organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propane-1,3-diaminium bis­­(pyridine-4-carboxyl­ate) monohydrate

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and cInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 8 August 2011; accepted 17 August 2011; online 27 August 2011)

The asymmetric unit of the title compound, C3H12N22+·2C6H4NO2·H2O, consists of half of a doubly protonated propane-1,3-diammonium dication, a pyridine-4-carboxyl­ate anion and half of a solvent water mol­ecule; the dication and the solvent water are located on a twofold rotation axis which passes through the central C atom of the dication and the water O atom. The carboxyl­ate group of the anion appears to be delocalized on the basis of the C—O bond lengths. In the crystal, the components are linked by inter­molecular N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For related compounds with a propane-1,3- diammonium dication which exhibit an all-trans zigzag conformation, see: Turner & Batten (2010[Turner, D. & Batten, S. R. (2010). Cryst. Growth Des. 10, 2501-2508.]); Aghabozorg et al., (2011[Aghabozorg, H., Bayan, M., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, o610.]). For the preparation of the flexible ligand, see: Brito et al. (2010[Brito, I., Vallejos, J., Bolte, M., López-Rodríguez, M. & Cárdenas, A. (2010). Acta Cryst. E66, o1015.], 2011[Brito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M. & Bolte, M. (2011). Acta Cryst. E67, o278.]).

[Scheme 1]

Experimental

Crystal data
  • C3H12N22+·2C6H4NO2·H2O

  • Mr = 338.37

  • Monoclinic, C 2/c

  • a = 15.360 (3) Å

  • b = 12.508 (3) Å

  • c = 10.593 (2) Å

  • β = 122.67 (3)°

  • V = 1713.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.27 × 0.25 × 0.21 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • 11720 measured reflections

  • 2119 independent reflections

  • 1871 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.122

  • S = 1.06

  • 2119 reflections

  • 115 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.89 1.91 2.7901 (16) 170
N2—H2B⋯O2ii 0.89 1.91 2.779 (2) 165
N2—H2C⋯N1iii 0.89 2.00 2.877 (2) 166
O3—H3⋯O1iv 0.85 (2) 2.00 (3) 2.8426 (17) 169 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]; cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.] ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

This paper forms part of our continuing study of the synthesis and structural characterization of a flexible ligand for preparation of coordination polymers (Brito et al., 2010; 2011 and references therein). The title compound was isolated during attempts to synthesize a flexible ligand by a condensation reaction between 4-pyridinecarboxylic acid and 1,3-diaminopropane. A notable feature of the structure is the extensive network of the hydrogen bonds between the ammonium H and pyridine-carboxylate N, O atoms. The hydrogen-bonding network involves all of the ammonium H and pyridine-carboxylate O,N atoms, forming a three-dimensional network Fig.2, Table 1. The water H are linked to two carboxylate O atoms at (-1/2 + x, 1/2 + y, z) and at (3/2 - x,1/2 + y, 3/2 - z) respectively, forming a two-dimensional network. Propane-1,3-diammonium dication has a fully extended all-trans zigzag conformation (N/C/C/C torsion angle 167.57 (13)°). The bond distances and angles for dication and anion are in normal range (Aghabozorg et al., 2011; Turner & Batten 2010, as representative examples).

Related literature top

For related compounds with a propane-1,3- diammonium dication which exhibit an all-trans zigzag conformation, see: Turner & Batten (2010); Aghabozorg et al., (2011). For the preparation of the flexible ligand, see: Brito et al. (2010, 2011).

Experimental top

To a solution of 4-pyridinecarboxylic acid (12.3 g, 0.1 mol) in pyridine (40 ml) was added 1,3-diaminopropane (3.71 g, 0,05 mol) in pyridine (20 ml). The solution was stirred gently for 15 min, forming a white precipitate. The resultant solution was then heated with stirring on the steam bath for 4 h. On cooling of the mixture, a white solid crystalline was obtained. Yield 15.8 g (92.9%). Analysis calculated for C15H22N4O5 (338.37 Dalton): C: 53.22, H: 6.52, N: 16.53; found: C: 52.97, H: 6.50, N: 16.90. IR (KBr, cm-1): (NH3+) 1664 m, (C=C) 1600 m, (NH3+) 1500 m, (CH2) 1378 w, (NH3+) 1155 m

Refinement top

H3 atom was located directly from a Fourier map and refined freely. The positions of the remaining H atoms were located from difference maps and then treated as riding atoms, with C—H distances in the range 0.93–0.97 Å and N—H distances of 0.89 Å and with Uiso(H) values of 1.2Ueq(C, N).

Computing details top

Data collection: COLLECT (Nonius, 2000; cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code i: 1 - x, y, 1/2 - z].
[Figure 2] Fig. 2. A view of title compound showing the hydrogen bonds and are indicated by dashed lines. [Symmetry codes: (i) x - 1/2, -y + 3/2, z - 1/2; (ii) -x + 3/2, y + 1/2, -z + 3/2; (iii) -x + 1, y, -z + 3/2; (iv) x - 1/2, y + 1/2, z]
Propane-1,3-diaminium bis(pyridine-4-carboxylate) monohydrate top
Crystal data top
C3H12N22+·2C6H4NO2·H2OF(000) = 720
Mr = 338.37Dx = 1.312 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9511 reflections
a = 15.360 (3) Åθ = 3.9–28.5°
b = 12.508 (3) ŵ = 0.10 mm1
c = 10.593 (2) ÅT = 295 K
β = 122.67 (3)°Block, colourless
V = 1713.2 (8) Å30.27 × 0.25 × 0.21 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1871 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 28.5°, θmin = 4.0°
ϕ and ω scans with κ offsetsh = 2020
11720 measured reflectionsk = 1616
2119 independent reflectionsl = 1411
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0545P)2 + 1.0503P]
where P = (Fo2 + 2Fc2)/3
2119 reflections(Δ/σ)max = 0.003
115 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C3H12N22+·2C6H4NO2·H2OV = 1713.2 (8) Å3
Mr = 338.37Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.360 (3) ŵ = 0.10 mm1
b = 12.508 (3) ÅT = 295 K
c = 10.593 (2) Å0.27 × 0.25 × 0.21 mm
β = 122.67 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1871 reflections with I > 2σ(I)
11720 measured reflectionsRint = 0.050
2119 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.32 e Å3
2119 reflectionsΔρmin = 0.24 e Å3
115 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.87262 (8)0.51431 (8)0.82722 (12)0.0447 (3)
O20.81345 (8)0.36420 (8)0.86906 (13)0.0480 (3)
O30.50000.90541 (13)0.75000.0712 (6)
H30.4617 (17)0.9452 (17)0.766 (2)0.072 (6)*
N10.60893 (9)0.65138 (10)0.92600 (13)0.0405 (3)
N20.48117 (8)0.79864 (8)0.46730 (12)0.0340 (3)
H2A0.44110.85590.42580.041*
H2B0.54580.81940.53340.041*
H2C0.45790.76000.51360.041*
C10.64814 (10)0.69083 (11)0.84955 (15)0.0389 (3)
H10.63120.76050.81360.047*
C20.71275 (10)0.63306 (11)0.82123 (14)0.0355 (3)
H20.73830.66360.76750.043*
C30.73892 (9)0.52889 (10)0.87425 (13)0.0301 (3)
C40.69716 (10)0.48635 (11)0.95152 (16)0.0386 (3)
H40.71150.41630.98660.046*
C50.63370 (11)0.55061 (13)0.97516 (17)0.0437 (3)
H50.60680.52201.02820.052*
C60.81423 (9)0.46330 (10)0.85422 (14)0.0339 (3)
C70.47907 (13)0.73319 (11)0.34918 (17)0.0431 (3)
H7B0.41190.69930.28840.052*
H7A0.53090.67730.39560.052*
C80.50000.80121 (15)0.25000.0401 (4)
H8A0.44080.84680.18760.048*0.50
H8B0.55920.84680.31240.048*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0438 (5)0.0454 (6)0.0626 (7)0.0006 (4)0.0402 (5)0.0077 (5)
O20.0492 (6)0.0347 (5)0.0702 (7)0.0085 (4)0.0389 (6)0.0020 (5)
O30.0961 (14)0.0306 (8)0.146 (2)0.0000.1046 (16)0.000
N10.0363 (6)0.0498 (7)0.0401 (6)0.0113 (5)0.0237 (5)0.0029 (5)
N20.0406 (6)0.0330 (5)0.0414 (6)0.0052 (4)0.0306 (5)0.0008 (4)
C10.0392 (7)0.0383 (7)0.0402 (7)0.0127 (5)0.0220 (6)0.0027 (5)
C20.0361 (6)0.0375 (7)0.0393 (6)0.0060 (5)0.0246 (5)0.0030 (5)
C30.0264 (5)0.0332 (6)0.0320 (6)0.0027 (4)0.0165 (5)0.0045 (4)
C40.0402 (7)0.0371 (7)0.0469 (7)0.0049 (5)0.0289 (6)0.0036 (5)
C50.0438 (7)0.0528 (8)0.0483 (7)0.0067 (6)0.0340 (6)0.0031 (6)
C60.0298 (6)0.0366 (6)0.0371 (6)0.0048 (5)0.0194 (5)0.0049 (5)
C70.0649 (9)0.0301 (6)0.0561 (8)0.0059 (6)0.0469 (8)0.0024 (6)
C80.0597 (12)0.0308 (9)0.0484 (10)0.0000.0413 (10)0.000
Geometric parameters (Å, º) top
O1—C61.2531 (16)C2—H20.9300
O2—C61.2503 (17)C3—C41.3896 (18)
O3—H30.85 (2)C3—C61.5237 (15)
N1—C11.3373 (18)C4—C51.3865 (18)
N1—C51.338 (2)C4—H40.9300
N2—C71.4809 (17)C5—H50.9300
N2—H2A0.8900C7—C81.5151 (16)
N2—H2B0.8900C7—H7B0.9700
N2—H2C0.8900C7—H7A0.9700
C1—C21.3851 (17)C8—C7i1.5151 (16)
C1—H10.9300C8—H8A0.9700
C2—C31.3897 (18)C8—H8B0.9700
C1—N1—C5117.18 (11)N1—C5—C4123.75 (13)
C7—N2—H2A109.5N1—C5—H5118.1
C7—N2—H2B109.5C4—C5—H5118.1
H2A—N2—H2B109.5O2—C6—O1126.17 (11)
C7—N2—H2C109.5O2—C6—C3117.18 (11)
H2A—N2—H2C109.5O1—C6—C3116.64 (12)
H2B—N2—H2C109.5N2—C7—C8111.07 (11)
N1—C1—C2123.24 (13)N2—C7—H7B109.4
N1—C1—H1118.4C8—C7—H7B109.4
C2—C1—H1118.4N2—C7—H7A109.4
C1—C2—C3119.10 (12)C8—C7—H7A109.4
C1—C2—H2120.5H7B—C7—H7A108.0
C3—C2—H2120.5C7i—C8—C7111.68 (15)
C4—C3—C2118.18 (11)C7i—C8—H8A109.3
C4—C3—C6120.16 (12)C7—C8—H8A109.3
C2—C3—C6121.62 (11)C7i—C8—H8B109.3
C5—C4—C3118.52 (13)C7—C8—H8B109.3
C5—C4—H4120.7H8A—C8—H8B107.9
C3—C4—H4120.7
C5—N1—C1—C20.7 (2)C3—C4—C5—N10.9 (2)
N1—C1—C2—C30.1 (2)C4—C3—C6—O220.19 (18)
C1—C2—C3—C41.19 (19)C2—C3—C6—O2162.03 (12)
C1—C2—C3—C6176.62 (12)C4—C3—C6—O1158.46 (13)
C2—C3—C4—C51.6 (2)C2—C3—C6—O119.31 (17)
C6—C3—C4—C5176.26 (12)N2—C7—C8—C7i167.76 (14)
C1—N1—C5—C40.2 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1ii0.891.912.7901 (16)170
N2—H2B···O2iii0.891.912.779 (2)165
N2—H2C···N1iv0.892.002.877 (2)166
O3—H3···O1v0.85 (2)2.00 (3)2.8426 (17)169 (2)
Symmetry codes: (ii) x1/2, y+3/2, z1/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1, y, z+3/2; (v) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC3H12N22+·2C6H4NO2·H2O
Mr338.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)15.360 (3), 12.508 (3), 10.593 (2)
β (°) 122.67 (3)
V3)1713.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.27 × 0.25 × 0.21
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11720, 2119, 1871
Rint0.050
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.06
No. of reflections2119
No. of parameters115
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: COLLECT (Nonius, 2000, DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008 ), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.891.912.7901 (16)170
N2—H2B···O2ii0.891.912.779 (2)165
N2—H2C···N1iii0.892.002.877 (2)166
O3—H3···O1iv0.85 (2)2.00 (3)2.8426 (17)169 (2)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1, y, z+3/2; (iv) x1/2, y+1/2, z.
 

Acknowledgements

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. JV thanks the Universidad de Antofagasta for PhD fellowships.

References

First citationAghabozorg, H., Bayan, M., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, o610.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrito, I., Vallejos, J., Bolte, M., López-Rodríguez, M. & Cárdenas, A. (2010). Acta Cryst. E66, o1015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M. & Bolte, M. (2011). Acta Cryst. E67, o278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, D. & Batten, S. R. (2010). Cryst. Growth Des. 10, 2501–2508.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds