metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1274-m1275

A cationic rhodium(I) N-heterocyclic carbene complex isolated as an aqua adduct

aElizabethtown College, Department of Chemistry and Biochemistry, 1 Alpha Drive, Elizabethtown, PA 17022-2298, USA, bPO Box 1002, Millersville University, Department of Chemistry, Millersville, PA 17551-0302, USA, and cUniversity of Notre Dame, Department of Chemistry and Biochemistry, 246 B Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA
*Correspondence e-mail: roodj@etown.edu

(Received 1 August 2011; accepted 15 August 2011; online 27 August 2011)

The title complex, aqua­[1,3-bis­(2,6-diiso­propyl­phen­yl)imid­az­ol-2-yl­idene](η4-cyclo­octa-1,5-diene)rhodium(I) tetra­fluor­ido­borate, [Rh(C8H12)(C27H36N2)(H2O)]BF4, exihibits a square-planar geometry around the Rh(I) atom, formed by a bidentate cyclo­octa-1,5-diene (cod) ligand, an N-heterocylcic carbene and an aqua ligand. The complex is cationic and a BF4 anion balances the charge. The structure exists as a hydrogen-bonded dimer in the solid state, formed via inter­actions between the aqua ligand H atoms and the BF4 F atoms.

Related literature

For the use of N-heterocyclic carbenes (NHCs) in transfer hydrogenation reactions, see: Gnanamgari et al. (2006[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2006). Organometallics, 26, 1226-1230.]); Nichol et al. (2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320-4328.]); Hillier et al. (2001[Hillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246-4252.]). For aqua adducts, see: Feng et al. (2010[Feng, Y., Jiang, B., Boyle, P. A. & Ison, E. A. (2010). Organometallics, 29, 2857-2867.]). For an example of intra­molecular H—F bonding, see: Hobbs et al. (2010[Hobbs, M. G., Knapp, C. J., Welsh, P. T., Borua-Garcia, J., Ziegler, T. & Roesler, R. (2010). Chem. Eur. J. 16, 14520-1433.]). For other NHCs, see: Bappert & Helmchen (2004[Bappert, E. & Helmchen, G. (2004). Synlett, 10, 1789-1793.]); Herrmann et al. (2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]); Nichol et al. (2010[Nichol, G. S., Kneebone, J., Anna, L. J. & Rajaseelan, E. (2010). Private communication (deposition No. CCDC785398). CCDC, Cambridge, England.]). For the synthesis, see: Yu et al. (2006[Yu, X.-Y., Patrick, B. O. & James, B. R. (2006). Organometallics, 25, 2359-2363.]). For discussion of complexes with four-coordinate metal atoms, see: Yang et al. (2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C8H12)(C27H36N2)(H2O)]BF4

  • Mr = 704.49

  • Triclinic, [P \overline 1]

  • a = 11.4351 (4) Å

  • b = 12.2267 (4) Å

  • c = 12.6198 (4) Å

  • α = 94.103 (2)°

  • β = 94.081 (2)°

  • γ = 97.591 (2)°

  • V = 1738.66 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 150 K

  • 0.28 × 0.25 × 0.18 mm

Data collection
  • Bruker X8 APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.859, Tmax = 0.907

  • 26258 measured reflections

  • 7097 independent reflections

  • 5888 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.067

  • S = 1.01

  • 7097 reflections

  • 413 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected geometric parameters (Å, °)

Rh1—C1 2.046 (2)
Rh1—C33 2.074 (3)
Rh1—C32 2.086 (2)
Rh1—O1 2.117 (2)
Rh1—C29 2.178 (3)
Rh1—C28 2.208 (3)
C1—Rh1—C33 92.21 (10)
C1—Rh1—C32 94.10 (9)
C33—Rh1—C32 39.31 (11)
C1—Rh1—O1 89.49 (9)
C33—Rh1—O1 159.09 (10)
C32—Rh1—O1 161.19 (10)
C1—Rh1—C29 159.12 (12)
C33—Rh1—C29 97.84 (11)
C32—Rh1—C29 82.49 (11)
O1—Rh1—C29 87.60 (10)
C1—Rh1—C28 164.61 (12)
C33—Rh1—C28 81.68 (11)
C32—Rh1—C28 90.08 (11)
O1—Rh1—C28 91.31 (10)
C29—Rh1—C28 36.23 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯F4 0.80 (3) 1.97 (3) 2.768 (3) 173 (3)
O1—H2W⋯F2i 0.79 (3) 1.86 (3) 2.644 (3) 175 (3)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2009[Palmer, D. (2009). CrystalMaker for Windows. CrystalMaker Software Ltd, Oxfordshire, England.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

N-heterocyclic carbenes (NHCs) have received tremendous interest in recent times as ligands in catalytic transition metal complexes. An alternative to commonly used phosphines, NHCs provide numerous ways to tune the sterics and electronics of the complex (Herrmann, et al., 2006). Here, we report the crystal structure of the title compound, 1, as a stable aqua adduct that also exhibits H—F bonding interactions in the solid state.

The asymmetric unit of 1 contains a full molecule with the Rh(I) ion in a square planar geometry (Figure 1). The coordination sphere of the Rh(I) is completed through bonds to cycooctadiene, the carbene, and an aqua ligand, creating a complex cation. Charge balance is achieved with a non-coordinating tetrafluoroborate anion.The existence of nearly idealized square planar geometry can be supported using a recently reported metric, τ4, for determining molecular shape in four coordinate complexes (Yang, et al., 2007). Here, a τ4 value near zero is determined for square planar complexes; however, as the value approaches one, tetrahedral geometry is observed. By evaluation of the bond angles around the central rhodium atom, the τ4 parameter was determined to be 0.028 for the title compound.

The bond distances and angles observed in 1 are within the usual ranges for rhodium-carbene [2.046 (2) Å] and rhodium-aqua [2.117 (2) Å] contacts. The O—H distances of the aqua ligand are similar in length [O1—H1W 0.80 (3) Å; O1—H2W 0.79 (4) Å]. The two diisopropylphenyl rings of the carbene ligand are approximately perpendicular to the carbene plane. The carbene atom, C1, deviates from an idealized sp2 hybridization in that the N1—C1—N2 bond angle is 103.77 (19)°.

Some related cationic rhodium - imidazol-2-ylidene carbene complexes with tetrafluroborate counteranions have been reported (Nichol, et al., 2009, 2010; Bappert, et al., 2004) albeit, with neutral donors other than H2O. In the case of 1, presumably due to the steric of the cod and carbene ligands, H2O was found to be the only neutral ligand of appropriate size to occupy the fourth coordination site.

The presence of the aqua ligand and tetrafluroborate anion support the formation of a hydrogen-bonded dimer through a center of inversion in the solid state (Figure 2). O—H···F interactions of intermediate strength exist between the aqua ligand and the tetrafluroborate fluorine atoms [H1W—F4 1.968 (4) Å; H2W—F2 1.857 (4) Å]. Interestingly, although an aqua adduct, 1 is not soluble in water likely due to the hydrophobic periphery created by the carbene and cod ligands in the dimer.

In summary, we have reported the crystal structure of a cationic rhodium carbene complex containing an aqua ligand. The structure exists as a hydrogen-bonded dimer in the solid state. Future work aims to investigate the reactivity of this and other similar complexes for various organic transformations.

Related literature top

For the use of N-heterocyclic carbenes (NHCs) in transfer hydrogenation reactions, see: Gnanamgari, et al. (2006); Nichol, et al. (2009); Hillier, et al. (2001). For aqua adducts, see: Feng, et al. (2010). For an example of intramolecular H—F bonding, see: Hobbs, et al. (2010). For other NHCs, see: Bappert & Helmchen (2004); Herrmann et al. (2006); Nichol et al. (2010). For the synthesis, see: Yu et al. (2006). For a treatment of four coordinate geometry, see: Yang et al. (2007).

Experimental top

All chemicals were purchased commercially, except for the neutral rhodium (I) carbene complex, [(cod)Rh(NHC)Cl], which was prepared according to the procedure of Yu, et al. (2006). The following manipulations were carried out under an inert nitrogen atmosphere. The cationic compound, [(cod)Rh(NHC)H2O]BF4, was synthesized by mixing the neutral rhodium compound (0.170 mmol) with water (10 drops) and silver tetrafluoroborate (0.170 mmol) in dichloromethane (20 ml). A yellow solution was obtained after stirring at room temperature for four days along with the formation of a white precipitate. The solution was gravity filtered over Celite and the filtrate was dried in vacuo to give a dark orange product (63.33%). X-ray quality crystals were obtained by dissolving the product in a small amount of dichloromethane and layering with pentane. 1H NMR (400 MHz, CDCl3): δ = 1.087 (d, 12H, CH3-iPr-NHC), 1.399 (d, 12H, CH3-iPr-NHC), 1.223–1.468 (br, 8H, CH2 -cod), 1.617 (br, H2O), 1.890 (br, 2H, CH(CH3)2-iPr-NHC), 2.576 (sp, 2H, CH(CH3)2-iPr-NHC), 3.162 (s, 2 H, CH -cod), 4.335 (s, 2 H, CH-cod), 7.099 (s, 2H, NCH), 7.120–7.607(m, 6H, Ar-H). 19F NMR (376.18 MHz, CDCl3): δ = -152.105 p.p.m..

Refinement top

Most hydrogen atoms were placed at calculated geometries and allowed to ride on the position of the parent atom. Hydrogen thermal parameters were set to 1.2 times the equivalent isotropic U value of the parent atom. C—H distances were constrained as follows: Caromatic—H 0.95 Å, CH3 0.98 Å, CH 1.00 Å, and CH2 0.99 Å. The hydrogen atoms of the aqua ligand were found from the difference Fourier map and allowed to freely refine.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of 1 showing the atom labelling scheme. Displacement ellipsoids are shown at the 30% probablity level.
[Figure 2] Fig. 2. The dimer resulting from H—F interactions in the soild state. The hydrogen bonds are indicated with a dashed-red line.
aqua[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene](η4- cycloocta-1,5-diene)rhodium(I) tetrafluoridoborate top
Crystal data top
[Rh(C8H12)(C27H36N2)(H2O)]BF4Z = 2
Mr = 704.49F(000) = 736
Triclinic, P1Dx = 1.346 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.4351 (4) ÅCell parameters from 8324 reflections
b = 12.2267 (4) Åθ = 2.2–25.1°
c = 12.6198 (4) ŵ = 0.54 mm1
α = 94.103 (2)°T = 150 K
β = 94.081 (2)°Plate, yellow
γ = 97.591 (2)°0.28 × 0.25 × 0.18 mm
V = 1738.66 (10) Å3
Data collection top
Bruker X8 APEXII CCD
diffractometer
7097 independent reflections
Radiation source: fine-focus sealed tube5888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.33 pixels mm-1θmax = 26.4°, θmin = 1.6°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1515
Tmin = 0.859, Tmax = 0.907l = 1415
26258 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0108P)2 + 1.7615P]
where P = (Fo2 + 2Fc2)/3
7097 reflections(Δ/σ)max = 0.001
413 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Rh(C8H12)(C27H36N2)(H2O)]BF4γ = 97.591 (2)°
Mr = 704.49V = 1738.66 (10) Å3
Triclinic, P1Z = 2
a = 11.4351 (4) ÅMo Kα radiation
b = 12.2267 (4) ŵ = 0.54 mm1
c = 12.6198 (4) ÅT = 150 K
α = 94.103 (2)°0.28 × 0.25 × 0.18 mm
β = 94.081 (2)°
Data collection top
Bruker X8 APEXII CCD
diffractometer
7097 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5888 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.907Rint = 0.038
26258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.49 e Å3
7097 reflectionsΔρmin = 0.61 e Å3
413 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The hydrogen atoms on the water ligand were located from the difference map and their positions were allowed to refine freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.094766 (17)0.240311 (16)0.259517 (18)0.02419 (6)
O10.0889 (2)0.36762 (17)0.38104 (17)0.0377 (5)
H1W0.144 (3)0.410 (2)0.409 (2)0.046 (10)*
H2W0.028 (3)0.378 (2)0.403 (3)0.050 (10)*
N10.32568 (17)0.37772 (15)0.20142 (16)0.0219 (4)
N20.36092 (16)0.26230 (15)0.31609 (15)0.0203 (4)
C10.2713 (2)0.29274 (18)0.25265 (19)0.0206 (5)
C20.4452 (2)0.4000 (2)0.2356 (2)0.0270 (6)
H20.50110.45590.21230.032*
C30.4672 (2)0.3287 (2)0.3071 (2)0.0265 (6)
H30.54120.32430.34460.032*
C40.3527 (2)0.16232 (19)0.3723 (2)0.0236 (6)
C50.3193 (2)0.1656 (2)0.4764 (2)0.0281 (6)
C60.3118 (2)0.0674 (2)0.5261 (2)0.0377 (7)
H60.28910.06700.59710.045*
C70.3364 (3)0.0296 (2)0.4750 (2)0.0418 (7)
H70.32830.09630.50970.050*
C80.3729 (2)0.0288 (2)0.3732 (2)0.0374 (7)
H80.39180.09530.33900.045*
C90.3827 (2)0.0663 (2)0.3193 (2)0.0281 (6)
C100.4301 (2)0.0665 (2)0.2099 (2)0.0353 (7)
H100.40510.13160.17520.042*
C110.3826 (3)0.0376 (2)0.1365 (3)0.0497 (8)
H11A0.41330.10180.16450.075*
H11B0.40810.02830.06480.075*
H11C0.29590.04920.13330.075*
C120.5661 (3)0.0812 (3)0.2204 (3)0.0476 (8)
H12A0.59630.14920.26540.071*
H12B0.59550.08630.14960.071*
H12C0.59320.01760.25290.071*
C130.3004 (2)0.2726 (2)0.5371 (2)0.0333 (6)
H130.29060.32820.48380.040*
C140.1891 (3)0.2607 (2)0.5982 (2)0.0452 (8)
H14A0.12070.22840.54960.068*
H14B0.17600.33370.62850.068*
H14C0.19950.21230.65580.068*
C150.4102 (3)0.3169 (3)0.6117 (2)0.0516 (8)
H15A0.42210.26410.66490.077*
H15B0.39930.38820.64770.077*
H15C0.47960.32700.57020.077*
C160.2762 (2)0.4252 (2)0.1093 (2)0.0293 (6)
C170.2158 (2)0.5163 (2)0.1235 (2)0.0371 (7)
C180.1762 (3)0.5617 (3)0.0312 (3)0.0586 (10)
H180.13370.62320.03740.070*
C190.1975 (4)0.5196 (3)0.0684 (3)0.0682 (11)
H190.17080.55290.12970.082*
C200.2565 (3)0.4303 (3)0.0798 (3)0.0579 (10)
H200.26930.40150.14930.069*
C210.2983 (3)0.3804 (2)0.0081 (2)0.0386 (7)
C220.3690 (3)0.2848 (2)0.0069 (2)0.0430 (8)
H220.37380.24910.06190.052*
C230.3121 (3)0.1959 (3)0.0944 (3)0.0652 (11)
H23A0.31870.22510.16430.098*
H23B0.22840.17540.08310.098*
H23C0.35290.13040.09140.098*
C240.4954 (3)0.3263 (3)0.0321 (3)0.0631 (10)
H24A0.49330.36070.09990.095*
H24B0.54090.26380.03750.095*
H24C0.53310.38090.02490.095*
C250.1974 (2)0.5689 (2)0.2322 (3)0.0399 (7)
H250.22370.51990.28670.048*
C260.2731 (3)0.6816 (2)0.2541 (3)0.0612 (10)
H26A0.35650.67330.24800.092*
H26B0.26300.71240.32620.092*
H26C0.24840.73170.20220.092*
C270.0672 (3)0.5797 (3)0.2451 (3)0.0773 (12)
H27A0.04030.63050.19500.116*
H27B0.05870.60870.31820.116*
H27C0.01930.50690.23050.116*
C280.1002 (2)0.2137 (3)0.2326 (3)0.0448 (8)
H280.13890.27960.25450.054*
C290.0664 (2)0.1555 (2)0.3150 (3)0.0468 (9)
H290.08570.18600.38640.056*
C300.0549 (3)0.0337 (3)0.3089 (3)0.0744 (13)
H30A0.13500.00920.30530.089*
H30B0.01100.01750.37510.089*
C310.0080 (3)0.0051 (2)0.2139 (3)0.0581 (10)
H31A0.04580.07060.23130.070*
H31B0.05100.02790.15230.070*
C320.1017 (2)0.0846 (2)0.1830 (2)0.0362 (7)
H320.18300.06290.18460.043*
C330.0804 (2)0.1599 (2)0.1078 (2)0.0343 (7)
H330.14990.18140.06620.041*
C340.0368 (3)0.1690 (3)0.0490 (3)0.0586 (10)
H34A0.05440.10830.00850.070*
H34B0.03070.23990.01520.070*
C350.1388 (3)0.1635 (3)0.1203 (3)0.0598 (10)
H35A0.20120.20330.08920.072*
H35B0.17320.08520.12310.072*
B10.2301 (3)0.5986 (3)0.5597 (3)0.0379 (8)
F10.29175 (14)0.70097 (12)0.55244 (14)0.0479 (4)
F20.10977 (14)0.60203 (19)0.53299 (17)0.0860 (8)
F30.24800 (18)0.56624 (15)0.66043 (15)0.0629 (5)
F40.26616 (13)0.52218 (12)0.48522 (13)0.0409 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01932 (10)0.02176 (11)0.03008 (12)0.00013 (7)0.00395 (8)0.00407 (8)
O10.0241 (11)0.0397 (12)0.0453 (14)0.0032 (10)0.0089 (11)0.0168 (10)
N10.0236 (11)0.0196 (10)0.0206 (12)0.0024 (8)0.0002 (9)0.0000 (9)
N20.0212 (11)0.0198 (10)0.0192 (11)0.0003 (8)0.0028 (9)0.0002 (9)
C10.0249 (13)0.0181 (12)0.0176 (13)0.0019 (10)0.0029 (11)0.0049 (10)
C20.0212 (13)0.0268 (14)0.0305 (16)0.0052 (10)0.0015 (11)0.0010 (12)
C30.0170 (12)0.0297 (14)0.0303 (16)0.0005 (10)0.0022 (11)0.0030 (12)
C40.0215 (13)0.0210 (13)0.0274 (15)0.0002 (10)0.0000 (11)0.0032 (11)
C50.0291 (14)0.0274 (14)0.0284 (15)0.0044 (11)0.0036 (12)0.0040 (12)
C60.0458 (18)0.0356 (16)0.0339 (17)0.0057 (13)0.0107 (14)0.0107 (13)
C70.0523 (19)0.0295 (16)0.046 (2)0.0060 (13)0.0052 (16)0.0166 (14)
C80.0490 (18)0.0240 (14)0.0400 (18)0.0105 (13)0.0004 (15)0.0021 (13)
C90.0290 (14)0.0273 (14)0.0279 (15)0.0070 (11)0.0024 (12)0.0003 (12)
C100.0455 (17)0.0315 (15)0.0319 (17)0.0167 (13)0.0055 (14)0.0009 (13)
C110.054 (2)0.0503 (19)0.045 (2)0.0160 (16)0.0049 (16)0.0147 (16)
C120.0497 (19)0.0509 (19)0.044 (2)0.0089 (15)0.0156 (16)0.0019 (16)
C130.0436 (17)0.0305 (15)0.0265 (16)0.0059 (12)0.0086 (13)0.0006 (12)
C140.057 (2)0.0440 (18)0.0396 (19)0.0152 (15)0.0203 (16)0.0031 (15)
C150.063 (2)0.051 (2)0.0370 (19)0.0000 (16)0.0013 (17)0.0064 (16)
C160.0331 (15)0.0273 (14)0.0246 (15)0.0054 (11)0.0042 (12)0.0059 (12)
C170.0358 (16)0.0350 (16)0.0386 (18)0.0009 (13)0.0069 (14)0.0082 (14)
C180.065 (2)0.052 (2)0.059 (3)0.0150 (17)0.0154 (19)0.0191 (19)
C190.093 (3)0.061 (2)0.044 (2)0.001 (2)0.030 (2)0.0195 (19)
C200.095 (3)0.046 (2)0.0240 (18)0.0153 (19)0.0097 (18)0.0072 (15)
C210.0554 (19)0.0322 (15)0.0228 (16)0.0124 (14)0.0009 (14)0.0038 (13)
C220.070 (2)0.0312 (16)0.0246 (16)0.0068 (15)0.0121 (15)0.0036 (13)
C230.093 (3)0.051 (2)0.043 (2)0.0213 (19)0.026 (2)0.0171 (17)
C240.074 (3)0.047 (2)0.066 (3)0.0060 (18)0.026 (2)0.0096 (18)
C250.0368 (16)0.0337 (16)0.052 (2)0.0106 (13)0.0035 (15)0.0082 (14)
C260.084 (3)0.0408 (19)0.057 (2)0.0006 (18)0.017 (2)0.0047 (17)
C270.049 (2)0.099 (3)0.094 (3)0.036 (2)0.013 (2)0.031 (3)
C280.0180 (14)0.0496 (18)0.063 (2)0.0022 (13)0.0040 (15)0.0201 (18)
C290.0329 (17)0.0409 (18)0.062 (2)0.0142 (14)0.0287 (16)0.0129 (17)
C300.083 (3)0.0376 (19)0.101 (3)0.0153 (18)0.052 (2)0.000 (2)
C310.055 (2)0.0267 (16)0.089 (3)0.0075 (14)0.024 (2)0.0086 (17)
C320.0294 (15)0.0243 (14)0.052 (2)0.0008 (11)0.0074 (14)0.0128 (14)
C330.0266 (15)0.0386 (16)0.0344 (17)0.0037 (12)0.0007 (13)0.0145 (14)
C340.0424 (19)0.078 (2)0.050 (2)0.0167 (17)0.0137 (17)0.0255 (19)
C350.0266 (16)0.072 (2)0.073 (3)0.0072 (16)0.0125 (17)0.031 (2)
B10.0228 (17)0.0384 (19)0.049 (2)0.0002 (14)0.0056 (16)0.0154 (17)
F10.0514 (10)0.0286 (9)0.0596 (12)0.0034 (8)0.0121 (9)0.0051 (8)
F20.0222 (9)0.1312 (19)0.0927 (17)0.0082 (11)0.0017 (10)0.0643 (15)
F30.0855 (15)0.0551 (12)0.0446 (12)0.0064 (10)0.0205 (11)0.0041 (10)
F40.0400 (9)0.0331 (9)0.0479 (11)0.0040 (7)0.0088 (8)0.0118 (8)
Geometric parameters (Å, º) top
Rh1—C12.046 (2)O1—H2W0.79 (3)
Rh1—C332.074 (3)C2—H20.9500
Rh1—C322.086 (2)C3—H30.9500
Rh1—O12.117 (2)C6—H60.9500
Rh1—C292.178 (3)C7—H70.9500
Rh1—C282.208 (3)C8—H80.9500
N1—C11.366 (3)C10—H101.0000
N1—C21.389 (3)C11—H11A0.9800
N1—C161.449 (3)C11—H11B0.9800
N2—C11.362 (3)C11—H11C0.9800
N2—C31.386 (3)C12—H12A0.9800
N2—C41.452 (3)C12—H12B0.9800
C2—C31.333 (3)C12—H12C0.9800
C4—C51.394 (3)C13—H131.0000
C4—C91.403 (3)C14—H14A0.9800
C5—C61.390 (3)C14—H14B0.9800
C5—C131.516 (3)C14—H14C0.9800
C6—C71.381 (4)C15—H15A0.9800
C7—C81.380 (4)C15—H15B0.9800
C8—C91.384 (4)C15—H15C0.9800
C9—C101.519 (4)C18—H180.9500
C10—C111.533 (4)C19—H190.9500
C10—C121.536 (4)C20—H200.9500
C13—C151.528 (4)C22—H221.0000
C13—C141.530 (4)C23—H23A0.9800
C16—C171.394 (4)C23—H23B0.9800
C16—C211.406 (4)C23—H23C0.9800
C17—C181.398 (4)C24—H24A0.9800
C17—C251.513 (4)C24—H24B0.9800
C18—C191.374 (5)C24—H24C0.9800
C19—C201.362 (5)C25—H251.0000
C20—C211.389 (4)C26—H26A0.9800
C21—C221.516 (4)C26—H26B0.9800
C22—C241.531 (4)C26—H26C0.9800
C22—C231.538 (4)C27—H27A0.9800
C25—C261.524 (4)C27—H27B0.9800
C25—C271.531 (4)C27—H27C0.9800
C28—C291.364 (4)C28—H281.0000
C28—C351.514 (4)C29—H291.0000
C29—C301.509 (4)C30—H30A0.9900
C30—C311.521 (4)C30—H30B0.9900
C31—C321.521 (4)C31—H31A0.9900
C32—C331.399 (4)C31—H31B0.9900
C33—C341.507 (4)C32—H321.0000
C34—C351.520 (4)C33—H331.0000
B1—F11.366 (4)C34—H34A0.9900
B1—F31.368 (4)C34—H34B0.9900
B1—F41.399 (3)C35—H35A0.9900
B1—F21.399 (4)C35—H35B0.9900
O1—H1W0.80 (3)
C1—Rh1—C3392.21 (10)C12—C10—H10107.7
C1—Rh1—C3294.10 (9)C10—C11—H11A109.5
C33—Rh1—C3239.31 (11)C10—C11—H11B109.5
C1—Rh1—O189.49 (9)H11A—C11—H11B109.5
C33—Rh1—O1159.09 (10)C10—C11—H11C109.5
C32—Rh1—O1161.19 (10)H11A—C11—H11C109.5
C1—Rh1—C29159.12 (12)H11B—C11—H11C109.5
C33—Rh1—C2997.84 (11)C10—C12—H12A109.5
C32—Rh1—C2982.49 (11)C10—C12—H12B109.5
O1—Rh1—C2987.60 (10)H12A—C12—H12B109.5
C1—Rh1—C28164.61 (12)C10—C12—H12C109.5
C33—Rh1—C2881.68 (11)H12A—C12—H12C109.5
C32—Rh1—C2890.08 (11)H12B—C12—H12C109.5
O1—Rh1—C2891.31 (10)C5—C13—H13107.6
C29—Rh1—C2836.23 (12)C15—C13—H13107.6
C1—N1—C2110.6 (2)C14—C13—H13107.6
C1—N1—C16126.3 (2)C13—C14—H14A109.5
C2—N1—C16122.0 (2)C13—C14—H14B109.5
C1—N2—C3111.5 (2)H14A—C14—H14B109.5
C1—N2—C4124.82 (19)C13—C14—H14C109.5
C3—N2—C4122.9 (2)H14A—C14—H14C109.5
N2—C1—N1103.77 (19)H14B—C14—H14C109.5
N2—C1—Rh1125.66 (17)C13—C15—H15A109.5
N1—C1—Rh1129.55 (17)C13—C15—H15B109.5
C3—C2—N1107.5 (2)H15A—C15—H15B109.5
C2—C3—N2106.6 (2)C13—C15—H15C109.5
C5—C4—C9122.7 (2)H15A—C15—H15C109.5
C5—C4—N2119.5 (2)H15B—C15—H15C109.5
C9—C4—N2117.7 (2)C19—C18—H18119.2
C6—C5—C4117.1 (2)C17—C18—H18119.2
C6—C5—C13120.5 (2)C20—C19—C18120.4 (3)
C4—C5—C13122.2 (2)C20—C19—H19119.8
C7—C6—C5121.7 (3)C18—C19—H19119.8
C8—C7—C6119.4 (3)C19—C20—H20119.3
C7—C8—C9121.7 (3)C21—C20—H20119.3
C8—C9—C4117.2 (2)C21—C22—H22107.8
C8—C9—C10120.6 (2)C24—C22—H22107.8
C4—C9—C10122.1 (2)C23—C22—H22107.8
C9—C10—C11113.5 (2)C22—C23—H23A109.5
C9—C10—C12110.4 (2)C22—C23—H23B109.5
C11—C10—C12109.6 (2)H23A—C23—H23B109.5
C5—C13—C15109.8 (2)C22—C23—H23C109.5
C5—C13—C14113.0 (2)H23A—C23—H23C109.5
C15—C13—C14111.0 (2)H23B—C23—H23C109.5
C17—C16—C21122.6 (3)C22—C24—H24A109.5
C17—C16—N1119.7 (2)C22—C24—H24B109.5
C21—C16—N1117.5 (2)H24A—C24—H24B109.5
C16—C17—C18116.6 (3)C22—C24—H24C109.5
C16—C17—C25123.0 (3)H24A—C24—H24C109.5
C18—C17—C25120.3 (3)H24B—C24—H24C109.5
C19—C18—C17121.6 (3)C17—C25—H25107.8
C20—C19—C18120.4 (3)C26—C25—H25107.8
C19—C20—C21121.3 (3)C27—C25—H25107.8
C20—C21—C16117.3 (3)C25—C26—H26A109.5
C20—C21—C22120.1 (3)C25—C26—H26B109.5
C16—C21—C22122.5 (3)H26A—C26—H26B109.5
C21—C22—C24110.8 (2)C25—C26—H26C109.5
C21—C22—C23113.2 (3)H26A—C26—H26C109.5
C24—C22—C23109.2 (2)H26B—C26—H26C109.5
C17—C25—C26110.9 (2)C25—C27—H27A109.5
C17—C25—C27112.3 (3)C25—C27—H27B109.5
C26—C25—C27110.2 (3)H27A—C27—H27B109.5
C29—C28—C35124.6 (3)C25—C27—H27C109.5
C29—C28—Rh170.69 (16)H27A—C27—H27C109.5
C35—C28—Rh1110.68 (19)H27B—C27—H27C109.5
C28—C29—C30126.3 (3)C29—C28—H28114.3
C28—C29—Rh173.08 (16)C35—C28—H28114.3
C30—C29—Rh1106.91 (19)Rh1—C28—H28114.3
C29—C30—C31113.9 (3)C28—C29—H29114.1
C32—C31—C30112.1 (2)C30—C29—H29114.1
C33—C32—C31124.0 (3)Rh1—C29—H29114.1
C33—C32—Rh169.90 (15)C29—C30—H30A108.8
C31—C32—Rh1113.64 (18)C31—C30—H30A108.8
C32—C33—C34126.4 (3)C29—C30—H30B108.8
C32—C33—Rh170.79 (16)C31—C30—H30B108.8
C34—C33—Rh1111.21 (18)H30A—C30—H30B107.7
C33—C34—C35113.3 (3)C32—C31—H31A109.2
C28—C35—C34112.3 (2)C30—C31—H31A109.2
F1—B1—F3110.1 (3)C32—C31—H31B109.2
F1—B1—F4109.7 (3)C30—C31—H31B109.2
F3—B1—F4110.1 (3)H31A—C31—H31B107.9
F1—B1—F2109.1 (3)C33—C32—Rh169.90 (15)
F3—B1—F2110.9 (3)C31—C32—Rh1113.64 (18)
F4—B1—F2106.8 (2)C33—C32—H32113.9
Rh1—O1—H1W126 (2)C31—C32—H32113.9
Rh1—O1—H2W120 (2)Rh1—C32—H32113.9
H1W—O1—H2W113 (3)C32—C33—H33113.5
C3—C2—H2126.2C34—C33—H33113.5
N1—C2—H2126.2Rh1—C33—H33113.5
C2—C3—N2106.6 (2)C33—C34—H34A108.9
C2—C3—H3126.7C35—C34—H34A108.9
N2—C3—H3126.7C33—C34—H34B108.9
C7—C6—H6119.1C35—C34—H34B108.9
C5—C6—H6119.1H34A—C34—H34B107.7
C8—C7—H7120.3C28—C35—H35A109.1
C6—C7—H7120.3C34—C35—H35A109.1
C7—C8—H8119.1C28—C35—H35B109.1
C9—C8—H8119.1C34—C35—H35B109.1
C9—C10—H10107.7H35A—C35—H35B107.9
C11—C10—H10107.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···F40.80 (3)1.97 (3)2.768 (3)173 (3)
O1—H2W···F2i0.79 (3)1.86 (3)2.644 (3)175 (3)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Rh(C8H12)(C27H36N2)(H2O)]BF4
Mr704.49
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)11.4351 (4), 12.2267 (4), 12.6198 (4)
α, β, γ (°)94.103 (2), 94.081 (2), 97.591 (2)
V3)1738.66 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.28 × 0.25 × 0.18
Data collection
DiffractometerBruker X8 APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.859, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
26258, 7097, 5888
Rint0.038
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.067, 1.01
No. of reflections7097
No. of parameters413
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.61

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2009), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Rh1—C12.046 (2)Rh1—O12.117 (2)
Rh1—C332.074 (3)Rh1—C292.178 (3)
Rh1—C322.086 (2)Rh1—C282.208 (3)
C1—Rh1—C3392.21 (10)C32—Rh1—C2982.49 (11)
C1—Rh1—C3294.10 (9)O1—Rh1—C2987.60 (10)
C33—Rh1—C3239.31 (11)C1—Rh1—C28164.61 (12)
C1—Rh1—O189.49 (9)C33—Rh1—C2881.68 (11)
C33—Rh1—O1159.09 (10)C32—Rh1—C2890.08 (11)
C32—Rh1—O1161.19 (10)O1—Rh1—C2891.31 (10)
C1—Rh1—C29159.12 (12)C29—Rh1—C2836.23 (12)
C33—Rh1—C2997.84 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···F40.80 (3)1.97 (3)2.768 (3)173 (3)
O1—H2W···F2i0.79 (3)1.86 (3)2.644 (3)175 (3)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

ALH and JAR gratefully acknowledge Elizabethtown College and the Department of Chemistry and Biochemistry for start-up funds and support, and the National Science Foundation (grant CHE-0958425) for instrument support.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBappert, E. & Helmchen, G. (2004). Synlett, 10, 1789–1793.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, Y., Jiang, B., Boyle, P. A. & Ison, E. A. (2010). Organometallics, 29, 2857–2867.  Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2006). Organometallics, 26, 1226–1230.  Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationHillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationHobbs, M. G., Knapp, C. J., Welsh, P. T., Borua-Garcia, J., Ziegler, T. & Roesler, R. (2010). Chem. Eur. J. 16, 14520–1433.  Google Scholar
First citationNichol, G. S., Kneebone, J., Anna, L. J. & Rajaseelan, E. (2010). Private communication (deposition No. CCDC785398). CCDC, Cambridge, England.  Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328.  Web of Science CSD CrossRef Google Scholar
First citationPalmer, D. (2009). CrystalMaker for Windows. CrystalMaker Software Ltd, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYu, X.-Y., Patrick, B. O. & James, B. R. (2006). Organometallics, 25, 2359–2363.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1274-m1275
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds