metal-organic compounds
catena-Poly[copper(II)-bis(μ-2-ethyl-5-methylimidazole-4-sulfonato-κ3N3,O4:O4′)]
aChemistry Division, Code 6120 Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: andrew.purdy@nrl.navy.mil
In the title compound, [Cu(C6H9N2O3S)2]n, the copper(II) ion sits on an inversion center and is chelated by the imidazole N and sulfonate O atoms of two ligands in equatorial positions. O atoms of adjacent molecules coordinate in the axial positions. Jahn–Teller tetragonal distortion is evident in the coordination geometry [Cu—N and Cu—O equatorial distances of 1.971 (3) and 2.045 (2) Å, respectively, with a Cu—O axial distance of 2.433 (3) Å]. The structure is propagated by an infinite chain of eight-membered (Cu—O—S—O)2 ring systems along the a axis. Only N—H⋯O hydrogen bonding exists between the chains.
Related literature
For literature related to the 2-ethyl-4-methylimidazole-5-sulfonic acid ligand, see: Purdy et al. (2007). For sulfonate-bridged Cu complexes with Cu–sulfonate chains, see: van Albada et al. (2001); Cai et al. (2004); Doyle et al. (1983); Han et al. (2006); He et al. (2009); Hubig et al. (2000); Sreenivasulu et al. (2005); Timmermans et al. (1984). For geometric data, see: Jahn & Teller (1937).
Experimental
Crystal data
|
Data collection
Refinement
|
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681103409X/om2453sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681103409X/om2453Isup2.hkl
Both 1:1 and 1:1.5 solutions of the potassium salts of the 2-ethyl-4-methyl-imidazole-5-sulfonic acid were prepared by combining 1 g (5.25 mmol) of the free acid with 1 and 1.5 equivalents of KOH solution respectively, and diluting the solutions to 1M based on K+. (All solutions were made with distilled water.) Two test reactions were done in vials with a 1M solution of CuCl2.2H2O, and a 0.2 ml metered pipet was used for the additions. In reaction #1, 0.2 ml of CuCl2 solution was combined with 0.4 ml of the 1:1 solution. In reaction #2, 0.4 ml or the CuCl2 solution was combined with 0.6 ml of the 1:1.5 solution. Both solutions were heated to a boil and allowed to cool. Both reactions produced a pale green precipitate, but green crystals of the title compound grow in #2 only, over several days.
H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with an N—H distance of 0.86 Å and C—H distances of 0.97 ÅUiso(H) = 1.2Ueq(C) and 0.96 Å for CH3 [Uiso(H) = 1.5Ueq(C)].
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C6H9N2O3S)2] | F(000) = 454 |
Mr = 441.96 | Dx = 1.792 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ybc | Cell parameters from 2637 reflections |
a = 5.0732 (4) Å | θ = 5.0–77.1° |
b = 11.8367 (10) Å | µ = 4.64 mm−1 |
c = 13.6810 (11) Å | T = 295 K |
β = 94.473 (7)° | Chunk, pale green-blue |
V = 819.04 (12) Å3 | 0.44 × 0.32 × 0.24 mm |
Z = 2 |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 1704 independent reflections |
Radiation source: Enhance (Cu) X-ray sealed tube | 1605 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 10.51 pixels mm-1 | θmax = 77.6°, θmin = 5.0° |
ω scans | h = −6→6 |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2007; Clark & Reid, 1995)' | k = −14→14 |
Tmin = 0.270, Tmax = 0.445 | l = −17→10 |
3114 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.181 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.1339P)2 + 0.7529P] where P = (Fo2 + 2Fc2)/3 |
1704 reflections | (Δ/σ)max < 0.001 |
117 parameters | Δρmax = 1.15 e Å−3 |
0 restraints | Δρmin = −0.84 e Å−3 |
[Cu(C6H9N2O3S)2] | V = 819.04 (12) Å3 |
Mr = 441.96 | Z = 2 |
Monoclinic, P21/c | Cu Kα radiation |
a = 5.0732 (4) Å | µ = 4.64 mm−1 |
b = 11.8367 (10) Å | T = 295 K |
c = 13.6810 (11) Å | 0.44 × 0.32 × 0.24 mm |
β = 94.473 (7)° |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 1704 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2007; Clark & Reid, 1995)' | 1605 reflections with I > 2σ(I) |
Tmin = 0.270, Tmax = 0.445 | Rint = 0.033 |
3114 measured reflections |
R[F2 > 2σ(F2)] = 0.064 | 0 restraints |
wR(F2) = 0.181 | H-atom parameters constrained |
S = 1.08 | Δρmax = 1.15 e Å−3 |
1704 reflections | Δρmin = −0.84 e Å−3 |
117 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.0255 (3) | |
S1 | 0.94199 (14) | 0.32615 (6) | 0.53104 (5) | 0.0252 (3) | |
O1 | 0.8041 (5) | 0.4192 (2) | 0.57814 (17) | 0.0327 (6) | |
O2 | 0.8628 (6) | 0.2154 (2) | 0.56252 (19) | 0.0402 (7) | |
O3 | 1.2247 (5) | 0.3403 (2) | 0.53856 (19) | 0.0345 (6) | |
N1 | 0.6262 (5) | 0.4204 (2) | 0.38608 (19) | 0.0251 (6) | |
N2 | 0.7482 (6) | 0.3464 (2) | 0.2509 (2) | 0.0283 (6) | |
H2C | 0.7537 | 0.3326 | 0.1894 | 0.034* | |
C1 | 0.5837 (6) | 0.4210 (3) | 0.2898 (2) | 0.0257 (6) | |
C2 | 0.3917 (8) | 0.4933 (3) | 0.2308 (3) | 0.0316 (8) | |
H2A | 0.4281 | 0.5717 | 0.2474 | 0.038* | |
H2B | 0.2151 | 0.4763 | 0.2492 | 0.038* | |
C3 | 0.3959 (10) | 0.4793 (4) | 0.1198 (3) | 0.0466 (10) | |
H3A | 0.2724 | 0.5309 | 0.0872 | 0.070* | |
H3B | 0.3475 | 0.4032 | 0.1018 | 0.070* | |
H3C | 0.5704 | 0.4949 | 0.1008 | 0.070* | |
C4 | 0.9057 (7) | 0.2957 (3) | 0.3252 (2) | 0.0272 (6) | |
C5 | 0.8264 (7) | 0.3429 (3) | 0.4086 (2) | 0.0263 (6) | |
C6 | 1.1174 (8) | 0.2112 (3) | 0.3088 (3) | 0.0375 (8) | |
H6A | 1.2247 | 0.1995 | 0.3689 | 0.056* | |
H6B | 1.2257 | 0.2389 | 0.2595 | 0.056* | |
H6C | 1.0376 | 0.1410 | 0.2875 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0248 (4) | 0.0294 (5) | 0.0230 (4) | 0.0050 (2) | 0.0057 (3) | −0.0033 (2) |
S1 | 0.0256 (5) | 0.0264 (5) | 0.0241 (5) | 0.0014 (3) | 0.0055 (3) | 0.0015 (2) |
O1 | 0.0322 (12) | 0.0400 (13) | 0.0261 (11) | 0.0090 (10) | 0.0036 (9) | −0.0048 (9) |
O2 | 0.0507 (16) | 0.0371 (15) | 0.0333 (13) | −0.0043 (12) | 0.0073 (11) | 0.0076 (10) |
O3 | 0.0269 (12) | 0.0368 (13) | 0.0401 (14) | 0.0023 (9) | 0.0048 (10) | 0.0012 (10) |
N1 | 0.0245 (12) | 0.0257 (13) | 0.0258 (13) | 0.0007 (10) | 0.0066 (10) | −0.0016 (9) |
N2 | 0.0323 (15) | 0.0299 (13) | 0.0235 (12) | 0.0021 (11) | 0.0079 (11) | −0.0032 (10) |
C1 | 0.0267 (14) | 0.0240 (14) | 0.0273 (15) | −0.0009 (11) | 0.0070 (11) | −0.0017 (11) |
C2 | 0.0343 (18) | 0.0326 (17) | 0.0282 (17) | 0.0050 (12) | 0.0045 (14) | 0.0017 (12) |
C3 | 0.059 (3) | 0.053 (2) | 0.0269 (17) | 0.012 (2) | 0.0002 (17) | 0.0004 (16) |
C4 | 0.0287 (15) | 0.0269 (14) | 0.0269 (14) | 0.0012 (12) | 0.0071 (12) | −0.0021 (12) |
C5 | 0.0293 (15) | 0.0245 (14) | 0.0256 (14) | 0.0011 (12) | 0.0050 (12) | 0.0002 (11) |
C6 | 0.0361 (18) | 0.0340 (18) | 0.0433 (19) | 0.0102 (15) | 0.0081 (15) | −0.0062 (15) |
Cu1—N1i | 1.971 (3) | N2—C4 | 1.380 (4) |
Cu1—N1 | 1.971 (3) | N2—H2C | 0.8600 |
Cu1—O1 | 2.045 (2) | C1—C2 | 1.487 (5) |
Cu1—O1i | 2.045 (2) | C2—C3 | 1.529 (5) |
Cu1—O3ii | 2.433 (3) | C2—H2A | 0.9700 |
Cu1—O3iii | 2.433 (3) | C2—H2B | 0.9700 |
S1—O3 | 1.439 (3) | C3—H3A | 0.9600 |
S1—O2 | 1.447 (3) | C3—H3B | 0.9600 |
S1—O1 | 1.479 (2) | C3—H3C | 0.9600 |
S1—C5 | 1.743 (3) | C4—C5 | 1.359 (4) |
O3—Cu1iv | 2.433 (3) | C4—C6 | 1.497 (5) |
N1—C1 | 1.318 (4) | C6—H6A | 0.9600 |
N1—C5 | 1.385 (4) | C6—H6B | 0.9600 |
N2—C1 | 1.352 (4) | C6—H6C | 0.9600 |
N1i—Cu1—N1 | 180.00 (9) | C4—N2—H2C | 125.2 |
N1i—Cu1—O1 | 95.08 (10) | N1—C1—N2 | 109.4 (3) |
N1—Cu1—O1 | 84.92 (10) | N1—C1—C2 | 126.5 (3) |
N1i—Cu1—O1i | 84.92 (10) | N2—C1—C2 | 124.1 (3) |
N1—Cu1—O1i | 95.08 (10) | C1—C2—C3 | 114.7 (3) |
O1—Cu1—O1i | 180.000 (1) | C1—C2—H2A | 108.6 |
N1i—Cu1—O3ii | 88.44 (10) | C3—C2—H2A | 108.6 |
N1—Cu1—O3ii | 91.56 (10) | C1—C2—H2B | 108.6 |
O1—Cu1—O3ii | 86.90 (10) | C3—C2—H2B | 108.6 |
O1i—Cu1—O3ii | 93.10 (10) | H2A—C2—H2B | 107.6 |
N1i—Cu1—O3iii | 91.56 (10) | C2—C3—H3A | 109.5 |
N1—Cu1—O3iii | 88.44 (10) | C2—C3—H3B | 109.5 |
O1—Cu1—O3iii | 93.10 (10) | H3A—C3—H3B | 109.5 |
O1i—Cu1—O3iii | 86.90 (10) | C2—C3—H3C | 109.5 |
O3ii—Cu1—O3iii | 180.0 | H3A—C3—H3C | 109.5 |
O3—S1—O2 | 112.46 (16) | H3B—C3—H3C | 109.5 |
O3—S1—O1 | 112.61 (15) | C5—C4—N2 | 104.3 (3) |
O2—S1—O1 | 113.19 (16) | C5—C4—C6 | 131.6 (3) |
O3—S1—C5 | 108.32 (16) | N2—C4—C6 | 124.1 (3) |
O2—S1—C5 | 108.00 (16) | C4—C5—N1 | 110.2 (3) |
O1—S1—C5 | 101.46 (15) | C4—C5—S1 | 131.3 (3) |
S1—O1—Cu1 | 118.92 (14) | N1—C5—S1 | 118.4 (2) |
S1—O3—Cu1iv | 131.33 (15) | C4—C6—H6A | 109.5 |
C1—N1—C5 | 106.6 (3) | C4—C6—H6B | 109.5 |
C1—N1—Cu1 | 138.6 (2) | H6A—C6—H6B | 109.5 |
C5—N1—Cu1 | 114.7 (2) | C4—C6—H6C | 109.5 |
C1—N2—C4 | 109.5 (3) | H6A—C6—H6C | 109.5 |
C1—N2—H2C | 125.2 | H6B—C6—H6C | 109.5 |
O3—S1—O1—Cu1 | 128.60 (17) | Cu1—N1—C1—C2 | −1.4 (5) |
O2—S1—O1—Cu1 | −102.44 (19) | C4—N2—C1—N1 | −0.5 (4) |
C5—S1—O1—Cu1 | 13.0 (2) | C4—N2—C1—C2 | 178.2 (3) |
N1i—Cu1—O1—S1 | 167.66 (17) | N1—C1—C2—C3 | 177.2 (4) |
N1—Cu1—O1—S1 | −12.34 (17) | N2—C1—C2—C3 | −1.2 (5) |
O3ii—Cu1—O1—S1 | 79.50 (17) | C1—N2—C4—C5 | 0.3 (4) |
O3iii—Cu1—O1—S1 | −100.50 (17) | C1—N2—C4—C6 | −177.9 (3) |
O2—S1—O3—Cu1iv | 180.00 (18) | N2—C4—C5—N1 | 0.0 (4) |
O1—S1—O3—Cu1iv | −50.7 (2) | C6—C4—C5—N1 | 178.0 (3) |
C5—S1—O3—Cu1iv | 60.7 (2) | N2—C4—C5—S1 | −176.9 (3) |
O1—Cu1—N1—C1 | −170.2 (3) | C6—C4—C5—S1 | 1.1 (6) |
O1i—Cu1—N1—C1 | 9.8 (3) | C1—N1—C5—C4 | −0.2 (4) |
O3ii—Cu1—N1—C1 | 103.0 (3) | Cu1—N1—C5—C4 | −177.8 (2) |
O3iii—Cu1—N1—C1 | −77.0 (3) | C1—N1—C5—S1 | 177.1 (2) |
O1—Cu1—N1—C5 | 6.3 (2) | Cu1—N1—C5—S1 | −0.5 (3) |
O1i—Cu1—N1—C5 | −173.7 (2) | O3—S1—C5—C4 | 50.0 (4) |
O3ii—Cu1—N1—C5 | −80.5 (2) | O2—S1—C5—C4 | −72.1 (4) |
O3iii—Cu1—N1—C5 | 99.5 (2) | O1—S1—C5—C4 | 168.7 (3) |
C5—N1—C1—N2 | 0.4 (4) | O3—S1—C5—N1 | −126.7 (3) |
Cu1—N1—C1—N2 | 177.1 (2) | O2—S1—C5—N1 | 111.3 (3) |
C5—N1—C1—C2 | −178.2 (3) | O1—S1—C5—N1 | −8.0 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+2, −y+1, −z+1; (iv) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2C···O2v | 0.86 | 1.95 | 2.784 (4) | 164 |
Symmetry code: (v) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C6H9N2O3S)2] |
Mr | 441.96 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 5.0732 (4), 11.8367 (10), 13.6810 (11) |
β (°) | 94.473 (7) |
V (Å3) | 819.04 (12) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 4.64 |
Crystal size (mm) | 0.44 × 0.32 × 0.24 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini diffractometer |
Absorption correction | Analytical (CrysAlis PRO; Oxford Diffraction, 2007; Clark & Reid, 1995)' |
Tmin, Tmax | 0.270, 0.445 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3114, 1704, 1605 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.633 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.181, 1.08 |
No. of reflections | 1704 |
No. of parameters | 117 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.15, −0.84 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—N1 | 1.971 (3) | Cu1—O1i | 2.045 (2) |
Cu1—O1 | 2.045 (2) | Cu1—O3ii | 2.433 (3) |
N1—Cu1—O1 | 84.92 (10) | O1—Cu1—O3ii | 86.90 (10) |
N1—Cu1—O3ii | 91.56 (10) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2C···O2iii | 0.86 | 1.95 | 2.784 (4) | 163.9 |
Symmetry code: (iii) x, −y+1/2, z−1/2. |
Acknowledgements
RJB wishes to acknowledge the NSF-MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer, and we thank the Office of Naval Research for financial support.
References
Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2001). Inorg. Chim. Acta, 324, 273–277. Google Scholar
Cai, J.-H., Jiang, Y.-M., Wang, X.-J. & Liu, Z.-M. (2004). Acta Cryst. E60, m1659–m1661. Web of Science CSD CrossRef IUCr Journals Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Doyle, G., Eriksen, K. A. & van Engen, D. (1983). Inorg. Chem. 22, 2892–2895. CSD CrossRef CAS Web of Science Google Scholar
Han, J., Wu, H., Zhi, S., Li, Y. & Pan, Y. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x299–x300. Google Scholar
He, Q.-T., Li, X.-P., Liu, Y., Yu, Z.-Q., Wang, W. & Su, C.-Y. (2009). Angew. Chem. Int. Ed. 48, 6156–6159. Google Scholar
Hubig, S. M., Lindeman, S. V. & Kochi, J. K. (2000). Coord. Chem. Rev. 200, 831–873. CrossRef Google Scholar
Jahn, H. & Teller, E. (1937). Proc. R. Soc. London Ser. A, 220–235. Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Purdy, A. P., Gilardi, R., Luther, J. & Butcher, R. J. (2007). Polyhedron, 26, 3930–3938. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635–4645. Web of Science CSD CrossRef Google Scholar
Timmermans, P. J. J. A., Mackor, A., Spek, A. L. & Kojic-Prodic, B. (1984). J. Organomet. Chem. 276, 287–295. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the title compound, the copper(II) ion sits on an inversion center and is chelated by the imidazole N1 and sulfonate O1 of two ligands. The two chelate rings on a Cu are 5-membered and co-planar. Two O3 O atoms of adjacent molecules coordinate the axial positions with the usual Jahn-Teller tetragonal distortion (Jahn & Teller, 1937) ((Cu—N and Cu—O equatorial distances of 1.971 (3) and 2.045 (2) Å, respectively, with a Cu—O axial distance of 2.433 (3) Å) and link the Cu atoms in an infinite chain of 8-membered (Cu—O—S—O)2 rings along the a axis. A number of examples exist for catenated 8-membered rings of sulfonate bridged copper(I) ions - Doyle et al. (1983), Han et al. (2006), Timmermans et al. (1984), and Hubig et al. (2000). All previous examples have 4 or 5 coordinate copper(I) and edge-shared catenation between the rings. This infinite chain of (Cu—O—S—O)2 rings is unique for copper(II), and its rings are corner shared and linear. The Cu coordination is nearly octahedral, with adjacent angles ranging from 84.92 (10) to 93.10 (10)°. Our silver(I) complex of the same ligand (Purdy, et al. (2007)) has edge shared 8-membered rings connected by a tetrahedral Ag atom. The CuO4 moieties are planar, and are nearly perpendicular (85.00 (8)°) to a plane composed of the linear N—Cu—N units within a chain. Likewise the plane formed by the 5-membered Cu—N—C—S—O chelate rings forms a dihedral angle of 86.61 (8)° with the plane formed by the Cu and O3 atoms within a chain.
As noted above, although all Cu—O distances are within the ranges normally observed in sulfonate complexes, the Cu—O3 distance is 0.4 Å longer than Cu—O1 as is seen in bis(µ2-(2-((2-oxybenzylidene)amino)ethyl)sulfonato)-diaqua-dicopper(II) dihydrate and other similar chelated copper(II) sulfonates (Sreenivasulu et al., 2005; Cai et al., 2004). Copper(II) sulfonates where the sulfonate is not part of a chelate ring tend to have Cu—O distance of 2.3 Å or greater as for example in bis(µ2-hydroxo)-bis(µ2-trifluoromethanesulfonato-O,O')-bis(4,4- dimethyl-2,2'-bipyridine)-di-copper(II) (van Albada, et al., 2001) and in a sulfonate bridged complex (He, et al., 2009).
The O2 atoms of the sulfonates are hydrogen bonded to the hydogen on N2 of the imidazole ring of an adjacent chain, at a N—O distance of 2.784 (4) Å. This interaction bonds the chains into a fully three-dimensional structure.