2 | 112.83 (13) | C1A—C9A—C8A | 122.95 (13) |
O21—C21—C2 | 123.78 (13) | C1A—C9A—C10A | 117.55 (13) |
O21—C21—O22 | 123.33 (16) | C8A—C9A—C10A | 119.49 (14) |
C2—C1—H1 | 108.00 | C4A—C10A—C5A | 124.13 (14) |
C11—C1—H1 | 108.00 | C4A—C10A—C9A | 117.27 (14) |
C6—C1—H1 | 108.00 | C5A—C10A—C9A | 118.58 (14) |
C1—C2—H2 | 106.00 | N2A—C1A—H1A | 118.00 |
C21—C2—H2 | 106.00 | C9A—C1A—H1A | 118.00 |
C3—C2—H2 | 106.00 | N2A—C3A—H3A | 119.00 |
C2—C3—H31 | 109.00 | C4A—C3A—H3A | 119.00 |
C2—C3—H32 | 109.00 | C3A—C4A—H4A | 120.00 |
C4—C3—H32 | 109.00 | C10A—C4A—H4A | 120.00 |
H31—C3—H32 | 108.00 | C6A—C5A—H5A | 120.00 |
C4—C3—H31 | 109.00 | C10A—C5A—H5A | 120.00 |
C3—C4—H42 | 109.00 | C5A—C6A—H6A | 120.00 |
C5—C4—H41 | 109.00 | C7A—C6A—H6A | 119.00 |
C5—C4—H42 | 109.00 | C6A—C7A—H7A | 120.00 |
H41—C4—H42 | 108.00 | C8A—C7A—H7A | 120.00 |
C3—C4—H41 | 109.00 | C7A—C8A—H8A | 120.00 |
C4—C5—H52 | 110.00 | C9A—C8A—H8A | 120.00 |
C3A—N2A—C1A—C9A | −0.3 (2) | C3—C4—C5—C6 | 57.52 (15) |
C1A—N2A—C3A—C4A | −1.4 (2) | C4—C5—C6—C1 | −58.31 (15) |
C6—C1—C2—C3 | −52.58 (14) | N2A—C1A—C9A—C8A | −177.79 (15) |
C11—C1—C2—C21 | −59.79 (16) | N2A—C1A—C9A—C10A | 1.2 (2) |
C6—C1—C2—C21 | 177.35 (11) | N2A—C3A—C4A—C10A | 2.1 (3) |
C11—C1—C2—C3 | 70.29 (16) | C3A—C4A—C10A—C5A | 177.60 (16) |
C2—C1—C11—O11 | 175.82 (13) | C3A—C4A—C10A—C9A | −1.0 (2) |
C2—C1—C11—O12 | −4.5 (2) | C10A—C5A—C6A—C7A | −0.5 (3) |
C6—C1—C11—O11 | −61.03 (16) | C6A—C5A—C10A—C4A | −177.82 (16) |
C6—C1—C11—O12 | 118.67 (16) | C6A—C5A—C10A—C9A | 0.8 (2) |
C11—C1—C6—C5 | −69.79 (14) | C5A—C6A—C7A—C8A | −0.4 (3) |
C2—C1—C6—C5 | 55.15 (14) | C6A—C7A—C8A—C9A | 1.0 (3) |
C21—C2—C3—C4 | −178.03 (11) | C7A—C8A—C9A—C1A | 178.30 (16) |
C1—C2—C3—C4 | 52.62 (15) | C7A—C8A—C9A—C10A | −0.7 (2) |
C3—C2—C21—O21 | −148.08 (14) | C1A—C9A—C10A—C4A | −0.5 (2) |
C3—C2—C21—O22 | 34.64 (16) | C1A—C9A—C10A—C5A | −179.24 (14) |
C1—C2—C21—O21 | −18.2 (2) | C8A—C9A—C10A—C4A | 178.53 (14) |
C1—C2—C21—O22 | 164.55 (12) | C8A—C9A—C10A—C5A | −0.2 (2) |
C2—C3—C4—C5 | −54.27 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H11···O12i | 0.96 (2) | 1.68 (2) | 2.6362 (14) | 171.7 (18) |
O22—H22···N2A | 0.98 (2) | 1.69 (2) | 2.670 (2) | 174.5 (19) |
C3—H32···O12 | 0.97 | 2.54 | 3.1126 (17) | 117 |
C6—H61···O11 | 0.97 | 2.53 | 2.8841 (18) | 101 |
Symmetry code: (i) −x+1, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C9H7N·C8H12O4 |
Mr | 301.33 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 200 |
a, b, c (Å) | 6.2459 (3), 11.4238 (6), 11.9970 (6) |
α, β, γ (°) | 64.082 (5), 77.793 (4), 82.756 (4) |
V (Å3) | 751.95 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.40 × 0.28 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini-S CCD-detector diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.974, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9094, 2952, 2463 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.090, 1.02 |
No. of reflections | 2952 |
No. of parameters | 207 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.18 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis PRO (Oxford Diffraction, 2010, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H11···O12i | 0.96 (2) | 1.68 (2) | 2.6362 (14) | 171.7 (18) |
O22—H22···N2A | 0.98 (2) | 1.69 (2) | 2.670 (2) | 174.5 (19) |
Symmetry code: (i) −x+1, −y+2, −z+2. |
Acknowledgements
The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Benedetti, E., Pedone, C. & Allegra, G. (1970). J. Phys. Chem. 74, 512–516. CSD CrossRef CAS Web of Science Google Scholar
Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551–562. Web of Science CSD CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Leiserowitz, L. (1976). Acta Cryst. B32, 775–802. CrossRef CAS IUCr Journals Web of Science Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2011a). Acta Cryst. E67, o174. Web of Science CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2011b). Acta Cryst. E67, o1900. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Although the structure of racemic cis-cyclohexane-1,2-dicarboxylic acid is known (Benedetti et al., 1970), together with its 1:1 adduct with 4,4'-bipyridine (Bhogala et al., 2005), there are few examples of salts of this cis-acid in the crystallographic literature. We have previously reported the structures of the anhydrous 1:1 ammonium salt (Smith & Wermuth, 2011a) and the 2-aminopyridinium salt (Smith & Wermuth, 2011b). Our 1:1 stoichiometric interaction of cyclohexane-1,2-dicarboxylic anhydride with isoquinoline in 50% ethanol–water solution gave minor crystals of the 1:1 adduct C8H12O4. C9H7N, formed in a residual oil, and the structure is reported here.
In the structure of the title adduct (Fig. 1), the two molecular species are interlinked through a carboxylic acid O—H···Nisoquinoline hydrogen bond (Table 1). The molecule pairs then associate through the second acid group, forming a classic centrosymmetric cyclic head-to-head carboxylic acid–carboxyl O—H···O hydrogen-bonding interaction (Leiserowitz, 1976) [graph set R22(8) (Etter et al., 1990)] giving a zero-dimensional structure (Fig. 2).