organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2308-o2309

2-Phenyl­ethyl 1-thio-β-D-galacto­pyran­oside hemihydrate

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bDepartment of Organic Chemistry, University of Debrecen, H-4010 Debrecen Pf 20., Hungary, and cInstitut für Anorganische Chemie der Goethe–Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 25 July 2011; accepted 5 August 2011; online 11 August 2011)

The title compound, C14H20O5S·0.5H2O, crystallizes with two organic mol­ecules and a solvent water mol­ecule in the asymmetric unit. In both mol­ecules, the hexa­pyranosyl rings adopt a slightly distorted chair conformation (5C2) with four substituents in equatorial positions and one substituent in an axial position. The main difference between the organic mol­ecules is the dihedral angle between the phenyl ring and the best plane defined by the O—C1—C2—C3 atoms (r.m.s deviations = 0.003 and 0.043 Å) of the hexa­pyranosyl rings [47.4 (4) and 86.5 (4)°]. In the asymmetric unit, mol­ecules are linked by two strong O—H⋯O hydrogen bonds. In the crystal, the components are linked by a total of 10 distinct O—H⋯O hydrogen bonds, resulting in the formation of a two-dimensional network parallel to the ab plane.

Related literature

For synthetic methods see: Helferich & Türk (1956[Helferich, B. & Türk, D. (1956). Chem. Ber. 89, 2215-2219.]). For pharmacological properties of the title compound, see: De Bruyne et al. (1977[De Bruyne, C. K. & Yde, M. (1977). Carbohydr. Res. 56, 153-164.]); Choi et al. (2003[Choi, J. H., Choe, Y. S., Lee, K.-H., Choi, Y., Kim, S. E. & Kim, B.-T. (2003). Carbohydr. Res. 338, 29-34.]). Gutiérrez et al. (2011[Gutiérrez, B., Muñoz, C., Osorio, L., Ambati, A. K., Kövér, K. E., Sagua, H., Araya, J. E., Morales, P., Szilágyi, L. & González, J. (2011). Acta Trop. Submitted.]). For puckering parameters see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20O5S·0.5H2O

  • Mr = 309.37

  • Orthorhombic, P 21 21 21

  • a = 4.8358 (4) Å

  • b = 14.8218 (16) Å

  • c = 41.390 (3) Å

  • V = 2966.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.20 × 0.09 × 0.08 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 200;[Spek, A. L. (2009). Acta Cryst. D65, 148-155.] Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.954, Tmax = 0.981

  • 14206 measured reflections

  • 5217 independent reflections

  • 2395 reflections with I > 2σ(I)

  • Rint = 0.169

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.117

  • S = 0.68

  • 5217 reflections

  • 377 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2269 Friedel pairs

  • Flack parameter: −0.25 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O31—H31⋯O1W 0.84 1.92 2.759 (7) 179
O41—H41⋯O41A 0.84 1.95 2.779 (7) 169
O51—H51⋯O1Wi 0.84 1.98 2.773 (6) 156
O61—H61⋯O31Aii 0.84 1.86 2.697 (7) 172
O31A—H31A⋯O61iii 0.84 1.92 2.650 (7) 145
O41A—H41A⋯O41iv 0.84 2.05 2.788 (7) 147
O51A—H51A⋯O61Av 0.84 2.10 2.785 (7) 138
O61A—H61A⋯O31ii 0.84 2.02 2.744 (6) 145
O1W—H1WA⋯O31v 0.84 2.23 2.989 (8) 150
O1W—H1WB⋯O41Av 0.84 2.43 3.270 (6) 180
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x+1, y, z; (v) x-1, y, z.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])'.

Supporting information


Comment top

2-Phenylethyl-1-thio-β-D-galactopyranoside is one of the most potent inhibitors of β-galactosidase (EC 3.2.1.23) (De Bruyne, et al., 1977) and a radiologically labeled derivative has also been used for imaging of LacZ gene expression. (Choi et al., 2003). It was recently found to be moderately active in tests against Trypanosoma cruzi, the causal agent of Chagas disease (Gutiérrez et al., 2011). In the title compound, it crystallizes with two organic molecules and a solvent water molecule in the asymmetric unit, Fig. 1. In both molecules the hexapyranosyl rings adopts a slightly distorted chair conformation (5C2) (QT= 0.574 (6) Å, θ= 3.4 (6)°, ϕ2 = 8(9)°; QT= 0.587 (6) Å, θ= 9.2 (7)°, ϕ2 = 299 (4)° for both molecules respectively), (Cremer & Pople, 1975) with four substituents in equatorial positions and one substituent in an axial position. The main difference between the organic molecules is the dihedral angle between the phenyl ring and the best plane defined by the atoms O1/C2/C3/C4 and O1A/C2A/C3A/C4A (r.m.s deviation 0.003 Å; 0.043Å respectively), of the hexapyranosyl rings [47.4 (4) and 86.5 (4)°]. The max. deviation for the best planes of the hexapyranosyl rings are: 0.290 (7)Å and 0.050 (6) Å) for molecules A and B respectively. The mean bond distances are: C—O 1.425 (7) Å, Csp3—Csp3 1.524 (9)Å and aromatic C—C 1.386 (11) Å. In the asymmetric unit the three molecules are linked by two strong O— H···O hydrogen bonds and the crystal packing is stabilized by eight O— H···O hydrogen bonding leading to the formation of a two-dimensional network parallel to the ab plane, Fig. 2, Table 1.

Related literature top

For synthetic methods see: Helferich & Türk (1956). For pharmacological properties of the title compound, see: De Bruyne et al. (1977); Choi et al. (2003). Gutiérrez et al. (2011). For puckering parameters see: Cremer & Pople (1975).

Experimental top

1-thio-2,3,4,6-tetra-O-acetyl-β-D-galactopyranose(0.364 g,1 mmol) was dissolved in acetonitrile (2 ml) and 1-bromo-2-phenylethane (0.185 g, 1 mmol) and triethyl amine (242µl, 2 mmol) added. The reaction mixture was stirred at RT until disappearence of the starting materials (TLC, 60 min). The solvent was removed under reduced pressure, and the residue purified by column chromatography (EtOAc: hexane - 8: 2) to give 2-phenylethyl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-galactopyranoside (1). Syrup, 402 mg (86%). [α]D -22.9(CHCl3,c 0.15), Lit. (Helferich & Türk, 1956). [α]D -19.2 (CHCl3). HR—MS:m/z calcd. for C22H28O9S[M+Na]+: 491.135. Found: 491.138. 1H-NMR (CDCl3, 500 MHz): δ 7.20–7.35 (m,5H, Phenyl-H); 5.44 (br.s, 1H, H-4); 5.26 (t, 1H, H-2, J2,3 9.9 Hz); 5.03 (br.d, 1H, H-3); 4.44 (d, 1H, H-1, J1,2 10.1 Hz); 4.10–4.20 (m,2H, H-6a,b); 3.90 (m, 1H, H-5); 2.92 (m, 1H, S-CH2a); 2.94 (m, 2H, Ph-CH2); 3.00 (m, 1H, S-CH2 b);2.16, 2.06, 2.04,1.99 (s, 4x3H, 4x COCH3);13C-NMR (CDCl3, 125 MHz): δ 130.5 (Phenyl-C); 85.6 (C-1); 76.5(C-5); 73.3 (C-3); 69.0 (C-4); 68.7 (C-2); 62.2 (C-6); 38.2 (Ph-CH2); 33.1 (S-CH2); 22.3 (4xCOCH3). The product (0.300 g, 0.64 mmol) was deacetylated by treatment with catalytic amount of NaOMe in methanol. The reaction mixture was stirred at room temperature until completion (TLC 20 min). After neutralization with a cation exchanger (Amberlyst 15) the solvent was removed under reduced pressure and the title molecule, 2-phenylethyl- 1-thio-β-D-galactopyranoside, was isolated as a white solid (MeOH: EtOAc - 2:8), 185 mg (96.3%). [α]D -22.4 (MeOH, c 0.11). Lit. (Helferich &Türk,1956) [α]D -32.2 (MeOH). HR—MS: m/z calcd. for C14H20O5S [M+Na]+:323.094. Found: 323.094.

1H-NMR(CD3OD, 500 MHz): δ 7.15–7.30 (m, 5H, Phenyl-H); 4.34 (d, 1H, H-1, J1,2 9.6 Hz); 3.90 (dd, 1H,H-4, J4,5 ~ 1 Hz); 3.77(dd, 1H, H-6a, J6a,6 b 11.5 Hz, J5,6a 6.6 Hz); 3.71(dd, 1H, H-6 b, J5,6 b 5.3 Hz); 3.57 (t, 1H, H-2, J2,3 9.6 Hz); 3.53(m, 1H, H-5); 3.46 (1H, dd, H-3, J3,4 3.4 Hz);2.92 (m, 1H, S-CH2a);2.95 (m, 2H, Ph-CH2); 3.02(m, 1H, S-CH2 b); 13C-NMR (CDCl3, 125 MHz): δ 131.3, 131.0, 128.9 (Phenyl-C); 88.4 (C-1); 81.5 (C-5); 77.1 (C-3);72.3 (C-2); 71.3 (C-4); 63.5 (C-6); 38.6 (Ph-CH2); 33.2 (S-CH2). Colourless single crystals suitable for X-ray analysis were obtained by slow evaporation of an aqueous solution.

Refinement top

All H atoms could be located by difference Fourier synthesis but were ultimately placed in calculated positions using a riding model with C—H = 0.95 - 1.00 Å and O—H = 0.84 Å with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(O)].

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009)'.

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit of the title compound, with the atom numbering. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A Packing diagram, viewed down the c axis.
2-Phenylethyl 1-thio-β-D-galactopyranoside monohydrate top
Crystal data top
C14H20O5S·0.5H2OF(000) = 1320
Mr = 309.37Dx = 1.385 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3425 reflections
a = 4.8358 (4) Åθ = 2.8–25.6°
b = 14.8218 (16) ŵ = 0.24 mm1
c = 41.390 (3) ÅT = 173 K
V = 2966.6 (5) Å3Needle, colourless
Z = 80.20 × 0.09 × 0.08 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
5217 independent reflections
Radiation source: fine-focus sealed tube2395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.169
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(MULABS; Spek, 200; Blessing, 1995)
h = 45
Tmin = 0.954, Tmax = 0.981k = 1717
14206 measured reflectionsl = 4947
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0007P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.68(Δ/σ)max = 0.001
5217 reflectionsΔρmax = 0.28 e Å3
377 parametersΔρmin = 0.30 e Å3
0 restraintsAbsolute structure: Flack (1983), 2269 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.25 (16)
Crystal data top
C14H20O5S·0.5H2OV = 2966.6 (5) Å3
Mr = 309.37Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 4.8358 (4) ŵ = 0.24 mm1
b = 14.8218 (16) ÅT = 173 K
c = 41.390 (3) Å0.20 × 0.09 × 0.08 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
5217 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 200; Blessing, 1995)
2395 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.981Rint = 0.169
14206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.28 e Å3
S = 0.68Δρmin = 0.30 e Å3
5217 reflectionsAbsolute structure: Flack (1983), 2269 Friedel pairs
377 parametersAbsolute structure parameter: 0.25 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.3816 (4)0.92470 (10)0.85163 (4)0.0217 (4)
O10.2305 (9)0.7771 (2)0.82113 (11)0.0186 (11)
C20.1463 (14)0.8684 (3)0.82448 (14)0.0171 (14)
H20.04320.86970.83410.020*
C30.1355 (15)0.9128 (3)0.79134 (14)0.0192 (15)
H30.32530.91140.78180.023*
C40.0578 (14)0.8611 (4)0.76924 (14)0.0150 (14)
H40.24690.86560.77890.018*
C50.0165 (15)0.7603 (4)0.76836 (16)0.0206 (17)
H50.13130.72630.75660.025*
C60.0370 (14)0.7259 (4)0.80286 (15)0.0176 (15)
H60.14880.73210.81320.021*
C70.1644 (18)0.9413 (4)0.88681 (16)0.0298 (18)
H7A0.27060.97590.90310.036*
H7B0.00360.97850.88040.036*
C80.0570 (17)0.8546 (4)0.90277 (18)0.0335 (19)
H8A0.09090.87060.91830.040*
H8B0.02580.81560.88590.040*
C110.2787 (17)0.8018 (4)0.92039 (17)0.0302 (19)
C120.3759 (19)0.8276 (4)0.95047 (17)0.036 (2)
H120.30350.88050.96030.043*
C130.5745 (19)0.7786 (5)0.96658 (19)0.040 (2)
H130.63690.79820.98720.049*
C140.684 (2)0.7011 (4)0.9531 (2)0.044 (2)
H140.82120.66710.96410.053*
C150.588 (2)0.6744 (5)0.9230 (2)0.050 (3)
H150.65880.62050.91370.060*
C160.395 (2)0.7234 (4)0.90633 (19)0.042 (2)
H160.33920.70480.88540.050*
O310.0486 (12)1.0048 (3)0.79387 (11)0.0352 (14)
H310.09531.02620.78550.053*
O410.0739 (10)0.8992 (3)0.73781 (10)0.0234 (11)
H410.08630.90520.73030.035*
O510.2726 (10)0.7497 (2)0.75186 (12)0.0239 (12)
H510.31910.69510.75210.036*
C610.1245 (16)0.6275 (4)0.80496 (16)0.0254 (16)
H61B0.00550.59020.79080.030*
H61C0.31820.62100.79760.030*
O610.0999 (11)0.5973 (3)0.83768 (11)0.0276 (11)
H610.24980.57390.84360.041*
S1A0.1800 (4)0.92289 (11)0.58806 (4)0.0207 (4)
O1A0.4361 (10)0.7963 (2)0.62109 (10)0.0185 (11)
C2A0.4278 (15)0.8930 (4)0.61866 (14)0.0174 (15)
H2A0.61420.91500.61180.021*
C3A0.3507 (14)0.9383 (3)0.65050 (15)0.0162 (14)
H3A0.15190.92640.65560.019*
C4A0.5327 (14)0.9033 (4)0.67780 (14)0.0166 (15)
H4A0.72460.92680.67470.020*
C5A0.5420 (14)0.8010 (4)0.67805 (16)0.0170 (15)
H5A0.67840.78050.69470.020*
C6A0.6377 (15)0.7696 (3)0.64495 (15)0.0171 (14)
H6A0.81740.79980.63980.021*
C7A0.3763 (16)0.8986 (4)0.55177 (15)0.0246 (16)
H7A10.55600.93050.55260.030*
H7A20.41350.83300.55040.030*
C8A0.2146 (16)0.9289 (5)0.52203 (15)0.0298 (18)
H8A10.03330.89790.52160.036*
H8A20.18050.99460.52330.036*
C11A0.3715 (16)0.9077 (4)0.49135 (15)0.0265 (16)
C12A0.5655 (18)0.9652 (5)0.47895 (18)0.0323 (19)
H12A0.60401.02070.48960.039*
C13A0.7059 (17)0.9425 (5)0.45085 (19)0.042 (2)
H13A0.84320.98220.44260.050*
C14A0.650 (2)0.8640 (6)0.43483 (19)0.046 (2)
H14A0.74840.84920.41570.055*
C15A0.4537 (19)0.8077 (5)0.44622 (19)0.039 (2)
H15A0.41460.75360.43480.047*
C16A0.3062 (18)0.8271 (4)0.47450 (17)0.034 (2)
H16A0.16660.78740.48220.041*
O31A0.3948 (11)1.0327 (2)0.64734 (11)0.0213 (10)
H31A0.24321.05850.64370.032*
O41A0.4250 (10)0.9385 (3)0.70761 (10)0.0241 (11)
H41A0.55510.94560.72080.036*
O51A0.2770 (10)0.7663 (3)0.68599 (11)0.0261 (12)
H51A0.24090.72200.67400.039*
C61A0.6753 (15)0.6677 (4)0.64172 (16)0.0196 (15)
H61D0.50430.63620.64840.023*
H61E0.71530.65170.61900.023*
O61A0.8991 (13)0.6415 (3)0.66183 (13)0.0420 (15)
H61A0.86880.58980.66930.063*
O1W0.4231 (11)1.0767 (3)0.76658 (13)0.0445 (14)
H1WA0.57611.07700.77620.067*
H1WB0.46231.04120.75140.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0215 (10)0.0253 (7)0.0184 (9)0.0002 (8)0.0020 (8)0.0018 (7)
O10.016 (3)0.018 (2)0.022 (3)0.0012 (18)0.004 (2)0.0002 (19)
C20.016 (4)0.020 (3)0.015 (4)0.003 (3)0.001 (3)0.002 (3)
C30.029 (4)0.015 (3)0.014 (3)0.003 (3)0.005 (3)0.004 (2)
C40.012 (4)0.024 (3)0.009 (4)0.004 (3)0.003 (3)0.006 (2)
C50.020 (4)0.025 (3)0.017 (4)0.003 (3)0.003 (3)0.003 (3)
C60.019 (4)0.017 (3)0.017 (4)0.002 (3)0.001 (3)0.003 (3)
C70.038 (5)0.035 (4)0.017 (4)0.004 (4)0.000 (4)0.000 (3)
C80.033 (5)0.039 (4)0.028 (5)0.007 (4)0.003 (4)0.003 (3)
C110.041 (5)0.024 (3)0.025 (5)0.010 (3)0.002 (4)0.007 (3)
C120.044 (6)0.038 (4)0.024 (4)0.011 (4)0.011 (4)0.002 (3)
C130.051 (6)0.040 (4)0.030 (5)0.010 (4)0.004 (5)0.008 (4)
C140.063 (7)0.028 (4)0.041 (5)0.004 (4)0.013 (5)0.007 (3)
C150.066 (7)0.033 (4)0.053 (6)0.011 (5)0.001 (6)0.004 (4)
C160.062 (6)0.034 (4)0.029 (5)0.005 (4)0.013 (5)0.004 (3)
O310.055 (4)0.021 (2)0.029 (3)0.020 (2)0.018 (3)0.001 (2)
O410.021 (3)0.029 (2)0.021 (3)0.000 (2)0.005 (2)0.0035 (19)
O510.034 (3)0.013 (2)0.024 (3)0.0057 (19)0.002 (3)0.0008 (19)
C610.019 (4)0.024 (3)0.033 (4)0.009 (3)0.002 (4)0.001 (3)
O610.023 (3)0.028 (2)0.032 (3)0.001 (2)0.002 (2)0.0133 (19)
S1A0.0180 (9)0.0286 (8)0.0154 (9)0.0032 (7)0.0022 (7)0.0005 (7)
O1A0.020 (3)0.0161 (19)0.020 (3)0.0050 (19)0.006 (2)0.0004 (17)
C2A0.017 (4)0.021 (3)0.014 (4)0.002 (3)0.003 (3)0.004 (2)
C3A0.015 (4)0.015 (3)0.019 (3)0.003 (3)0.000 (3)0.002 (3)
C4A0.020 (4)0.021 (3)0.008 (3)0.005 (3)0.007 (3)0.002 (3)
C5A0.014 (4)0.019 (3)0.018 (4)0.002 (3)0.002 (3)0.002 (3)
C6A0.015 (4)0.018 (3)0.019 (4)0.003 (3)0.003 (3)0.002 (3)
C7A0.029 (4)0.033 (3)0.012 (4)0.004 (3)0.003 (4)0.007 (3)
C8A0.043 (5)0.031 (3)0.016 (4)0.014 (4)0.003 (3)0.003 (3)
C11A0.026 (4)0.035 (4)0.018 (4)0.007 (4)0.006 (3)0.001 (3)
C12A0.034 (5)0.035 (4)0.028 (4)0.002 (4)0.004 (4)0.002 (3)
C13A0.025 (5)0.067 (5)0.032 (5)0.001 (4)0.004 (4)0.016 (4)
C14A0.042 (6)0.074 (5)0.022 (5)0.023 (5)0.000 (4)0.000 (4)
C15A0.044 (6)0.042 (4)0.032 (5)0.013 (4)0.005 (5)0.011 (4)
C16A0.051 (6)0.031 (4)0.022 (4)0.007 (4)0.002 (4)0.005 (3)
O31A0.022 (3)0.0197 (19)0.023 (3)0.002 (2)0.008 (3)0.002 (2)
O41A0.032 (3)0.027 (2)0.014 (2)0.005 (2)0.003 (2)0.0025 (19)
O51A0.029 (3)0.028 (2)0.021 (3)0.012 (2)0.003 (2)0.001 (2)
C61A0.020 (4)0.021 (3)0.018 (4)0.001 (3)0.003 (3)0.000 (3)
O61A0.050 (4)0.019 (2)0.057 (4)0.005 (3)0.021 (3)0.007 (2)
O1W0.026 (3)0.049 (3)0.058 (4)0.015 (3)0.005 (3)0.002 (3)
Geometric parameters (Å, º) top
S1—C21.804 (7)S1A—C7A1.813 (7)
S1—C71.812 (7)O1A—C2A1.437 (6)
O1—C21.420 (7)O1A—C6A1.443 (8)
O1—C61.422 (7)C2A—C3A1.526 (8)
C2—C31.522 (8)C2A—H2A1.0000
C2—H21.0000C3A—O31A1.421 (6)
C3—O311.432 (7)C3A—C4A1.523 (8)
C3—C41.516 (9)C3A—H3A1.0000
C3—H31.0000C4A—O41A1.437 (7)
C4—O411.420 (7)C4A—C5A1.517 (8)
C4—C51.537 (8)C4A—H4A1.0000
C4—H41.0000C5A—O51A1.419 (8)
C5—O511.423 (8)C5A—C6A1.519 (9)
C5—C61.519 (9)C5A—H5A1.0000
C5—H51.0000C6A—C61A1.527 (7)
C6—C611.521 (8)C6A—H6A1.0000
C6—H61.0000C7A—C8A1.525 (9)
C7—C81.535 (9)C7A—H7A10.9900
C7—H7A0.9900C7A—H7A20.9900
C7—H7B0.9900C8A—C11A1.512 (9)
C8—C111.515 (10)C8A—H8A10.9900
C8—H8A0.9900C8A—H8A20.9900
C8—H8B0.9900C11A—C12A1.368 (11)
C11—C121.385 (10)C11A—C16A1.419 (9)
C11—C161.416 (10)C12A—C13A1.388 (10)
C12—C131.376 (11)C12A—H12A0.9500
C12—H120.9500C13A—C14A1.366 (11)
C13—C141.383 (10)C13A—H13A0.9500
C13—H130.9500C14A—C15A1.348 (12)
C14—C151.386 (11)C14A—H14A0.9500
C14—H140.9500C15A—C16A1.400 (10)
C15—C161.371 (12)C15A—H15A0.9500
C15—H150.9500C16A—H16A0.9500
C16—H160.9500O31A—H31A0.8400
O31—H310.8395O41A—H41A0.8400
O41—H410.8400O51A—H51A0.8400
O51—H510.8400C61A—O61A1.420 (8)
C61—O611.431 (8)C61A—H61D0.9900
C61—H61B0.9900C61A—H61E0.9900
C61—H61C0.9900O61A—H61A0.8400
O61—H610.8400O1W—H1WA0.8394
S1A—C2A1.799 (7)O1W—H1WB0.8399
C2—S1—C7101.4 (4)C2A—O1A—C6A109.8 (4)
C2—O1—C6111.8 (5)O1A—C2A—C3A112.7 (5)
O1—C2—C3109.5 (5)O1A—C2A—S1A108.3 (4)
O1—C2—S1108.7 (4)C3A—C2A—S1A109.7 (4)
C3—C2—S1112.5 (4)O1A—C2A—H2A108.7
O1—C2—H2108.7C3A—C2A—H2A108.7
C3—C2—H2108.7S1A—C2A—H2A108.7
S1—C2—H2108.7O31A—C3A—C4A108.5 (5)
O31—C3—C4110.2 (5)O31A—C3A—C2A108.5 (5)
O31—C3—C2110.9 (5)C4A—C3A—C2A110.4 (5)
C4—C3—C2110.2 (5)O31A—C3A—H3A109.8
O31—C3—H3108.5C4A—C3A—H3A109.8
C4—C3—H3108.5C2A—C3A—H3A109.8
C2—C3—H3108.5O41A—C4A—C5A111.6 (5)
O41—C4—C3112.7 (5)O41A—C4A—C3A107.7 (5)
O41—C4—C5112.2 (5)C5A—C4A—C3A111.3 (5)
C3—C4—C5111.2 (5)O41A—C4A—H4A108.7
O41—C4—H4106.8C5A—C4A—H4A108.7
C3—C4—H4106.8C3A—C4A—H4A108.7
C5—C4—H4106.8O51A—C5A—C4A109.7 (5)
O51—C5—C6110.9 (6)O51A—C5A—C6A111.9 (5)
O51—C5—C4108.8 (5)C4A—C5A—C6A108.0 (5)
C6—C5—C4108.6 (5)O51A—C5A—H5A109.1
O51—C5—H5109.5C4A—C5A—H5A109.1
C6—C5—H5109.5C6A—C5A—H5A109.1
C4—C5—H5109.5O1A—C6A—C5A109.1 (5)
O1—C6—C5111.3 (5)O1A—C6A—C61A106.9 (5)
O1—C6—C61107.4 (5)C5A—C6A—C61A114.7 (5)
C5—C6—C61113.2 (5)O1A—C6A—H6A108.6
O1—C6—H6108.3C5A—C6A—H6A108.6
C5—C6—H6108.3C61A—C6A—H6A108.6
C61—C6—H6108.3C8A—C7A—S1A110.0 (5)
C8—C7—S1115.4 (5)C8A—C7A—H7A1109.7
C8—C7—H7A108.4S1A—C7A—H7A1109.7
S1—C7—H7A108.4C8A—C7A—H7A2109.7
C8—C7—H7B108.4S1A—C7A—H7A2109.7
S1—C7—H7B108.4H7A1—C7A—H7A2108.2
H7A—C7—H7B107.5C11A—C8A—C7A111.1 (6)
C11—C8—C7113.6 (7)C11A—C8A—H8A1109.4
C11—C8—H8A108.8C7A—C8A—H8A1109.4
C7—C8—H8A108.8C11A—C8A—H8A2109.4
C11—C8—H8B108.8C7A—C8A—H8A2109.4
C7—C8—H8B108.8H8A1—C8A—H8A2108.0
H8A—C8—H8B107.7C12A—C11A—C16A119.6 (7)
C12—C11—C16117.5 (7)C12A—C11A—C8A122.0 (6)
C12—C11—C8122.0 (6)C16A—C11A—C8A118.4 (7)
C16—C11—C8120.5 (7)C11A—C12A—C13A119.9 (7)
C13—C12—C11121.8 (7)C11A—C12A—H12A120.1
C13—C12—H12119.1C13A—C12A—H12A120.1
C11—C12—H12119.1C14A—C13A—C12A121.1 (8)
C12—C13—C14120.7 (8)C14A—C13A—H13A119.5
C12—C13—H13119.7C12A—C13A—H13A119.5
C14—C13—H13119.7C15A—C14A—C13A119.8 (8)
C13—C14—C15118.2 (8)C15A—C14A—H14A120.1
C13—C14—H14120.9C13A—C14A—H14A120.1
C15—C14—H14120.9C14A—C15A—C16A121.6 (7)
C16—C15—C14121.9 (8)C14A—C15A—H15A119.2
C16—C15—H15119.0C16A—C15A—H15A119.2
C14—C15—H15119.0C15A—C16A—C11A118.0 (8)
C15—C16—C11119.9 (7)C15A—C16A—H16A121.0
C15—C16—H16120.0C11A—C16A—H16A121.0
C11—C16—H16120.0C3A—O31A—H31A109.5
C3—O31—H31125.0C4A—O41A—H41A109.5
C4—O41—H41109.5C5A—O51A—H51A109.5
C5—O51—H51109.5O61A—C61A—C6A108.1 (5)
O61—C61—C6109.3 (5)O61A—C61A—H61D110.1
O61—C61—H61B109.8C6A—C61A—H61D110.1
C6—C61—H61B109.8O61A—C61A—H61E110.1
O61—C61—H61C109.8C6A—C61A—H61E110.1
C6—C61—H61C109.8H61D—C61A—H61E108.4
H61B—C61—H61C108.3C61A—O61A—H61A109.5
C61—O61—H61109.5H1WA—O1W—H1WB99.1
C2A—S1A—C7A100.7 (3)
C6—O1—C2—C363.2 (7)C6A—O1A—C2A—C3A59.8 (7)
C6—O1—C2—S1173.6 (4)C6A—O1A—C2A—S1A178.7 (4)
C7—S1—C2—O1109.5 (4)C7A—S1A—C2A—O1A76.8 (5)
C7—S1—C2—C3129.0 (5)C7A—S1A—C2A—C3A159.8 (4)
O1—C2—C3—O31179.5 (5)O1A—C2A—C3A—O31A169.9 (5)
S1—C2—C3—O3159.5 (6)S1A—C2A—C3A—O31A69.4 (6)
O1—C2—C3—C457.2 (7)O1A—C2A—C3A—C4A51.1 (7)
S1—C2—C3—C4178.2 (4)S1A—C2A—C3A—C4A171.8 (4)
O31—C3—C4—O4157.8 (7)O31A—C3A—C4A—O41A69.2 (6)
C2—C3—C4—O41179.5 (5)C2A—C3A—C4A—O41A171.9 (5)
O31—C3—C4—C5175.2 (5)O31A—C3A—C4A—C5A168.2 (5)
C2—C3—C4—C552.5 (7)C2A—C3A—C4A—C5A49.3 (7)
O41—C4—C5—O5157.6 (7)O41A—C4A—C5A—O51A53.7 (7)
C3—C4—C5—O5169.6 (6)C3A—C4A—C5A—O51A66.6 (7)
O41—C4—C5—C6178.4 (6)O41A—C4A—C5A—C6A175.9 (5)
C3—C4—C5—C651.3 (7)C3A—C4A—C5A—C6A55.6 (7)
C2—O1—C6—C563.8 (7)C2A—O1A—C6A—C5A66.0 (6)
C2—O1—C6—C61171.8 (5)C2A—O1A—C6A—C61A169.4 (5)
O51—C5—C6—O163.5 (6)O51A—C5A—C6A—O1A57.2 (6)
C4—C5—C6—O156.0 (7)C4A—C5A—C6A—O1A63.6 (6)
O51—C5—C6—C6157.5 (7)O51A—C5A—C6A—C61A62.7 (7)
C4—C5—C6—C61177.1 (5)C4A—C5A—C6A—C61A176.5 (6)
C2—S1—C7—C861.9 (6)C2A—S1A—C7A—C8A174.0 (5)
S1—C7—C8—C1171.3 (7)S1A—C7A—C8A—C11A178.9 (5)
C7—C8—C11—C1277.3 (9)C7A—C8A—C11A—C12A86.0 (8)
C7—C8—C11—C16102.6 (8)C7A—C8A—C11A—C16A96.4 (8)
C16—C11—C12—C131.1 (12)C16A—C11A—C12A—C13A3.0 (11)
C8—C11—C12—C13179.0 (8)C8A—C11A—C12A—C13A179.5 (7)
C11—C12—C13—C140.1 (13)C11A—C12A—C13A—C14A1.4 (12)
C12—C13—C14—C150.0 (13)C12A—C13A—C14A—C15A0.5 (12)
C13—C14—C15—C161.4 (14)C13A—C14A—C15A—C16A0.7 (13)
C14—C15—C16—C112.7 (14)C14A—C15A—C16A—C11A0.9 (12)
C12—C11—C16—C152.5 (12)C12A—C11A—C16A—C15A2.7 (11)
C8—C11—C16—C15177.7 (8)C8A—C11A—C16A—C15A179.6 (7)
O1—C6—C61—O6165.0 (7)O1A—C6A—C61A—O61A172.2 (5)
C5—C6—C61—O61171.8 (6)C5A—C6A—C61A—O61A66.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31···O1W0.841.922.759 (7)179
O41—H41···O41A0.841.952.779 (7)169
O51—H51···O1Wi0.841.982.773 (6)156
O61—H61···O31Aii0.841.862.697 (7)172
O31A—H31A···O61iii0.841.922.650 (7)145
O41A—H41A···O41iv0.842.052.788 (7)147
O51A—H51A···O61Av0.842.102.785 (7)138
O61A—H61A···O31ii0.842.022.744 (6)145
O1W—H1WA···O31v0.842.232.989 (8)150
O1W—H1WB···O41Av0.842.433.270 (6)180
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z+3/2; (iv) x+1, y, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H20O5S·0.5H2O
Mr309.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)4.8358 (4), 14.8218 (16), 41.390 (3)
V3)2966.6 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.20 × 0.09 × 0.08
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 200; Blessing, 1995)
Tmin, Tmax0.954, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
14206, 5217, 2395
Rint0.169
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.117, 0.68
No. of reflections5217
No. of parameters377
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.30
Absolute structureFlack (1983), 2269 Friedel pairs
Absolute structure parameter0.25 (16)

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009)'.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31···O1W0.841.922.759 (7)179.3
O41—H41···O41A0.841.952.779 (7)168.6
O51—H51···O1Wi0.841.982.773 (6)156.4
O61—H61···O31Aii0.841.862.697 (7)172.1
O31A—H31A···O61iii0.841.922.650 (7)145.1
O41A—H41A···O41iv0.842.052.788 (7)146.9
O51A—H51A···O61Av0.842.102.785 (7)138.4
O61A—H61A···O31ii0.842.022.744 (6)144.5
O1W—H1WA···O31v0.842.232.989 (8)150.4
O1W—H1WB···O41Av0.842.433.270 (6)179.9
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z+3/2; (iv) x+1, y, z; (v) x1, y, z.
 

Acknowledgements

We thank OTKA, the Hungarian Scientific Research Fund (grant Nos. IN-79731 and NK-68578) for financial support. IB thanks the Spanish Research Council (CSIC) for the provision of a free-of-charge license to the Cambridge Structural Database.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChoi, J. H., Choe, Y. S., Lee, K.-H., Choi, Y., Kim, S. E. & Kim, B.-T. (2003). Carbohydr. Res. 338, 29–34.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDe Bruyne, C. K. & Yde, M. (1977). Carbohydr. Res. 56, 153-164.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGutiérrez, B., Muñoz, C., Osorio, L., Ambati, A. K., Kövér, K. E., Sagua, H., Araya, J. E., Morales, P., Szilágyi, L. & González, J. (2011). Acta Trop. Submitted.  Google Scholar
First citationHelferich, B. & Türk, D. (1956). Chem. Ber. 89, 2215–2219.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2308-o2309
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds