organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2298-o2299

4,4′-Dimeth­­oxy-2,2′-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-diyl]bis­(methyl­ene)}diphenol

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 7 July 2011; accepted 3 August 2011; online 11 August 2011)

The title compound, C23H30N2O4, is a Mannich base useful for studying the effect of an electron-donating phenol substituent on intra­molecular hydrogen bonding. In the mol­ecular structure, the cyclo­hexane ring adopts a chair conformation and the five-membered ring has a twisted envelope conformation. Each meth­oxy group is oriented in the same plane of the respective aromatic ring, showing torsion angles below 11.8 (3)° and bond angles between the meth­oxy group and the aromatic ring of 116.6 (2) and 116.6 (1)°. The structure shows inter­actions between two the N atoms of the heterocyclic ring and the hy­droxy groups by intra­molecular O—H⋯N hydrogen-bonding inter­actions. In the crystal, C—H⋯O inter­actions are observed. The crystal studied was a racemic mixture of RR and SS enanti­omers.

Related literature

For related structures, see: Rivera et al. (2010a[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010a). Acta Cryst. E66, o931.],b[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010b). Acta Cryst. E66, o2643.]). For the effect of the meth­oxy group on mol­ecular structure, see: Özek et al. (2008[Özek, A., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2008). Acta Cryst. E64, o1579-o1580.]); Ünver et al. (2009[Ünver, H., Yıldız, M., Özay, H. & Durlu, T. N. (2009). Spectrochim. Acta Part A, 74, 1095-1099.]); Jamjah et al. (2011[Jamjah, R., Nekoomanesh, M., Pourjafar, T., Zohuri, G. H., Afshartaromi, F. & Notash, B. (2011). Acta Cryst. E67, o1775-o1776.]). For related quantum-chemical literature, see: Konschin (1984[Konschin, H. (1984). J. Mol. Struct. (THEOCHEM), 110, 303-310.]).

[Scheme 1]

Experimental

Crystal data
  • C23H30N2O4

  • Mr = 398.5

  • Monoclinic, P 21 /n

  • a = 12.7693 (3) Å

  • b = 10.4365 (2) Å

  • c = 16.3229 (4) Å

  • β = 109.579 (3)°

  • V = 2049.53 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 120 K

  • 0.51 × 0.14 × 0.02 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.403, Tmax = 1

  • 23926 measured reflections

  • 3216 independent reflections

  • 2577 reflections with I > 3σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.70

  • 3216 reflections

  • 268 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.89 (2) 1.90 (2) 2.709 (2) 151.1 (19)
O3—H3⋯N1 0.88 (2) 1.91 (2) 2.706 (2) 150.0 (19)
C8—H8A⋯O2i 0.96 2.55 3.427 (2) 152
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al. 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

During our investigations on Mannich bases, we studied the effect of electron-withdrawing or electron-donating substituent of phenol on intramolecular hydrogen bond. Here we report the structure of the title compound (Fig. 1). The X-ray results of the title compound suggest an influence of the methoxy substituent in the hydrogen bonding interaction. The N···H distances and the N···O distances are longer (by about 0.07 Å and 0.05 Å, respectively), than the observed values in a related structure where the p-substituent is a chlorine atom (Rivera, et al. 2010b). However these values are in good agreement with the one found in the related structure where there are not p-substituents [N···H, 1.91 (2) Å; N···O, 2.6894 (14) Å] (Rivera et al., 2010a). Moreover, the observed C—O bond lengths [C10—O1, 1.377 (2) Å; C18—O3, 1.373 (2) Å] are longer in relation to the mentioned related structures [C—O, 1.364 (2) Å, C—O, 1.354 (2) Å] (Rivera et al., 2010a,b), which confirms the decreasing in the intermolecular hydrogen bonding interaction due the electronic influence of a electron-donating substituent as the methoxy group. The crystal packing (Figure 2) displays weak intermolecular C—H···O hydrogen bonds between neighboring molecules, which link them into 1D-chains.

In the crystal structure of the title compound, the cyclohexanediamine fragment adopts a chair conformation. The C—C—C bond angles within the cyclohexane ring are close to normal tetrahedral bond angles in a chair conformation since these values are in the range of 108.4 (2)° to 112.8 (2)°. The imidazolidine moiety has a twisted envelope conformation, indicating that the nitrogen lone pairs are oriented anti-axial to avoid repulsion electronic repulsions. In comparison with the values of the corresponding angles and bond distances in the phenol derivative (Rivera et al., 2010a), the C12—C13—O2 and C20—C21—O4 angles increase by 3.48° and 4.27° respectively, and the C9—C10 and C17—C18 bonds are the longest and the C10—C11 and C18—C19 bond are the shortest in the aromatic rings. These results suggest the existence of a distortion in the aromatic rings, which is present at the p-methoxyphenol moiety in some Schiff bases (Özek et al., 2008; Ünver et al., 2009; Jamjah et al., 2011), which could be explained by the presence of the OH and CH3 groups, such as an STO-3G molecular orbital investigation suggested (Konschin, 1984), where molecular structure optimizations of methoxy-containing benzenes and related compounds indicated significant structural consequences in the aromatic rings by the presence of these substituents due their behavior as π donors and σ acceptors.

Related literature top

For related structures, see: Rivera et al. (2010a,b). For the effect of the methoxy group on the molecular structure, see: Özek et al. (2008); Ünver et al. (2009); Jamjah et al. (2011). For related quantum-chemical literature, see: Konschin (1984).

Experimental top

To a solution of (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo- [8.8.1.18,17.02,7.011,16]icosane (276 mg, 1.00 mmol) in dioxane (3 mL) and water (4 mL) in a two-necked round-bottomed flask, prepared beforehand following previously described procedures, was added dropwise a dioxane solution (3 mL) containing two equivalents of 4-methoxyphenol (248 mg, 2.00 mmol). The mixture was refluxed for about 8h. The solvent was evaporated under reduced pressure until a sticky residue appeared. The product was purified by chromatography on a silica column, and subjected to gradient elution with benzene:ethyl acetate (yield 34%, m.p. = 436–438 K). Single crystals of titlt compound were grown from a chloroform: methanol solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks.

Refinement top

The hydrogen attached to C atoms were positioned geometrically and kept in ideal positions with C–H distance 0.96 Å during the refinement. The hydroxyl H atoms were found in difference Fourier maps and refined with a distance restraint d(O—H) = 0.84 (2) Å. The isotropic atomic displacement parameters of hydrogen atoms set to 1.5×Ueq(C,O) for methyl and hydroxyl groups and 1.2×Ueq(C) for all other hydrogen atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al. 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al. 2006).

Figures top
[Figure 1] Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular hydrogen bonds.
[Figure 2] Fig. 2. Packing of the molecules of the title compound. Dashed lines indicate weak intermolecular hydrogen bonds.
4,4'-Dimethoxy-2,2'-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octahydro- 1H-1,3-benzimidazole-1,3-diyl]bis(methylene)}diphenol top
Crystal data top
C23H30N2O4F(000) = 856
Mr = 398.5Dx = 1.291 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ynCell parameters from 11032 reflections
a = 12.7693 (3) Åθ = 3.7–62.6°
b = 10.4365 (2) ŵ = 0.71 mm1
c = 16.3229 (4) ÅT = 120 K
β = 109.579 (3)°Plate, colourless
V = 2049.53 (9) Å30.51 × 0.14 × 0.02 mm
Z = 4
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
3216 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2577 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.055
Detector resolution: 10.3784 pixels mm-1θmax = 62.7°, θmin = 3.8°
Rotation method data acquisition using ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1111
Tmin = 0.403, Tmax = 1l = 1818
23926 measured reflections
Refinement top
Refinement on F2114 constraints
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.70(Δ/σ)max = 0.003
3216 reflectionsΔρmax = 0.19 e Å3
268 parametersΔρmin = 0.17 e Å3
2 restraints
Crystal data top
C23H30N2O4V = 2049.53 (9) Å3
Mr = 398.5Z = 4
Monoclinic, P21/nCu Kα radiation
a = 12.7693 (3) ŵ = 0.71 mm1
b = 10.4365 (2) ÅT = 120 K
c = 16.3229 (4) Å0.51 × 0.14 × 0.02 mm
β = 109.579 (3)°
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
3216 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2577 reflections with I > 3σ(I)
Tmin = 0.403, Tmax = 1Rint = 0.055
23926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.70Δρmax = 0.19 e Å3
3216 reflectionsΔρmin = 0.17 e Å3
268 parameters
Special details top

Experimental. CrysAlisPro (Agilent Technologies, 2010), empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 1H NMR (CDCl3, 400 MHz): δ 1.28 (4H, m), 1.84 (2H, m), 2.05 (2H, m), 2.32 (2H, m), 3.40 (2H, d,J = 14.0 Hz, ArCH2N), 3.53 (2H, s, NCH2N), 3.71 (2H, s, ArOCH3), 4.16 (2H, d, J = 14.0 Hz, ArCH2N), 6.51 (2H, d, J= 2.0 Hz), 6.70 (2H, d, J = 8.8 Hz), 6.73 (2H, d, J = 8.8 Hz), 10.05 (2H, bs, ArOH). 13C NMR (CDCl3 , 100 MHz): δ 24.0, 28.9, 55.7, 56.4, 69.1, 75.8, 113.8, 113.9, 116.5, 122.1, 151.1, 152.5.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00977 (10)0.13997 (12)0.92026 (9)0.0335 (5)
O20.20745 (10)0.49247 (11)1.17311 (8)0.0319 (4)
O30.39277 (11)0.34923 (12)0.73545 (9)0.0364 (5)
O40.68016 (10)0.06056 (12)0.99982 (8)0.0344 (5)
N10.22853 (11)0.21558 (13)0.76675 (9)0.0263 (5)
N20.08623 (12)0.27229 (13)0.82138 (9)0.0254 (5)
C10.20785 (14)0.26197 (17)0.84535 (12)0.0293 (6)
C20.11931 (14)0.17745 (16)0.70585 (11)0.0259 (6)
C30.10493 (15)0.17697 (17)0.61017 (12)0.0320 (7)
C40.01711 (15)0.14831 (17)0.55879 (12)0.0338 (7)
C50.09725 (15)0.23760 (17)0.58246 (12)0.0321 (7)
C60.07651 (15)0.24213 (16)0.68027 (12)0.0302 (7)
C70.04455 (14)0.27539 (16)0.72600 (11)0.0251 (6)
C80.05134 (14)0.37784 (16)0.86593 (11)0.0281 (6)
C90.07705 (13)0.34676 (15)0.96068 (12)0.0252 (6)
C100.04316 (13)0.22793 (16)0.98343 (12)0.0263 (6)
C110.06181 (14)0.19843 (17)1.06953 (12)0.0309 (7)
C120.11433 (14)0.28558 (16)1.13485 (13)0.0295 (6)
C130.15068 (13)0.40195 (16)1.11302 (12)0.0265 (6)
C140.13145 (13)0.43191 (16)1.02638 (11)0.0262 (6)
C150.22791 (16)0.46243 (19)1.26223 (12)0.0359 (7)
C160.31306 (13)0.11383 (16)0.78596 (12)0.0293 (6)
C170.42842 (14)0.16482 (15)0.83063 (11)0.0254 (6)
C180.46432 (15)0.27800 (16)0.80128 (12)0.0284 (6)
C190.57287 (15)0.31821 (17)0.83832 (12)0.0315 (7)
C200.64851 (15)0.24705 (16)0.90374 (12)0.0311 (7)
C210.61355 (14)0.13648 (16)0.93405 (12)0.0281 (6)
C220.50375 (14)0.09762 (16)0.89813 (11)0.0264 (6)
C230.79664 (15)0.0851 (2)1.02718 (14)0.0417 (8)
H1a0.2353210.2003290.891230.0352*
H1b0.2407370.3451160.8606970.0352*
H20.1045040.0891210.7142250.0311*
H3a0.1511090.1115910.5987580.0384*
H3b0.1243880.2595620.5937080.0384*
H4a0.0290430.1548450.4976620.0405*
H4b0.0335780.0610820.5686520.0405*
H5a0.1723130.2107620.5526020.0385*
H5b0.0911660.3224140.5617380.0385*
H6a0.1227040.3068650.6923780.0362*
H6b0.0921140.1597040.6996140.0362*
H70.046430.3611760.7053130.0301*
H8a0.0270930.3918280.8393020.0337*
H8b0.0896230.4548240.8604710.0337*
H110.0383190.1169811.0845210.0371*
H120.1253630.2654371.1945480.0354*
H140.1561960.5128481.0116930.0314*
H15a0.2696550.5305031.2980340.0539*
H15b0.1584090.4524641.2721940.0539*
H15c0.2694560.3840831.2765430.0539*
H16a0.31020.0719130.7328990.0352*
H16b0.2961880.0498660.8219310.0352*
H190.5964960.3962570.8187130.0378*
H200.7245230.2742970.9277870.0373*
H220.4793740.0224810.9205160.0317*
H23a0.8351560.0233171.0703190.0625*
H23b0.8218870.0788940.9781530.0625*
H23c0.8113040.1696751.0514970.0625*
H10.0129 (19)0.160 (2)0.8762 (13)0.0503*
H30.3253 (14)0.326 (2)0.7320 (16)0.0547*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0384 (7)0.0312 (7)0.0300 (8)0.0083 (5)0.0101 (6)0.0029 (5)
O20.0367 (7)0.0311 (7)0.0269 (7)0.0039 (5)0.0095 (6)0.0047 (5)
O30.0392 (7)0.0326 (7)0.0368 (8)0.0016 (6)0.0119 (7)0.0087 (6)
O40.0267 (6)0.0360 (7)0.0362 (8)0.0021 (5)0.0049 (6)0.0024 (5)
N10.0278 (7)0.0249 (7)0.0257 (9)0.0024 (6)0.0081 (7)0.0016 (6)
N20.0281 (7)0.0249 (7)0.0230 (8)0.0025 (6)0.0083 (7)0.0009 (6)
C10.0301 (9)0.0305 (10)0.0273 (11)0.0008 (7)0.0095 (8)0.0027 (7)
C20.0279 (9)0.0235 (9)0.0254 (10)0.0018 (7)0.0079 (8)0.0000 (7)
C30.0355 (10)0.0329 (10)0.0285 (11)0.0008 (7)0.0118 (9)0.0011 (8)
C40.0397 (10)0.0321 (10)0.0272 (11)0.0055 (8)0.0081 (9)0.0006 (8)
C50.0302 (10)0.0315 (10)0.0298 (11)0.0055 (7)0.0037 (9)0.0005 (8)
C60.0289 (9)0.0276 (9)0.0333 (11)0.0005 (7)0.0095 (8)0.0014 (7)
C70.0299 (9)0.0214 (8)0.0234 (10)0.0002 (7)0.0082 (8)0.0028 (7)
C80.0331 (9)0.0238 (9)0.0282 (10)0.0043 (7)0.0113 (8)0.0009 (7)
C90.0246 (8)0.0240 (9)0.0286 (10)0.0048 (7)0.0108 (8)0.0006 (7)
C100.0248 (9)0.0255 (9)0.0285 (11)0.0017 (7)0.0086 (8)0.0013 (7)
C110.0313 (9)0.0281 (9)0.0343 (11)0.0031 (7)0.0122 (9)0.0034 (8)
C120.0284 (9)0.0329 (10)0.0279 (11)0.0010 (7)0.0102 (8)0.0024 (8)
C130.0241 (8)0.0286 (9)0.0272 (10)0.0030 (7)0.0091 (8)0.0039 (7)
C140.0274 (9)0.0210 (8)0.0324 (11)0.0024 (7)0.0130 (8)0.0003 (7)
C150.0403 (11)0.0391 (11)0.0259 (11)0.0020 (8)0.0080 (9)0.0047 (8)
C160.0288 (9)0.0246 (9)0.0335 (11)0.0030 (7)0.0091 (8)0.0011 (7)
C170.0286 (9)0.0237 (9)0.0263 (10)0.0016 (7)0.0125 (8)0.0043 (7)
C180.0349 (9)0.0259 (9)0.0268 (10)0.0033 (7)0.0137 (8)0.0001 (7)
C190.0370 (10)0.0270 (9)0.0358 (11)0.0027 (7)0.0190 (9)0.0039 (8)
C200.0294 (9)0.0327 (10)0.0337 (11)0.0038 (7)0.0138 (9)0.0081 (8)
C210.0301 (9)0.0286 (9)0.0264 (10)0.0029 (7)0.0106 (8)0.0037 (7)
C220.0305 (9)0.0231 (9)0.0277 (10)0.0013 (7)0.0124 (8)0.0012 (7)
C230.0282 (9)0.0524 (13)0.0409 (13)0.0044 (9)0.0071 (9)0.0009 (10)
Geometric parameters (Å, º) top
O1—C101.377 (2)C7—H70.96
O1—H10.89 (2)C8—C91.505 (3)
O2—C131.3797 (19)C8—H8a0.96
O2—C151.424 (2)C8—H8b0.96
O3—C181.373 (2)C9—C101.404 (2)
O3—H30.88 (2)C9—C141.387 (2)
O4—C211.375 (2)C10—C111.379 (3)
O4—C231.426 (2)C11—C121.391 (2)
N1—C11.476 (3)C11—H110.96
N1—C21.4705 (19)C12—C131.389 (3)
N1—C161.471 (2)C12—H120.96
N2—C11.473 (2)C13—C141.388 (3)
N2—C71.467 (2)C14—H140.96
N2—C81.469 (2)C15—H15a0.96
C1—H1a0.96C15—H15b0.96
C1—H1b0.96C15—H15c0.96
C2—C31.510 (3)C16—C171.505 (2)
C2—C71.508 (3)C16—H16a0.96
C2—H20.96C16—H16b0.96
C3—C41.531 (2)C17—C181.408 (3)
C3—H3a0.96C17—C221.386 (2)
C3—H3b0.96C18—C191.379 (2)
C4—C51.526 (3)C19—C201.391 (2)
C4—H4a0.96C19—H190.96
C4—H4b0.96C20—C211.387 (3)
C5—C61.529 (3)C20—H200.96
C5—H5a0.96C21—C221.387 (2)
C5—H5b0.96C22—H220.96
C6—C71.515 (2)C23—H23a0.96
C6—H6a0.96C23—H23b0.96
C6—H6b0.96C23—H23c0.96
C10—O1—H1103.8 (13)C9—C8—H8b109.4712
C13—O2—C15116.64 (14)H8a—C8—H8b108.4897
C18—O3—H3106.3 (15)C8—C9—C10118.81 (14)
C21—O4—C23116.64 (15)C8—C9—C14122.47 (15)
C1—N1—C2105.73 (14)C10—C9—C14118.72 (17)
C1—N1—C16112.57 (13)O1—C10—C9120.55 (16)
C2—N1—C16114.24 (13)O1—C10—C11119.22 (15)
C1—N2—C7105.00 (15)C9—C10—C11120.23 (15)
C1—N2—C8113.02 (13)C10—C11—C12120.62 (17)
C7—N2—C8116.51 (12)C10—C11—H11119.6883
N1—C1—N2105.84 (13)C12—C11—H11119.6884
N1—C1—H1a109.4714C11—C12—C13119.48 (18)
N1—C1—H1b109.4707C11—C12—H12120.2628
N2—C1—H1a109.4711C13—C12—H12120.2617
N2—C1—H1b109.4719O2—C13—C12123.89 (16)
H1a—C1—H1b112.872O2—C13—C14116.21 (15)
N1—C2—C3117.33 (16)C12—C13—C14119.89 (15)
N1—C2—C7101.27 (13)C9—C14—C13121.03 (16)
N1—C2—H2110.5517C9—C14—H14119.4846
C3—C2—C7111.18 (13)C13—C14—H14119.4868
C3—C2—H2100.5211O2—C15—H15a109.4711
C7—C2—H2116.7735O2—C15—H15b109.4712
C2—C3—C4108.40 (17)O2—C15—H15c109.4713
C2—C3—H3a109.471H15a—C15—H15b109.4715
C2—C3—H3b109.4714H15a—C15—H15c109.4714
C4—C3—H3a109.471H15b—C15—H15c109.4709
C4—C3—H3b109.4714N1—C16—C17112.16 (13)
H3a—C3—H3b110.5178N1—C16—H16a109.4712
C3—C4—C5112.81 (15)N1—C16—H16b109.4704
C3—C4—H4a109.4711C17—C16—H16a109.4719
C3—C4—H4b109.4712C17—C16—H16b109.4714
C5—C4—H4a109.4716H16a—C16—H16b106.6446
C5—C4—H4b109.4708C16—C17—C18120.62 (14)
H4a—C4—H4b105.9139C16—C17—C22120.81 (15)
C4—C5—C6112.76 (14)C18—C17—C22118.47 (15)
C4—C5—H5a109.4712O3—C18—C17120.90 (15)
C4—C5—H5b109.471O3—C18—C19119.09 (16)
C6—C5—H5a109.472C17—C18—C19120.02 (15)
C6—C5—H5b109.4709C18—C19—C20120.78 (17)
H5a—C5—H5b105.9654C18—C19—H19119.6089
C5—C6—C7108.22 (17)C20—C19—H19119.6102
C5—C6—H6a109.4719C19—C20—C21119.63 (16)
C5—C6—H6b109.4716C19—C20—H20120.1833
C7—C6—H6a109.4709C21—C20—H20120.1828
C7—C6—H6b109.4705O4—C21—C20124.67 (15)
H6a—C6—H6b110.6899O4—C21—C22115.77 (16)
N2—C7—C2100.68 (12)C20—C21—C22119.55 (15)
N2—C7—C6117.73 (17)C17—C22—C21121.48 (17)
N2—C7—H7110.5362C17—C22—H22119.2602
C2—C7—C6110.69 (14)C21—C22—H22119.2596
C2—C7—H7117.589O4—C23—H23a109.4708
C6—C7—H7100.4929O4—C23—H23b109.4712
N2—C8—C9110.44 (13)O4—C23—H23c109.4711
N2—C8—H8a109.4713H23a—C23—H23b109.4715
N2—C8—H8b109.4709H23a—C23—H23c109.4708
C9—C8—H8a109.471H23b—C23—H23c109.4719
C15—O2—C13—C120.5 (3)C1—N1—C16—C1772.95 (18)
C15—O2—C13—C14179.80 (16)C2—N1—C16—C17166.44 (14)
C23—O4—C21—C2011.8 (3)C7—N2—C1—N118.92 (16)
C23—O4—C21—C22169.32 (16)C8—N2—C1—N1146.94 (13)
C2—N1—C1—N210.49 (16)C1—N2—C7—C239.95 (16)
C16—N1—C1—N2135.87 (14)C1—N2—C7—C6160.30 (14)
C1—N1—C2—C3155.91 (15)C8—N2—C7—C2165.82 (14)
C1—N1—C2—C734.74 (16)C8—N2—C7—C673.83 (19)
C16—N1—C2—C379.74 (18)C1—N2—C8—C971.56 (18)
C16—N1—C2—C7159.08 (14)C7—N2—C8—C9166.70 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.89 (2)1.90 (2)2.709 (2)151.1 (19)
O3—H3···N10.88 (2)1.91 (2)2.706 (2)150.0 (19)
C8—H8A···O2i0.962.553.427 (2)152
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC23H30N2O4
Mr398.5
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)12.7693 (3), 10.4365 (2), 16.3229 (4)
β (°) 109.579 (3)
V3)2049.53 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.51 × 0.14 × 0.02
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.403, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
23926, 3216, 2577
Rint0.055
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.70
No. of reflections3216
No. of parameters268
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al. 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.89 (2)1.90 (2)2.709 (2)151.1 (19)
O3—H3···N10.88 (2)1.91 (2)2.706 (2)150.0 (19)
C8—H8A···O2i0.962.553.427 (2)152
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic. DQ acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationJamjah, R., Nekoomanesh, M., Pourjafar, T., Zohuri, G. H., Afshartaromi, F. & Notash, B. (2011). Acta Cryst. E67, o1775–o1776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKonschin, H. (1984). J. Mol. Struct. (THEOCHEM), 110, 303–310.  CrossRef Google Scholar
First citationÖzek, A., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2008). Acta Cryst. E64, o1579–o1580.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010a). Acta Cryst. E66, o931.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010b). Acta Cryst. E66, o2643.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÜnver, H., Yıldız, M., Özay, H. & Durlu, T. N. (2009). Spectrochim. Acta Part A, 74, 1095–1099.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2298-o2299
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds