metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{4-chloro-2-[(2-hy­dr­oxy­eth­yl)imino­meth­yl]phenolato}nickel(II) monohydrate

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China
*Correspondence e-mail: chenyi_wang@163.com

(Received 30 July 2011; accepted 5 August 2011; online 11 August 2011)

The title mononuclear nickel(II) complex, [Ni(C9H9ClNO2)2]·H2O, was obtained by the reaction of 5-chloro­salicyl­aldehyde, 2-amino­ethanol and nickel nitrate in methanol. The Ni atom is six-coordinated by two phenolate O, two imine N and two hy­droxy O atoms from two crystallographically different Schiff base ligands, forming an octa­hedral geometry. In the crystal, mol­ecules are linked through inter­molecular O—H⋯O and O—H⋯Cl hydrogen bonds.

Related literature

For our investigations of urease inhibitors, see: Wang (2009[Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860-2868.]); Wang & Ye (2011[Wang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235-241.]). For similar nickel(II) complexes, see: Arıcı et al. (2005[Arıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919-m921.]); Liu et al. (2006[Liu, X.-H., Cai, J.-H., Jiang, Y.-M., Huang, Y.-H. & Yin, X.-J. (2006). Acta Cryst. E62, m2119-m2121.]); Li & Wang (2007[Li, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m749-m750.]); Ali et al. (2006[Ali, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2741-m2742.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H9ClNO2)2]·H2O

  • Mr = 473.97

  • Orthorhombic, P 21 21 21

  • a = 9.846 (1) Å

  • b = 12.646 (2) Å

  • c = 16.006 (2) Å

  • V = 1992.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 298 K

  • 0.30 × 0.27 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.701, Tmax = 0.725

  • 11691 measured reflections

  • 4328 independent reflections

  • 3147 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.076

  • S = 1.04

  • 4328 reflections

  • 265 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1855 Friedel pairs

  • Flack parameter: 0.015 (15)

Table 1
Selected bond lengths (Å)

Ni1—N2 1.996 (3)
Ni1—N1 2.000 (3)
Ni1—O3 2.011 (2)
Ni1—O1 2.015 (2)
Ni1—O2 2.131 (2)
Ni1—O4 2.160 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O1i 0.86 (1) 2.00 (2) 2.846 (4) 167 (4)
O4—H4⋯O5ii 0.85 (1) 1.97 (2) 2.798 (4) 165 (4)
O2—H2⋯O3iii 0.85 (1) 1.87 (2) 2.699 (3) 165 (4)
O5—H5A⋯Cl2 0.84 (1) 2.73 (2) 3.542 (4) 163 (4)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our investigations into novel urease inhibitors (Wang & Ye, 2011; Wang, 2009), we have synthesized the title compound, a new mononuclear nickel(II) complex, Fig. 1. The compound contains a mononuclear nickel(II) complex molecule and a water molecule of crystallization. The Ni atom in the complex is six-coordinated by two phenolate O, two imine N, and two hydroxy O atoms from two Schiff base ligands, forming an octahedral geometry. The trans angles at the Ni atom are in the range 172.5 (1)–174.1 (1)°; the other angles are close to 90°, ranging from 80.1 (1) to 94.9 (1)°, indicating a slightly distorted octahedral coordination. The Ni–O and Ni–N bond lengths (Table 1) are typical and are comparable with those observed in other similar nickel(II) complexes (Arıcı et al., 2005; Liu et al., 2006; Li & Wang, 2007; Ali et al., 2006).

In the crystal structure of the compound, molecules are linked through intermolecular O—H···O and O—H···Cl hydrogen bonds (Table 2), to form a three-dimensional network (Fig. 2).

Related literature top

For our investigations of urease inhibitors, see: Wang (2009); Wang & Ye (2011). For similar nickel(II) complexes, see: Arıcı et al. (2005); Liu et al. (2006); Li & Wang (2007); Ali et al. (2006).

Experimental top

5-Chlorosalicylaldehyde (1.0 mmol, 0.157 g), 2-aminoethanol (1.0 mmol, 0.061 g), and nickel nitrate hexahydrate (0.5 mmol, 0.146 g) were dissolved in MeOH (30 ml). The mixture was stirred at room temperature for 10 min to give a clear green solution. After keeping the solution in air for a week, green block-shaped crystals were formed at the bottom of the vessel.

Refinement top

The water and hydroxy H atoms were located from a difference Fourier map and refined isotropically, with O—H and H···H distances restrained to 0.85 (1) and 1.37 (2) Å, respectively. Their isotropic displacement parameters were fixed at 0.08 Å2). The remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C and O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.
Bis{4-chloro-2-[(2-hydroxyethyl)iminomethyl]phenolato}nickel(II) monohydrate top
Crystal data top
[Ni(C9H9ClNO2)2]·H2ODx = 1.580 Mg m3
Mr = 473.97Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2792 reflections
a = 9.846 (1) Åθ = 2.4–24.5°
b = 12.646 (2) ŵ = 1.27 mm1
c = 16.006 (2) ÅT = 298 K
V = 1992.9 (4) Å3Block, green
Z = 40.30 × 0.27 × 0.27 mm
F(000) = 976
Data collection top
Bruker SMART CCD area-detector
diffractometer
4328 independent reflections
Radiation source: fine-focus sealed tube3147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.701, Tmax = 0.725k = 1416
11691 measured reflectionsl = 2014
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0206P)2 + 0.1322P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4328 reflectionsΔρmax = 0.35 e Å3
265 parametersΔρmin = 0.39 e Å3
5 restraintsAbsolute structure: Flack (1983), 1855 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (15)
Crystal data top
[Ni(C9H9ClNO2)2]·H2OV = 1992.9 (4) Å3
Mr = 473.97Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.846 (1) ŵ = 1.27 mm1
b = 12.646 (2) ÅT = 298 K
c = 16.006 (2) Å0.30 × 0.27 × 0.27 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4328 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3147 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.725Rint = 0.048
11691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.35 e Å3
S = 1.04Δρmin = 0.39 e Å3
4328 reflectionsAbsolute structure: Flack (1983), 1855 Friedel pairs
265 parametersAbsolute structure parameter: 0.015 (15)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.53364 (4)0.24034 (3)0.09823 (3)0.03031 (12)
Cl10.07950 (10)0.02347 (9)0.24602 (7)0.0569 (3)
Cl20.4617 (2)0.80769 (9)0.02875 (10)0.1053 (6)
N10.4422 (3)0.1170 (2)0.04386 (17)0.0293 (7)
N20.6463 (3)0.3534 (2)0.15079 (19)0.0331 (7)
O10.3912 (2)0.2511 (2)0.18821 (14)0.0396 (6)
O20.6727 (2)0.21542 (19)0.00183 (15)0.0351 (6)
H20.7545 (17)0.195 (3)0.000 (3)0.080*
O30.4326 (2)0.34479 (18)0.02676 (15)0.0353 (6)
O40.6595 (3)0.1451 (2)0.17926 (17)0.0427 (7)
H40.634 (4)0.0850 (18)0.198 (3)0.080*
O50.5861 (4)0.9351 (2)0.2104 (2)0.0666 (9)
H5A0.575 (5)0.905 (3)0.1640 (12)0.080*
H5B0.601 (4)0.886 (2)0.2461 (17)0.080*
C10.2544 (3)0.1029 (3)0.1421 (2)0.0285 (8)
C20.2870 (3)0.1881 (3)0.1969 (2)0.0312 (9)
C30.1979 (3)0.2045 (3)0.2648 (2)0.0369 (9)
H30.21540.26020.30120.044*
C40.0863 (4)0.1416 (3)0.2794 (2)0.0385 (9)
H4A0.03020.15470.32500.046*
C50.0581 (3)0.0591 (3)0.2259 (2)0.0377 (10)
C60.1391 (3)0.0405 (3)0.1584 (2)0.0353 (9)
H60.11770.01470.12230.042*
C70.3306 (3)0.0749 (3)0.0684 (2)0.0317 (9)
H70.29530.02100.03540.038*
C80.5114 (3)0.0774 (3)0.0304 (2)0.0376 (9)
H8A0.44490.05470.07140.045*
H8B0.56710.01700.01570.045*
C90.6000 (4)0.1642 (3)0.0674 (2)0.0409 (10)
H9A0.66340.13390.10710.049*
H9B0.54380.21520.09660.049*
C100.5384 (4)0.5021 (3)0.0821 (2)0.0361 (9)
C110.4462 (3)0.4476 (3)0.0297 (2)0.0322 (9)
C120.3640 (4)0.5102 (3)0.0228 (2)0.0398 (10)
H120.30430.47650.05920.048*
C130.3680 (4)0.6183 (3)0.0226 (3)0.0486 (11)
H130.31140.65690.05780.058*
C140.4562 (6)0.6693 (3)0.0297 (3)0.0550 (12)
C150.5406 (4)0.6136 (3)0.0800 (2)0.0512 (11)
H150.60140.64980.11410.061*
C160.6327 (4)0.4522 (3)0.1399 (2)0.0395 (10)
H160.68770.49660.17150.047*
C170.7482 (4)0.3129 (3)0.2095 (3)0.0476 (12)
H17A0.76420.36450.25320.057*
H17B0.83310.30060.18040.057*
C180.6985 (4)0.2117 (3)0.2472 (3)0.0497 (11)
H18A0.76990.17850.27970.060*
H18B0.62150.22500.28350.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02362 (18)0.0263 (2)0.0410 (3)0.0021 (2)0.0013 (2)0.0026 (2)
Cl10.0378 (6)0.0680 (7)0.0648 (8)0.0153 (5)0.0081 (6)0.0168 (6)
Cl20.1734 (16)0.0291 (6)0.1135 (12)0.0054 (9)0.0607 (13)0.0109 (6)
N10.0269 (17)0.0244 (15)0.0367 (18)0.0013 (13)0.0017 (14)0.0003 (14)
N20.0255 (16)0.0317 (18)0.042 (2)0.0035 (14)0.0052 (14)0.0019 (15)
O10.0363 (12)0.0363 (14)0.0463 (15)0.0070 (13)0.0054 (11)0.0114 (15)
O20.0233 (11)0.0422 (16)0.0398 (15)0.0034 (11)0.0018 (12)0.0067 (12)
O30.0255 (14)0.0290 (13)0.0513 (17)0.0018 (11)0.0073 (12)0.0043 (12)
O40.0506 (18)0.0326 (15)0.0449 (18)0.0009 (14)0.0107 (15)0.0006 (14)
O50.079 (2)0.0501 (19)0.071 (2)0.0112 (18)0.004 (2)0.0169 (16)
C10.0223 (17)0.028 (2)0.035 (2)0.0022 (15)0.0032 (16)0.0050 (16)
C20.0274 (19)0.030 (2)0.036 (2)0.0001 (16)0.0022 (17)0.0039 (17)
C30.0323 (19)0.038 (2)0.041 (3)0.0041 (16)0.0019 (18)0.0024 (18)
C40.0312 (19)0.049 (2)0.035 (2)0.0061 (19)0.0062 (17)0.008 (2)
C50.024 (2)0.042 (2)0.047 (3)0.0032 (17)0.0015 (18)0.0138 (19)
C60.0302 (19)0.038 (2)0.037 (2)0.0020 (17)0.0038 (18)0.0033 (19)
C70.0293 (19)0.0265 (19)0.039 (2)0.0040 (16)0.0037 (17)0.0002 (16)
C80.033 (2)0.041 (2)0.039 (2)0.0057 (17)0.0062 (17)0.0090 (17)
C90.036 (2)0.047 (2)0.039 (2)0.0118 (18)0.0011 (18)0.0060 (19)
C100.0386 (19)0.0278 (18)0.042 (2)0.0028 (18)0.003 (2)0.0008 (16)
C110.026 (2)0.032 (2)0.039 (2)0.0033 (16)0.0021 (17)0.0031 (17)
C120.036 (2)0.037 (2)0.046 (3)0.0033 (18)0.0059 (18)0.003 (2)
C130.057 (3)0.040 (2)0.049 (3)0.005 (2)0.010 (2)0.010 (2)
C140.086 (3)0.026 (2)0.053 (3)0.003 (2)0.006 (3)0.0055 (19)
C150.068 (3)0.033 (2)0.053 (3)0.009 (2)0.016 (3)0.0025 (19)
C160.034 (2)0.031 (2)0.054 (3)0.0088 (17)0.0082 (18)0.0051 (19)
C170.039 (2)0.043 (2)0.060 (3)0.006 (2)0.021 (2)0.005 (2)
C180.052 (2)0.043 (3)0.055 (3)0.0039 (19)0.019 (2)0.002 (2)
Geometric parameters (Å, º) top
Ni1—N21.996 (3)C4—C51.377 (5)
Ni1—N12.000 (3)C4—H4A0.9300
Ni1—O32.011 (2)C5—C61.363 (5)
Ni1—O12.015 (2)C6—H60.9300
Ni1—O22.131 (2)C7—H70.9300
Ni1—O42.160 (3)C8—C91.522 (5)
Cl1—C51.741 (3)C8—H8A0.9700
Cl2—C141.751 (4)C8—H8B0.9700
N1—C71.283 (4)C9—H9A0.9700
N1—C81.458 (4)C9—H9B0.9700
N2—C161.269 (4)C10—C151.410 (5)
N2—C171.467 (4)C10—C111.415 (5)
O1—C21.307 (4)C10—C161.454 (5)
O2—C91.425 (4)C11—C121.410 (5)
O2—H20.847 (10)C12—C131.368 (5)
O3—C111.308 (4)C12—H120.9300
O4—C181.428 (4)C13—C141.367 (5)
O4—H40.852 (10)C13—H130.9300
O5—H5B0.860 (10)C14—C151.355 (5)
O5—H5A0.844 (10)C15—H150.9300
C1—C61.407 (4)C16—H160.9300
C1—C21.426 (5)C17—C181.497 (5)
C1—C71.442 (5)C17—H17A0.9700
C2—C31.412 (5)C17—H17B0.9700
C3—C41.377 (5)C18—H18A0.9700
C3—H30.9300C18—H18B0.9700
N2—Ni1—N1172.89 (12)N1—C7—C1126.4 (3)
N2—Ni1—O392.54 (11)N1—C7—H7116.8
N1—Ni1—O392.40 (10)C1—C7—H7116.8
N2—Ni1—O192.13 (11)N1—C8—C9109.7 (3)
N1—Ni1—O192.89 (10)N1—C8—H8A109.7
O3—Ni1—O191.03 (10)C9—C8—H8A109.7
N2—Ni1—O293.76 (11)N1—C8—H8B109.7
N1—Ni1—O281.20 (10)C9—C8—H8B109.7
O3—Ni1—O289.28 (10)H8A—C8—H8B108.2
O1—Ni1—O2174.08 (10)O2—C9—C8109.2 (3)
N2—Ni1—O480.06 (11)O2—C9—H9A109.8
N1—Ni1—O494.87 (11)C8—C9—H9A109.8
O3—Ni1—O4172.50 (10)O2—C9—H9B109.8
O1—Ni1—O490.43 (10)C8—C9—H9B109.8
O2—Ni1—O490.02 (10)H9A—C9—H9B108.3
C7—N1—C8120.4 (3)C15—C10—C11118.9 (3)
C7—N1—Ni1125.2 (3)C15—C10—C16116.0 (3)
C8—N1—Ni1114.3 (2)C11—C10—C16125.1 (3)
C16—N2—C17120.3 (3)O3—C11—C12118.5 (3)
C16—N2—Ni1126.0 (3)O3—C11—C10124.8 (3)
C17—N2—Ni1113.6 (2)C12—C11—C10116.7 (3)
C2—O1—Ni1125.6 (2)C13—C12—C11122.9 (4)
C9—O2—Ni1107.31 (19)C13—C12—H12118.6
C9—O2—H2111 (3)C11—C12—H12118.6
Ni1—O2—H2129 (3)C14—C13—C12119.4 (4)
C11—O3—Ni1125.6 (2)C14—C13—H13120.3
C18—O4—Ni1106.4 (2)C12—C13—H13120.3
C18—O4—H4110 (3)C15—C14—C13120.6 (4)
Ni1—O4—H4123 (3)C15—C14—Cl2120.4 (4)
H5B—O5—H5A106 (2)C13—C14—Cl2119.0 (4)
C6—C1—C2119.4 (3)C14—C15—C10121.6 (4)
C6—C1—C7115.7 (3)C14—C15—H15119.2
C2—C1—C7124.9 (3)C10—C15—H15119.2
O1—C2—C3118.7 (3)N2—C16—C10125.6 (3)
O1—C2—C1124.9 (3)N2—C16—H16117.2
C3—C2—C1116.4 (3)C10—C16—H16117.2
C4—C3—C2122.8 (3)N2—C17—C18109.5 (3)
C4—C3—H3118.6N2—C17—H17A109.8
C2—C3—H3118.6C18—C17—H17A109.8
C3—C4—C5119.5 (4)N2—C17—H17B109.8
C3—C4—H4A120.2C18—C17—H17B109.8
C5—C4—H4A120.2H17A—C17—H17B108.2
C6—C5—C4120.4 (3)O4—C18—C17106.6 (3)
C6—C5—Cl1119.9 (3)O4—C18—H18A110.4
C4—C5—Cl1119.8 (3)C17—C18—H18A110.4
C5—C6—C1121.5 (3)O4—C18—H18B110.4
C5—C6—H6119.3C17—C18—H18B110.4
C1—C6—H6119.3H18A—C18—H18B108.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O1i0.86 (1)2.00 (2)2.846 (4)167 (4)
O4—H4···O5ii0.85 (1)1.97 (2)2.798 (4)165 (4)
O2—H2···O3iii0.85 (1)1.87 (2)2.699 (3)165 (4)
O5—H5A···Cl20.84 (1)2.73 (2)3.542 (4)163 (4)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1, z; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ni(C9H9ClNO2)2]·H2O
Mr473.97
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)9.846 (1), 12.646 (2), 16.006 (2)
V3)1992.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.30 × 0.27 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.701, 0.725
No. of measured, independent and
observed [I > 2σ(I)] reflections
11691, 4328, 3147
Rint0.048
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.076, 1.04
No. of reflections4328
No. of parameters265
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.39
Absolute structureFlack (1983), 1855 Friedel pairs
Absolute structure parameter0.015 (15)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N21.996 (3)Ni1—O12.015 (2)
Ni1—N12.000 (3)Ni1—O22.131 (2)
Ni1—O32.011 (2)Ni1—O42.160 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O1i0.860 (10)2.001 (15)2.846 (4)167 (4)
O4—H4···O5ii0.852 (10)1.965 (16)2.798 (4)165 (4)
O2—H2···O3iii0.847 (10)1.873 (15)2.699 (3)165 (4)
O5—H5A···Cl20.844 (10)2.726 (17)3.542 (4)163 (4)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1, z; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of China (No. 31071856), the Natural Science Foundation of Zhejiang Province (No. Y407318) and the Applied Research Project on Nonprofit Technology of Zhejiang Province (No. 2010 C32060).

References

First citationAli, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2741–m2742.  Web of Science CSD Google Scholar
First citationArıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919–m921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m749–m750.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X.-H., Cai, J.-H., Jiang, Y.-M., Huang, Y.-H. & Yin, X.-J. (2006). Acta Cryst. E62, m2119–m2121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-Y. (2009). J. Coord. Chem. 62, 2860–2868.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235–241.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds