organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-(Propane-1,3-di­yl)bis­­(p-toluene­sulfonamide)

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: iuklodhi@yahoo.com

(Received 27 July 2011; accepted 1 August 2011; online 17 August 2011)

The complete mol­ecule of the title compound, C17H22N2O4S2, is generated by crystallographic twofold symmetry, with one C atom lying on the rotation axis. The dihedral angle between the benzene rings is 44.04 (7)° and the conformation of the central N—C—C—C group is gauche. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating corrugated (010) sheets, and weak C—H⋯O inter­actions consolidate the packing.

Related literature

For the related structure of N,N′-ethyl­enebis(p-toluene­sulfonamide), see: Gajadhar-Plummer et al. (2001[Gajadhar-Plummer, A. S., Kahwa, I. A. & Mague, J. T. (2001). Acta Cryst. E57, o68-o69.]).

[Scheme 1]

Experimental

Crystal data
  • C17H22N2O4S2

  • Mr = 382.49

  • Orthorhombic, A b a 2

  • a = 12.3169 (9) Å

  • b = 18.0787 (15) Å

  • c = 8.3819 (5) Å

  • V = 1866.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.52 × 0.46 × 0.36 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.856, Tmax = 0.897

  • 4996 measured reflections

  • 1625 independent reflections

  • 1472 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.078

  • S = 1.07

  • 1625 reflections

  • 119 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 372 Friedel pairs

  • Flack parameter: 0.12 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.82 (3) 2.24 (3) 2.974 (2) 149 (2)
C7—H7C⋯O1ii 0.96 2.45 3.264 (3) 142
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (ii) [-x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 .

Supporting information


Comment top

As part of our ongoing structural studies of sulfonamides, the synthesis and structure of the title compound, (I), are now described.

The complete molecule of (I) is generated by crystallographic twofold symmetry (Fig. 1) with atom C9 lying on the rotation axis. The diehdral angle between the benzene rings is 44.04 (7)°. The conformation of the atoms of the central chain is gauche [N1—C8—C9—C8i = 75.53 (14)°; (i) = 1–x, 1–y, z] whereas the torsion angle for S1—N1—C8—C9 of -163.87 (15)° indicates a near anti conformation for these atoms. The bond-angle sum for N1 of 341.7° seems to indicate an intermediate valence state between sp2 and sp3 hybridization (expected bond angle sums = 328.5 and 360°, respectively).

In the crystal, the molecules are linked by N—H···O hydrogen bonds (Table 1), to generate corrugated (010) sheets (Fig. 2). A weak C—H···O interaction may help to consolidate the packing. There is no aromatic π-π stacking in the crystal of (I).

The structure of the related compound N,N'-ethylenebis(p-toluenesulfonamide), (II), has been reported (Gajadhar-Plummer et al., 2001), in which an ethlyene bridge links the p-toluenesulfonamide units compared to a propylene bridge in (I). The complete molcule of (II) is generated by crystallographic inversion symmetry, thus the central N—C—C—N bridge is constrained to have a perfect anti conformation. The S—N—C—C torsion angle of -98.0 (2)° in (II) is also quite different to the equivalent torsion angle in (I).

Related literature top

For the related structure of N,N'-ethylenebis(p-toluenesulfonamide), see: Gajadhar-Plummer et al. (2001).

Experimental top

A mixture of 1,3-diaminopropane (0.0067 mol, 0.561 ml) and p-toluenesulfonyl chloride (0.0135 mol, 2.55 g) was stirred in 20 ml distilled water while maintaining the pH of the solution at about 9.0 with sodium carbonate solution (3%). The progress of the reaction was monitored by TLC: on completion, the white precipitate formed was filtered, washed with distilled water and dried. Colourless blocks of (I) were recrystallized from methanol.

Refinement top

The N-bound H atom was located in a difference map and its position was freely refined with Uiso(H) = 1.2Ueq(N). The C-bound hydrogen atoms were placed in calculated positions (C—H = 0.97–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl group was allowed to rotate, but not to tip, to best fit the electron density.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids. Symmetry code: (i) 1–x, 1–y, z.
[Figure 2] Fig. 2. View approximately down [001] of the packing in (I) showing the interdigitated (010) sheets of molecules. All C-bound H atoms are omitted for clarity.
N,N'-(Propane-1,3-diyl)bis(p-toluenesulfonamide) top
Crystal data top
C17H22N2O4S2F(000) = 808
Mr = 382.49Dx = 1.361 Mg m3
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 2756 reflections
a = 12.3169 (9) Åθ = 2.8–28.3°
b = 18.0787 (15) ŵ = 0.31 mm1
c = 8.3819 (5) ÅT = 296 K
V = 1866.4 (2) Å3Block, colourless
Z = 40.52 × 0.46 × 0.36 mm
Data collection top
Bruker APEXII CCD
diffractometer
1625 independent reflections
Radiation source: fine-focus sealed tube1472 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 28.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1116
Tmin = 0.856, Tmax = 0.897k = 2423
4996 measured reflectionsl = 116
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.2164P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1625 reflectionsΔρmax = 0.21 e Å3
119 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 372 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (11)
Crystal data top
C17H22N2O4S2V = 1866.4 (2) Å3
Mr = 382.49Z = 4
Orthorhombic, Aba2Mo Kα radiation
a = 12.3169 (9) ŵ = 0.31 mm1
b = 18.0787 (15) ÅT = 296 K
c = 8.3819 (5) Å0.52 × 0.46 × 0.36 mm
Data collection top
Bruker APEXII CCD
diffractometer
1625 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1472 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.897Rint = 0.019
4996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078Δρmax = 0.21 e Å3
S = 1.07Δρmin = 0.20 e Å3
1625 reflectionsAbsolute structure: Flack (1983), 372 Friedel pairs
119 parametersAbsolute structure parameter: 0.12 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65494 (18)0.85229 (12)0.6032 (3)0.0505 (5)
C20.7458 (2)0.80891 (11)0.5798 (3)0.0568 (6)
H20.80480.82850.52510.068*
C30.75132 (18)0.73752 (11)0.6352 (3)0.0510 (5)
H30.81350.70940.61890.061*
C40.66317 (14)0.70786 (10)0.7158 (3)0.0384 (4)
C50.57086 (16)0.75001 (10)0.7395 (3)0.0455 (5)
H50.51140.73030.79310.055*
C60.56785 (17)0.82139 (11)0.6830 (3)0.0500 (5)
H60.50560.84960.69880.060*
C70.6512 (2)0.93096 (14)0.5432 (4)0.0782 (9)
H7A0.69550.93540.44950.117*
H7B0.67800.96370.62440.117*
H7C0.57760.94390.51750.117*
C80.52239 (18)0.56829 (12)0.5701 (3)0.0480 (5)
H8A0.51600.61230.50440.058*
H8B0.47010.57180.65620.058*
C90.50000.50000.4707 (4)0.0535 (8)
H90.43790.50940.40250.064*
S10.66864 (4)0.61578 (2)0.78225 (9)0.04287 (14)
O10.59049 (15)0.60730 (8)0.9065 (2)0.0615 (4)
O20.77949 (13)0.59791 (8)0.8137 (2)0.0610 (5)
N10.63280 (15)0.56284 (9)0.6355 (2)0.0414 (4)
H10.6771 (18)0.5633 (14)0.563 (3)0.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0603 (13)0.0396 (11)0.0515 (13)0.0102 (9)0.0112 (10)0.0031 (10)
C20.0545 (12)0.0483 (11)0.0675 (15)0.0129 (10)0.0095 (13)0.0028 (10)
C30.0442 (11)0.0476 (10)0.0613 (14)0.0010 (9)0.0072 (11)0.0025 (10)
C40.0426 (11)0.0346 (8)0.0380 (9)0.0006 (7)0.0039 (9)0.0005 (7)
C50.0437 (10)0.0421 (10)0.0506 (13)0.0009 (8)0.0023 (9)0.0025 (8)
C60.0481 (12)0.0426 (10)0.0594 (14)0.0052 (9)0.0083 (10)0.0010 (9)
C70.094 (2)0.0443 (13)0.097 (2)0.0174 (12)0.0219 (18)0.0166 (14)
C80.0488 (12)0.0433 (10)0.0519 (12)0.0037 (8)0.0063 (10)0.0068 (9)
C90.0573 (19)0.065 (2)0.0387 (14)0.0183 (15)0.0000.000
S10.0551 (3)0.0375 (2)0.0360 (2)0.00355 (18)0.0046 (3)0.0038 (2)
O10.0904 (12)0.0516 (9)0.0425 (8)0.0022 (8)0.0158 (9)0.0068 (7)
O20.0633 (10)0.0568 (9)0.0627 (13)0.0121 (7)0.0238 (9)0.0014 (8)
N10.0462 (10)0.0378 (8)0.0403 (9)0.0000 (7)0.0016 (8)0.0001 (7)
Geometric parameters (Å, º) top
C1—C21.380 (3)C7—H7B0.9600
C1—C61.382 (3)C7—H7C0.9600
C1—C71.509 (3)C8—N11.470 (3)
C2—C31.373 (3)C8—C91.515 (3)
C2—H20.9300C8—H8A0.9700
C3—C41.387 (3)C8—H8B0.9700
C3—H30.9300C9—C8i1.515 (3)
C4—C51.383 (2)C9—H90.9700
C4—S11.7567 (19)S1—O11.4265 (17)
C5—C61.375 (3)S1—O21.4276 (16)
C5—H50.9300S1—N11.6199 (18)
C6—H60.9300N1—H10.82 (3)
C7—H7A0.9600
C2—C1—C6117.9 (2)C1—C7—H7C109.5
C2—C1—C7120.9 (2)H7A—C7—H7C109.5
C6—C1—C7121.2 (2)H7B—C7—H7C109.5
C3—C2—C1121.8 (2)N1—C8—C9108.60 (16)
C3—C2—H2119.1N1—C8—H8A110.0
C1—C2—H2119.1C9—C8—H8A110.0
C2—C3—C4119.3 (2)N1—C8—H8B110.0
C2—C3—H3120.4C9—C8—H8B110.0
C4—C3—H3120.4H8A—C8—H8B108.4
C5—C4—C3120.04 (19)C8—C9—C8i113.3 (3)
C5—C4—S1120.55 (14)C8—C9—H9109.0
C3—C4—S1119.40 (15)C8i—C9—H9108.8
C6—C5—C4119.33 (19)O1—S1—O2119.10 (12)
C6—C5—H5120.3O1—S1—N1107.88 (10)
C4—C5—H5120.3O2—S1—N1105.50 (10)
C5—C6—C1121.67 (19)O1—S1—C4107.90 (9)
C5—C6—H6119.2O2—S1—C4108.04 (9)
C1—C6—H6119.2N1—S1—C4107.97 (10)
C1—C7—H7A109.5C8—N1—S1119.73 (14)
C1—C7—H7B109.5C8—N1—H1109.8 (17)
H7A—C7—H7B109.5S1—N1—H1112.2 (18)
C6—C1—C2—C30.9 (4)C5—C4—S1—O122.6 (2)
C7—C1—C2—C3179.2 (3)C3—C4—S1—O1159.14 (18)
C1—C2—C3—C40.5 (4)C5—C4—S1—O2152.60 (18)
C2—C3—C4—C50.1 (3)C3—C4—S1—O229.1 (2)
C2—C3—C4—S1178.35 (19)C5—C4—S1—N193.76 (19)
C3—C4—C5—C60.3 (3)C3—C4—S1—N184.50 (19)
S1—C4—C5—C6178.50 (17)C9—C8—N1—S1163.87 (15)
C4—C5—C6—C10.2 (3)O1—S1—N1—C853.02 (18)
C2—C1—C6—C50.7 (4)O2—S1—N1—C8178.68 (15)
C7—C1—C6—C5179.4 (2)C4—S1—N1—C863.35 (17)
N1—C8—C9—C8i75.53 (14)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.82 (3)2.24 (3)2.974 (2)149 (2)
C7—H7C···O1iii0.962.453.264 (3)142
Symmetry codes: (ii) x+3/2, y, z1/2; (iii) x+1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H22N2O4S2
Mr382.49
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)296
a, b, c (Å)12.3169 (9), 18.0787 (15), 8.3819 (5)
V3)1866.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.52 × 0.46 × 0.36
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.856, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
4996, 1625, 1472
Rint0.019
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.078, 1.07
No. of reflections1625
No. of parameters119
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20
Absolute structureFlack (1983), 372 Friedel pairs
Absolute structure parameter0.12 (11)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.82 (3)2.24 (3)2.974 (2)149 (2)
C7—H7C···O1ii0.962.453.264 (3)142
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+1, y+3/2, z1/2.
 

Acknowledgements

IUK thanks the Higher Education Commission of Pakistan for financial support under the project to strengthen the Materials Chemistry Laboratory at GCUL.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGajadhar-Plummer, A. S., Kahwa, I. A. & Mague, J. T. (2001). Acta Cryst. E57, o68–o69.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds