metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1303-m1304

catena-Poly[copper(II)-bis­­(μ-2-ethyl-5-methyl­imidazole-4-sulfonato-κ3N3,O4:O4′)]

aChemistry Division, Code 6120 Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: andrew.purdy@nrl.navy.mil

(Received 19 July 2011; accepted 19 August 2011; online 27 August 2011)

In the title compound, [Cu(C6H9N2O3S)2]n, the copper(II) ion sits on an inversion center and is chelated by the imidazole N and sulfonate O atoms of two ligands in equatorial positions. O atoms of adjacent mol­ecules coordinate in the axial positions. Jahn–Teller tetra­gonal distortion is evident in the coordination geometry [Cu—N and Cu—O equatorial distances of 1.971 (3) and 2.045 (2) Å, respectively, with a Cu—O axial distance of 2.433 (3) Å]. The structure is propagated by an infinite chain of eight-membered (Cu—O—S—O)2 ring systems along the a axis. Only N—H⋯O hydrogen bonding exists between the chains.

Related literature

For literature related to the 2-ethyl-4-methyl­imidazole-5-sulfonic acid ligand, see: Purdy et al. (2007[Purdy, A. P., Gilardi, R., Luther, J. & Butcher, R. J. (2007). Polyhedron, 26, 3930-3938.]). For sulfonate-bridged Cu complexes with Cu–sulfonate chains, see: van Albada et al. (2001[Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2001). Inorg. Chim. Acta, 324, 273-277.]); Cai et al. (2004[Cai, J.-H., Jiang, Y.-M., Wang, X.-J. & Liu, Z.-M. (2004). Acta Cryst. E60, m1659-m1661.]); Doyle et al. (1983[Doyle, G., Eriksen, K. A. & van Engen, D. (1983). Inorg. Chem. 22, 2892-2895.]); Han et al. (2006[Han, J., Wu, H., Zhi, S., Li, Y. & Pan, Y. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x299-x300.]); He et al. (2009[He, Q.-T., Li, X.-P., Liu, Y., Yu, Z.-Q., Wang, W. & Su, C.-Y. (2009). Angew. Chem. Int. Ed. 48, 6156-6159.]); Hubig et al. (2000[Hubig, S. M., Lindeman, S. V. & Kochi, J. K. (2000). Coord. Chem. Rev. 200, 831-873.]); Sreenivasulu et al. (2005[Sreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635-4645.]); Timmermans et al. (1984[Timmermans, P. J. J. A., Mackor, A., Spek, A. L. & Kojic-Prodic, B. (1984). J. Organomet. Chem. 276, 287-295.]). For geometric data, see: Jahn & Teller (1937[Jahn, H. & Teller, E. (1937). Proc. R. Soc. London Ser. A, 220-235.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H9N2O3S)2]

  • Mr = 441.96

  • Monoclinic, P 21 /c

  • a = 5.0732 (4) Å

  • b = 11.8367 (10) Å

  • c = 13.6810 (11) Å

  • β = 94.473 (7)°

  • V = 819.04 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 4.64 mm−1

  • T = 295 K

  • 0.44 × 0.32 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])Tmin = 0.270, Tmax = 0.445

  • 3114 measured reflections

  • 1704 independent reflections

  • 1605 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.181

  • S = 1.08

  • 1704 reflections

  • 117 parameters

  • H-atom parameters constrained

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 1.971 (3)
Cu1—O1 2.045 (2)
Cu1—O1i 2.045 (2)
Cu1—O3ii 2.433 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O2iii 0.86 1.95 2.784 (4) 164
Symmetry code: (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title compound, the copper(II) ion sits on an inversion center and is chelated by the imidazole N1 and sulfonate O1 of two ligands. The two chelate rings on a Cu are 5-membered and co-planar. Two O3 O atoms of adjacent molecules coordinate the axial positions with the usual Jahn-Teller tetragonal distortion (Jahn & Teller, 1937) ((Cu—N and Cu—O equatorial distances of 1.971 (3) and 2.045 (2) Å, respectively, with a Cu—O axial distance of 2.433 (3) Å) and link the Cu atoms in an infinite chain of 8-membered (Cu—O—S—O)2 rings along the a axis. A number of examples exist for catenated 8-membered rings of sulfonate bridged copper(I) ions - Doyle et al. (1983), Han et al. (2006), Timmermans et al. (1984), and Hubig et al. (2000). All previous examples have 4 or 5 coordinate copper(I) and edge-shared catenation between the rings. This infinite chain of (Cu—O—S—O)2 rings is unique for copper(II), and its rings are corner shared and linear. The Cu coordination is nearly octahedral, with adjacent angles ranging from 84.92 (10) to 93.10 (10)°. Our silver(I) complex of the same ligand (Purdy, et al. (2007)) has edge shared 8-membered rings connected by a tetrahedral Ag atom. The CuO4 moieties are planar, and are nearly perpendicular (85.00 (8)°) to a plane composed of the linear N—Cu—N units within a chain. Likewise the plane formed by the 5-membered Cu—N—C—S—O chelate rings forms a dihedral angle of 86.61 (8)° with the plane formed by the Cu and O3 atoms within a chain.

As noted above, although all Cu—O distances are within the ranges normally observed in sulfonate complexes, the Cu—O3 distance is 0.4 Å longer than Cu—O1 as is seen in bis(µ2-(2-((2-oxybenzylidene)amino)ethyl)sulfonato)-diaqua-dicopper(II) dihydrate and other similar chelated copper(II) sulfonates (Sreenivasulu et al., 2005; Cai et al., 2004). Copper(II) sulfonates where the sulfonate is not part of a chelate ring tend to have Cu—O distance of 2.3 Å or greater as for example in bis(µ2-hydroxo)-bis(µ2-trifluoromethanesulfonato-O,O')-bis(4,4- dimethyl-2,2'-bipyridine)-di-copper(II) (van Albada, et al., 2001) and in a sulfonate bridged complex (He, et al., 2009).

The O2 atoms of the sulfonates are hydrogen bonded to the hydogen on N2 of the imidazole ring of an adjacent chain, at a N—O distance of 2.784 (4) Å. This interaction bonds the chains into a fully three-dimensional structure.

Related literature top

For literature related to the 2-ethyl-4-methylimidazole-5-sulfonic acid ligand, see: Purdy et al. (2007). For sulfonate-bridged Cu complexes with Cu-sulfonate chains, see: van Albada et al. (2001); Cai et al. (2004); Doyle et al. (1983); Han et al. (2006); He et al. (2009); Hubig et al. (2000); Sreenivasulu et al. (2005); Timmermans et al. (1984). For geometric data, see: Jahn & Teller (1937).

Experimental top

Both 1:1 and 1:1.5 solutions of the potassium salts of the 2-ethyl-4-methyl-imidazole-5-sulfonic acid were prepared by combining 1 g (5.25 mmol) of the free acid with 1 and 1.5 equivalents of KOH solution respectively, and diluting the solutions to 1M based on K+. (All solutions were made with distilled water.) Two test reactions were done in vials with a 1M solution of CuCl2.2H2O, and a 0.2 ml metered pipet was used for the additions. In reaction #1, 0.2 ml of CuCl2 solution was combined with 0.4 ml of the 1:1 solution. In reaction #2, 0.4 ml or the CuCl2 solution was combined with 0.6 ml of the 1:1.5 solution. Both solutions were heated to a boil and allowed to cool. Both reactions produced a pale green precipitate, but green crystals of the title compound grow in #2 only, over several days.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with an N—H distance of 0.86 Å and C—H distances of 0.97 ÅUiso(H) = 1.2Ueq(C) and 0.96 Å for CH3 [Uiso(H) = 1.5Ueq(C)].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of C12H18CuN4O6S2 illustrating the atom numbering scheme used. Thermal displacement parameters are at the 30% probability level. [symmetry codes for labelled atoms: O1A, N1A, 1 - x, 1 - y, 1 - z; O3B, x - 1, y, z; O3C, 2 - x, 1 - y, 1 - z]
[Figure 2] Fig. 2. The molecular packing for C12H18CuN4O6S2 viewed down the c axis.
catena-Poly[copper(II)-bis(µ-2-ethyl-5-methylimidazole-4-sulfonato- κ3N3,O4:O4')] top
Crystal data top
[Cu(C6H9N2O3S)2]F(000) = 454
Mr = 441.96Dx = 1.792 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2637 reflections
a = 5.0732 (4) Åθ = 5.0–77.1°
b = 11.8367 (10) ŵ = 4.64 mm1
c = 13.6810 (11) ÅT = 295 K
β = 94.473 (7)°Chunk, pale green-blue
V = 819.04 (12) Å30.44 × 0.32 × 0.24 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1704 independent reflections
Radiation source: Enhance (Cu) X-ray sealed tube1605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.51 pixels mm-1θmax = 77.6°, θmin = 5.0°
ω scansh = 66
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2007; Clark & Reid, 1995)'
k = 1414
Tmin = 0.270, Tmax = 0.445l = 1710
3114 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1339P)2 + 0.7529P]
where P = (Fo2 + 2Fc2)/3
1704 reflections(Δ/σ)max < 0.001
117 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Cu(C6H9N2O3S)2]V = 819.04 (12) Å3
Mr = 441.96Z = 2
Monoclinic, P21/cCu Kα radiation
a = 5.0732 (4) ŵ = 4.64 mm1
b = 11.8367 (10) ÅT = 295 K
c = 13.6810 (11) Å0.44 × 0.32 × 0.24 mm
β = 94.473 (7)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1704 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2007; Clark & Reid, 1995)'
1605 reflections with I > 2σ(I)
Tmin = 0.270, Tmax = 0.445Rint = 0.033
3114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.08Δρmax = 1.15 e Å3
1704 reflectionsΔρmin = 0.84 e Å3
117 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.0255 (3)
S10.94199 (14)0.32615 (6)0.53104 (5)0.0252 (3)
O10.8041 (5)0.4192 (2)0.57814 (17)0.0327 (6)
O20.8628 (6)0.2154 (2)0.56252 (19)0.0402 (7)
O31.2247 (5)0.3403 (2)0.53856 (19)0.0345 (6)
N10.6262 (5)0.4204 (2)0.38608 (19)0.0251 (6)
N20.7482 (6)0.3464 (2)0.2509 (2)0.0283 (6)
H2C0.75370.33260.18940.034*
C10.5837 (6)0.4210 (3)0.2898 (2)0.0257 (6)
C20.3917 (8)0.4933 (3)0.2308 (3)0.0316 (8)
H2A0.42810.57170.24740.038*
H2B0.21510.47630.24920.038*
C30.3959 (10)0.4793 (4)0.1198 (3)0.0466 (10)
H3A0.27240.53090.08720.070*
H3B0.34750.40320.10180.070*
H3C0.57040.49490.10080.070*
C40.9057 (7)0.2957 (3)0.3252 (2)0.0272 (6)
C50.8264 (7)0.3429 (3)0.4086 (2)0.0263 (6)
C61.1174 (8)0.2112 (3)0.3088 (3)0.0375 (8)
H6A1.22470.19950.36890.056*
H6B1.22570.23890.25950.056*
H6C1.03760.14100.28750.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0248 (4)0.0294 (5)0.0230 (4)0.0050 (2)0.0057 (3)0.0033 (2)
S10.0256 (5)0.0264 (5)0.0241 (5)0.0014 (3)0.0055 (3)0.0015 (2)
O10.0322 (12)0.0400 (13)0.0261 (11)0.0090 (10)0.0036 (9)0.0048 (9)
O20.0507 (16)0.0371 (15)0.0333 (13)0.0043 (12)0.0073 (11)0.0076 (10)
O30.0269 (12)0.0368 (13)0.0401 (14)0.0023 (9)0.0048 (10)0.0012 (10)
N10.0245 (12)0.0257 (13)0.0258 (13)0.0007 (10)0.0066 (10)0.0016 (9)
N20.0323 (15)0.0299 (13)0.0235 (12)0.0021 (11)0.0079 (11)0.0032 (10)
C10.0267 (14)0.0240 (14)0.0273 (15)0.0009 (11)0.0070 (11)0.0017 (11)
C20.0343 (18)0.0326 (17)0.0282 (17)0.0050 (12)0.0045 (14)0.0017 (12)
C30.059 (3)0.053 (2)0.0269 (17)0.012 (2)0.0002 (17)0.0004 (16)
C40.0287 (15)0.0269 (14)0.0269 (14)0.0012 (12)0.0071 (12)0.0021 (12)
C50.0293 (15)0.0245 (14)0.0256 (14)0.0011 (12)0.0050 (12)0.0002 (11)
C60.0361 (18)0.0340 (18)0.0433 (19)0.0102 (15)0.0081 (15)0.0062 (15)
Geometric parameters (Å, º) top
Cu1—N1i1.971 (3)N2—C41.380 (4)
Cu1—N11.971 (3)N2—H2C0.8600
Cu1—O12.045 (2)C1—C21.487 (5)
Cu1—O1i2.045 (2)C2—C31.529 (5)
Cu1—O3ii2.433 (3)C2—H2A0.9700
Cu1—O3iii2.433 (3)C2—H2B0.9700
S1—O31.439 (3)C3—H3A0.9600
S1—O21.447 (3)C3—H3B0.9600
S1—O11.479 (2)C3—H3C0.9600
S1—C51.743 (3)C4—C51.359 (4)
O3—Cu1iv2.433 (3)C4—C61.497 (5)
N1—C11.318 (4)C6—H6A0.9600
N1—C51.385 (4)C6—H6B0.9600
N2—C11.352 (4)C6—H6C0.9600
N1i—Cu1—N1180.00 (9)C4—N2—H2C125.2
N1i—Cu1—O195.08 (10)N1—C1—N2109.4 (3)
N1—Cu1—O184.92 (10)N1—C1—C2126.5 (3)
N1i—Cu1—O1i84.92 (10)N2—C1—C2124.1 (3)
N1—Cu1—O1i95.08 (10)C1—C2—C3114.7 (3)
O1—Cu1—O1i180.000 (1)C1—C2—H2A108.6
N1i—Cu1—O3ii88.44 (10)C3—C2—H2A108.6
N1—Cu1—O3ii91.56 (10)C1—C2—H2B108.6
O1—Cu1—O3ii86.90 (10)C3—C2—H2B108.6
O1i—Cu1—O3ii93.10 (10)H2A—C2—H2B107.6
N1i—Cu1—O3iii91.56 (10)C2—C3—H3A109.5
N1—Cu1—O3iii88.44 (10)C2—C3—H3B109.5
O1—Cu1—O3iii93.10 (10)H3A—C3—H3B109.5
O1i—Cu1—O3iii86.90 (10)C2—C3—H3C109.5
O3ii—Cu1—O3iii180.0H3A—C3—H3C109.5
O3—S1—O2112.46 (16)H3B—C3—H3C109.5
O3—S1—O1112.61 (15)C5—C4—N2104.3 (3)
O2—S1—O1113.19 (16)C5—C4—C6131.6 (3)
O3—S1—C5108.32 (16)N2—C4—C6124.1 (3)
O2—S1—C5108.00 (16)C4—C5—N1110.2 (3)
O1—S1—C5101.46 (15)C4—C5—S1131.3 (3)
S1—O1—Cu1118.92 (14)N1—C5—S1118.4 (2)
S1—O3—Cu1iv131.33 (15)C4—C6—H6A109.5
C1—N1—C5106.6 (3)C4—C6—H6B109.5
C1—N1—Cu1138.6 (2)H6A—C6—H6B109.5
C5—N1—Cu1114.7 (2)C4—C6—H6C109.5
C1—N2—C4109.5 (3)H6A—C6—H6C109.5
C1—N2—H2C125.2H6B—C6—H6C109.5
O3—S1—O1—Cu1128.60 (17)Cu1—N1—C1—C21.4 (5)
O2—S1—O1—Cu1102.44 (19)C4—N2—C1—N10.5 (4)
C5—S1—O1—Cu113.0 (2)C4—N2—C1—C2178.2 (3)
N1i—Cu1—O1—S1167.66 (17)N1—C1—C2—C3177.2 (4)
N1—Cu1—O1—S112.34 (17)N2—C1—C2—C31.2 (5)
O3ii—Cu1—O1—S179.50 (17)C1—N2—C4—C50.3 (4)
O3iii—Cu1—O1—S1100.50 (17)C1—N2—C4—C6177.9 (3)
O2—S1—O3—Cu1iv180.00 (18)N2—C4—C5—N10.0 (4)
O1—S1—O3—Cu1iv50.7 (2)C6—C4—C5—N1178.0 (3)
C5—S1—O3—Cu1iv60.7 (2)N2—C4—C5—S1176.9 (3)
O1—Cu1—N1—C1170.2 (3)C6—C4—C5—S11.1 (6)
O1i—Cu1—N1—C19.8 (3)C1—N1—C5—C40.2 (4)
O3ii—Cu1—N1—C1103.0 (3)Cu1—N1—C5—C4177.8 (2)
O3iii—Cu1—N1—C177.0 (3)C1—N1—C5—S1177.1 (2)
O1—Cu1—N1—C56.3 (2)Cu1—N1—C5—S10.5 (3)
O1i—Cu1—N1—C5173.7 (2)O3—S1—C5—C450.0 (4)
O3ii—Cu1—N1—C580.5 (2)O2—S1—C5—C472.1 (4)
O3iii—Cu1—N1—C599.5 (2)O1—S1—C5—C4168.7 (3)
C5—N1—C1—N20.4 (4)O3—S1—C5—N1126.7 (3)
Cu1—N1—C1—N2177.1 (2)O2—S1—C5—N1111.3 (3)
C5—N1—C1—C2178.2 (3)O1—S1—C5—N18.0 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O2v0.861.952.784 (4)164
Symmetry code: (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C6H9N2O3S)2]
Mr441.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)5.0732 (4), 11.8367 (10), 13.6810 (11)
β (°) 94.473 (7)
V3)819.04 (12)
Z2
Radiation typeCu Kα
µ (mm1)4.64
Crystal size (mm)0.44 × 0.32 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2007; Clark & Reid, 1995)'
Tmin, Tmax0.270, 0.445
No. of measured, independent and
observed [I > 2σ(I)] reflections
3114, 1704, 1605
Rint0.033
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.181, 1.08
No. of reflections1704
No. of parameters117
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 0.84

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N11.971 (3)Cu1—O1i2.045 (2)
Cu1—O12.045 (2)Cu1—O3ii2.433 (3)
N1—Cu1—O184.92 (10)O1—Cu1—O3ii86.90 (10)
N1—Cu1—O3ii91.56 (10)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O2iii0.861.952.784 (4)163.9
Symmetry code: (iii) x, y+1/2, z1/2.
 

Acknowledgements

RJB wishes to acknowledge the NSF-MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer, and we thank the Office of Naval Research for financial support.

References

First citationAlbada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2001). Inorg. Chim. Acta, 324, 273–277.  Google Scholar
First citationCai, J.-H., Jiang, Y.-M., Wang, X.-J. & Liu, Z.-M. (2004). Acta Cryst. E60, m1659–m1661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDoyle, G., Eriksen, K. A. & van Engen, D. (1983). Inorg. Chem. 22, 2892–2895.  CSD CrossRef CAS Web of Science Google Scholar
First citationHan, J., Wu, H., Zhi, S., Li, Y. & Pan, Y. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x299–x300.  Google Scholar
First citationHe, Q.-T., Li, X.-P., Liu, Y., Yu, Z.-Q., Wang, W. & Su, C.-Y. (2009). Angew. Chem. Int. Ed. 48, 6156–6159.  Google Scholar
First citationHubig, S. M., Lindeman, S. V. & Kochi, J. K. (2000). Coord. Chem. Rev. 200, 831–873.  CrossRef Google Scholar
First citationJahn, H. & Teller, E. (1937). Proc. R. Soc. London Ser. A, 220–235.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPurdy, A. P., Gilardi, R., Luther, J. & Butcher, R. J. (2007). Polyhedron, 26, 3930–3938.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635–4645.  Web of Science CSD CrossRef Google Scholar
First citationTimmermans, P. J. J. A., Mackor, A., Spek, A. L. & Kojic-Prodic, B. (1984). J. Organomet. Chem. 276, 287–295.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1303-m1304
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds