metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1284-m1285

A double salt of iodo­bis­­muthate: cis-aqua­iodidobis(1,10-phenanthroline)cobalt(II) tris­­(1,10-phenanthroline)cobalt(II) trans-hexa-μ2-iodido-hexa­iodidotribismuthate(III)

aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China, and bDepartment of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: wxchai_cm@yahoo.com.cn

(Received 9 August 2011; accepted 17 August 2011; online 27 August 2011)

In the title complex, [Co(C12H8N2)3][CoI(C12H8N2)2(H2O)][Bi3I12], conventionally abbreviated [Co(phen)3][CoI(phen)2(H2O)][Bi3I12], where phen is 1,10-phenanthroline, the CoII atom in one cation is coordinated by six N atoms from three phen ligands in an octa­hedral coordination while the CoII atom in the other cation is coordinated octa­hedrally by four N atoms from two phen ligands, one water O atom and one I atom. In the anion, three BiIII ions adopt an octa­hedral coordination constructed by six I ligands. The three BiI6 octa­hedra are fused together through trans face-sharing.

Related literature

For related complexes containing the [Bi3I12]3− trinuclear cluster anion, see: Geiser et al. (1990[Geiser, U., Wade, E., Wang, H. H. & Williams, J. M. (1990). Acta Cryst. C46, 1547-1549.]); Carmalt et al. (1995[Carmalt, C. J., Farrugia, L. J. & Norman, N. C. (1995). Z. Anorg. Allg. Chem. 621, 47-56.]); Okrut & Feldmann (2006[Okrut, A. & Feldmann, C. (2006). Z. Anorg. Allg. Chem. 632, 409-412.]); Sharutin et al. (2009[Sharutin, V. V., Egorova, I. V., Klepikov, N. N., Boyarkina, E. A. & Sharutina, O. K. (2009). Russ. J. Inorg. Chem. 54, 52-68.]). For complexes containing the [Co(phen)3]2+ cation, see: Liu et al. (2003[Liu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297-m299.]); Harding et al. (2008[Harding, D. J., Harding, P. & Adams, H. (2008). Acta Cryst. E64, m1538.]); Tershansy et al. (2005[Tershansy, M. A., Goforth, A. M., Smith, M. D., Peterson Jr, L. R. & zur Loye, H.-C. (2005). Acta Cryst. E61, m1680-m1681.]); Hanauer et al. (2008[Hanauer, M., Neshat, A. & Bigioni, T. P. (2008). Acta Cryst. C64, m111-m113.]); Boys et al. (1984[Boys, D., Escobar, C. & Wittke, O. (1984). Acta Cryst. C40, 1359-1362.]) and for those containing the [CoCl(phen)2(H2O)]+ cation, see: Arun Kumar et al. (2009[Arun Kumar, K., Dayalan, A. & SethuSankar, K. (2009). Acta Cryst. E65, m1300-m1301.]); Zhong et al. (2006[Zhong, H., Zeng, X.-R., Liu, Y.-Q. & Luo, Q.-Y. (2006). Acta Cryst. E62, m2925-m2927.], 2007[Zhong, H., Zeng, X.-R. & Luo, Q.-Y. (2007). Acta Cryst. E63, m221-m223.]). For related halogenidoanti­mon­ates(III) and -bis­muthates(III) crystallizing in non-centrosymmetric space groups and their physical properties, see: Jozkow et al. (2001[Jozkow, J., Jakubas, R., Bator, G. & Pietraszko, A. (2001). J. Chem. Phys. 114, 7239-7246.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H8N2)3][CoI(C12H8N2)2(H2O)][Bi3I12]

  • Mr = 3313.6

  • Orthorhombic, P n a 21

  • a = 35.188 (8) Å

  • b = 17.641 (4) Å

  • c = 12.793 (3) Å

  • V = 7941 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 12.13 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.043, Tmax = 0.088

  • 58697 measured reflections

  • 18072 independent reflections

  • 16129 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.082

  • S = 1.04

  • 18072 reflections

  • 802 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −2.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 8549 Friedel pairs

  • Flack parameter: −0.021 (3)

Table 1
Selected bond lengths (Å)

Bi1—I1 2.8531 (10)
Bi1—I2 2.8901 (10)
Bi1—I3 2.9037 (10)
Bi1—I4 3.3444 (11)
Bi1—I6 3.3778 (9)
Bi1—I5 3.4186 (11)
Bi2—I9 3.0269 (10)
Bi2—I6 3.0523 (10)
Bi2—I8 3.0713 (9)
Bi2—I4 3.0955 (10)
Bi2—I5 3.0992 (10)
Bi2—I7 3.1756 (10)
Bi3—I10 2.9054 (11)
Bi3—I12 2.9135 (10)
Bi3—I11 2.9244 (10)
Bi3—I9 3.3139 (11)
Bi3—I7 3.3757 (10)
Bi3—I8 3.3829 (10)
I13—Co1 2.7815 (18)
Co1—N1 2.104 (8)
Co1—N4 2.128 (8)
Co1—N3 2.138 (9)
Co1—O1 2.154 (8)
Co1—N2 2.165 (9)
Co2—N7 2.124 (7)
Co2—N10 2.125 (7)
Co2—N9 2.126 (8)
Co2—N5 2.126 (8)
Co2—N8 2.130 (8)
Co2—N6 2.142 (8)

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Alkylammonium halogenoantimonates(III) and bismuthates(III) of general formula RaMbX3 b+a (where R denotes organic cations, M—Sb(III), Bi(III), and X—Cl, Br, I) form a large group of crystals exhibiting interesting physical properties from their noncentrosymmetric space groups, e.g., ferroelectricity (Jozkow et al., 2001). Of them, R3M2X9 and R5M2X11 have been studied in detail for their phase transitions and physical properties. [Bi3I12]3- is potentially chiral, but there is only one such example containing cis-[Bi3I12]3- reported (Sharutin et al. 2009). In searching for other crystals in a noncentrosymmetric space group of halogenobismuthate(III), we employed a potentially optically active complex cation, e.g., [Co(phen)3]2- to synthesize a non-centrosymmetric compound. Here, we report one of those iodobismuthate(III) complexes, [Co(phen)3][CoI(phen)2(H2O)][Bi3I12], composed of the trinuclear Bi(III) cluster anion of trans-[Bi3I12]3-, and the cations containing cobalt(II) in a noncentrosymmetric space group.

In the title compound, three Bi atoms are all located in an octahedral environment of six I atoms, and three BiI6 octahedra are fused togather to form a trans-[Bi3I12]3- trinuclear cluster by trans face-sharing through two pairs of three µ2-I atoms. In three BiI6 octahedra, the bond lengths of Bi—I ranged from 2.853 (1) Å to 3.419 (1) Å. All bond lengths are within commonly accepted values in the literature (Sharutin et al. 2009; Geiser et al., 1990; Carmalt et al., 1995; Okrut et al., 2006). In the two cations of the title compound, one cobalt(II) is located in an octahedral environment constructed by six N atoms from three phen ligands to form a [Co(phen)3]2+ cation, and the other cobalt(II) is located in a distorted octahedral environment constructed by four N atoms from two phen ligands, one O atom from water and one I atom to form a cis-[CoI(phen)2(H2O)]+ cation. In the cation of [Co(phen)3]2+, the bond lengths of Co—N range from 2.124 (7) Å to 2.142 (8) Å, which are similar reported literature values (Liu et al., 2003; Harding et al., 2008; Tershansy et al. 2005; Hanauer et al. 2008; Boys et al. 1984). In the cation of [CoI(phen)2(H2O)]+, Co1—O1 = 2.154 (8) Å, Co1—I13 = 2.782 (2) Å, the bond lengths of Co—N ranged from 2.104 (8) Å to 2.165 (9) Å. This structure is similar to that of the reported [CoCl(phen)2(H2O)]+ cation (Arun Kumar et al., 2009; Zhong et al., 2007; Zhong et al., 2006)

Related literature top

For related complexes containing the [Bi3I12]3- trinuclear cluster anion, see: Geiser et al. (1990); Carmalt et al. (1995); Okrut & Feldmann (2006); Sharutin et al. (2009). For complexes containing the [Co(phen)3]2+ cation, see: Liu et al. (2003); Harding et al. (2008); Tershansy et al. (2005); Hanauer et al. (2008); Boys et al. (1984) and for those containing the [CoCl(phen)2(H2O)]+ cation, see: Arun Kumar et al. (2009); Zhong et al. (2006, 2007). For related halogenoantimonates(III) and bismuthates(III) crystallizing in non-centrosymmetric space groups and their physical properties, see: Jozkow et al. (2001).

Experimental top

The title compound was synthesized by a solvothermal reaction of CoCl2 hexahydrate (48 mg, 0.2 mmol), BiI3 (180 mg, 0.3 mmol), KI (68 mg, 0.4 mmol) and 1,10-phenanthroline monohydrate (100 mg, 0.5 mmol) in 15 ml ethanol. The mixture was heated to 383 K at the rate of 20 K/h, and kept at this temperature for 2 days and then cooled to room temperature at the rate of 2 K/h. The red crystals were obtained in a yield of 47% (156 mg). Anal. Calc. for C60H42Bi3Co2I13N10O (%): C, 21.75; H, 1.28; N, 4.23; O, 0.48. Found: C, 21.47; H, 1.46; N, 4.52;O, 0.63. Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

All hydrogen atoms attached to C were added at calculated positions and refined using a riding model (C-H = 0.93 Å). Due to the presence of Bi in the structure, those pertaining to the coordinated water O1 could not be found in the difference Fourier map and were not included in the model.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probabilithy level and H atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram.
cis-aquaiodidobis(1,10-phenanthroline)cobalt(II) tris(1,10-phenanthroline)cobalt(II) trans-hexa-µ2-iodido-hexaiodidotribismuthate(III) top
Crystal data top
[Co(C12H8N2)3][CoI(C12H8N2)2(H2O)][Bi3I12]F(000) = 5880
Mr = 3313.6Dx = 2.770 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2c -2nCell parameters from 3822 reflections
a = 35.188 (8) Åθ = 2.1–27.5°
b = 17.641 (4) ŵ = 12.13 mm1
c = 12.793 (3) ÅT = 293 K
V = 7941 (3) Å3Prism, red
Z = 40.30 × 0.24 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
18072 independent reflections
Radiation source: fine-focus sealed tube16129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.1°
CCD_Profile_fitting scansh = 4545
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2220
Tmin = 0.043, Tmax = 0.088l = 1616
58697 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0228P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
18072 reflectionsΔρmax = 1.29 e Å3
802 parametersΔρmin = 2.13 e Å3
1 restraintAbsolute structure: Flack (1983), 8549 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.021 (3)
Crystal data top
[Co(C12H8N2)3][CoI(C12H8N2)2(H2O)][Bi3I12]V = 7941 (3) Å3
Mr = 3313.6Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 35.188 (8) ŵ = 12.13 mm1
b = 17.641 (4) ÅT = 293 K
c = 12.793 (3) Å0.30 × 0.24 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
18072 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
16129 reflections with I > 2σ(I)
Tmin = 0.043, Tmax = 0.088Rint = 0.037
58697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.082Δρmax = 1.29 e Å3
S = 1.04Δρmin = 2.13 e Å3
18072 reflectionsAbsolute structure: Flack (1983), 8549 Friedel pairs
802 parametersAbsolute structure parameter: 0.021 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.729444 (11)0.41490 (2)0.76524 (3)0.04238 (8)
Bi20.823474 (10)0.27776 (2)0.74040 (3)0.04182 (8)
Bi30.927594 (10)0.16140 (2)0.72011 (3)0.04570 (9)
I10.70619 (2)0.45693 (5)0.97088 (6)0.0594 (2)
I20.65702 (2)0.37075 (5)0.67782 (7)0.0603 (2)
I30.72529 (2)0.56938 (4)0.68774 (7)0.0620 (2)
I40.74462 (2)0.23346 (4)0.82856 (6)0.05358 (18)
I50.82014 (2)0.43104 (4)0.85842 (6)0.05498 (18)
I60.78032 (2)0.35076 (4)0.55956 (6)0.05609 (18)
I70.87167 (2)0.20602 (5)0.92549 (6)0.05428 (18)
I80.83795 (2)0.12167 (4)0.64181 (6)0.04925 (16)
I90.89658 (2)0.32820 (5)0.63692 (8)0.0665 (2)
I100.94555 (3)0.01567 (5)0.81368 (8)0.0797 (3)
I110.99598 (3)0.23902 (6)0.79367 (8)0.0851 (3)
I120.95859 (2)0.12464 (5)0.51510 (7)0.0630 (2)
I130.91231 (2)0.48170 (5)1.23063 (8)0.0690 (2)
Co10.94658 (4)0.34209 (8)1.19425 (11)0.0480 (3)
Co20.66931 (3)0.28855 (7)1.24912 (10)0.0357 (3)
O10.9183 (3)0.3532 (5)1.0458 (7)0.073 (2)
N10.9959 (2)0.3921 (5)1.1321 (7)0.050 (2)
N20.9809 (2)0.3580 (5)1.3329 (7)0.047 (2)
N30.9643 (2)0.2297 (5)1.1549 (7)0.051 (2)
N40.9038 (2)0.2740 (5)1.2648 (7)0.048 (2)
N50.6377 (2)0.3360 (4)1.1235 (6)0.0387 (17)
N60.6602 (2)0.1921 (5)1.1506 (6)0.0382 (17)
N70.6195 (2)0.2741 (4)1.3408 (7)0.0427 (19)
N80.6899 (2)0.2230 (4)1.3769 (6)0.0388 (17)
N90.6823 (2)0.3941 (4)1.3209 (6)0.0388 (17)
N100.7250 (2)0.3095 (4)1.1913 (6)0.0395 (17)
C11.0035 (4)0.4052 (7)1.0297 (9)0.062 (3)
H10.98640.38930.97890.075*
C21.0369 (4)0.4425 (7)0.9999 (12)0.069 (4)
H21.04220.44960.92930.083*
C31.0610 (4)0.4677 (8)1.0713 (12)0.073 (4)
H31.08200.49611.05110.087*
C41.0551 (3)0.4522 (6)1.1748 (11)0.060 (3)
C51.0217 (3)0.4127 (6)1.2018 (9)0.048 (2)
C61.0792 (3)0.4725 (7)1.2596 (14)0.080 (4)
H61.10200.49681.24420.096*
C71.0708 (4)0.4582 (8)1.3652 (14)0.081 (5)
H71.08790.47221.41720.097*
C81.0364 (3)0.4226 (6)1.3917 (11)0.058 (3)
C91.0126 (3)0.3984 (6)1.3119 (9)0.048 (2)
C101.0258 (4)0.4074 (7)1.4943 (11)0.064 (3)
H101.04110.42391.54920.077*
C110.9943 (4)0.3698 (6)1.5140 (10)0.061 (3)
H110.98690.36031.58250.073*
C120.9719 (3)0.3445 (6)1.4301 (9)0.051 (3)
H120.94990.31711.44430.062*
C130.9944 (4)0.2074 (8)1.0990 (12)0.077 (4)
H131.01130.24421.07570.093*
C141.0017 (4)0.1333 (9)1.0741 (13)0.090 (5)
H141.02290.12051.03460.108*
C150.9767 (4)0.0775 (9)1.1092 (12)0.083 (4)
H150.98110.02711.09180.100*
C160.9466 (3)0.0957 (7)1.1674 (11)0.063 (3)
C170.9406 (3)0.1761 (6)1.1893 (8)0.044 (2)
C180.9197 (4)0.0419 (7)1.2025 (12)0.076 (4)
H180.92280.00921.18690.092*
C190.8883 (4)0.0664 (8)1.2610 (12)0.079 (4)
H190.87100.03061.28530.095*
C200.8819 (3)0.1462 (6)1.2848 (9)0.050 (2)
C210.9077 (3)0.1987 (5)1.2484 (7)0.040 (2)
C220.8512 (3)0.1718 (8)1.3433 (9)0.064 (3)
H220.83360.13771.37060.076*
C230.8474 (3)0.2461 (8)1.3595 (9)0.064 (3)
H230.82700.26461.39780.076*
C240.8737 (3)0.2943 (6)1.3196 (9)0.054 (3)
H240.87030.34581.33190.065*
C250.6257 (3)0.4058 (6)1.1125 (8)0.046 (2)
H250.63070.44071.16530.055*
C260.6054 (3)0.4299 (7)1.0230 (9)0.057 (3)
H260.59790.48021.01600.068*
C270.5969 (3)0.3778 (7)0.9469 (9)0.058 (3)
H270.58250.39240.88930.070*
C280.6094 (3)0.3047 (6)0.9551 (7)0.040 (2)
C290.6294 (2)0.2841 (5)1.0462 (7)0.0351 (19)
C300.6035 (3)0.2468 (8)0.8777 (8)0.060 (3)
H300.59140.25990.81570.072*
C310.6148 (3)0.1740 (7)0.8911 (8)0.057 (3)
H310.60910.13750.84110.069*
C320.6356 (3)0.1540 (6)0.9819 (8)0.046 (2)
C330.6427 (2)0.2095 (6)1.0599 (7)0.038 (2)
C340.6498 (3)0.0805 (6)0.9990 (9)0.057 (3)
H340.64690.04330.94800.068*
C350.6677 (3)0.0638 (6)1.0902 (10)0.057 (3)
H350.67650.01511.10370.069*
C360.6726 (3)0.1211 (6)1.1621 (9)0.050 (3)
H360.68550.10941.22340.060*
C370.5847 (3)0.3036 (7)1.3247 (11)0.062 (3)
H370.57960.32651.26070.074*
C380.5558 (4)0.3012 (7)1.4008 (11)0.068 (4)
H380.53250.32471.38890.082*
C390.5626 (3)0.2635 (7)1.4929 (10)0.066 (4)
H390.54380.26121.54370.079*
C400.5980 (3)0.2284 (6)1.5112 (8)0.051 (3)
C410.6260 (3)0.2371 (6)1.4333 (7)0.042 (2)
C420.6072 (4)0.1857 (7)1.6013 (8)0.060 (3)
H420.58900.17961.65350.072*
C430.6425 (5)0.1528 (8)1.6137 (9)0.077 (4)
H430.64730.12281.67200.092*
C440.6716 (4)0.1641 (7)1.5385 (8)0.058 (3)
C450.6637 (3)0.2072 (6)1.4496 (7)0.040 (2)
C460.7092 (4)0.1379 (7)1.5523 (10)0.068 (4)
H460.71590.11011.61130.082*
C470.7350 (4)0.1540 (7)1.4780 (9)0.058 (3)
H470.75980.13571.48350.069*
C480.7247 (3)0.1973 (7)1.3949 (8)0.052 (3)
H480.74350.20991.34680.063*
C490.6608 (3)0.4361 (6)1.3840 (9)0.051 (3)
H490.63640.41941.40020.062*
C500.6736 (4)0.5045 (7)1.4270 (10)0.066 (3)
H500.65770.53311.46960.079*
C510.7087 (4)0.5284 (6)1.4065 (9)0.062 (3)
H510.71710.57401.43450.074*
C520.7326 (3)0.4864 (6)1.3446 (8)0.054 (3)
C530.7180 (3)0.4188 (5)1.3011 (7)0.040 (2)
C540.7714 (3)0.5072 (7)1.3148 (10)0.062 (3)
H540.78140.55261.33930.074*
C550.7925 (3)0.4640 (7)1.2545 (12)0.069 (4)
H550.81750.47821.24100.083*
C560.7786 (3)0.3974 (7)1.2103 (9)0.053 (3)
C570.7410 (3)0.3753 (6)1.2326 (8)0.044 (2)
C580.8006 (3)0.3490 (8)1.1439 (11)0.072 (4)
H580.82590.35981.12920.086*
C590.7832 (4)0.2867 (8)1.1031 (10)0.065 (3)
H590.79710.25591.05790.078*
C600.7461 (3)0.2669 (6)1.1253 (8)0.052 (3)
H600.73550.22401.09470.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.04515 (18)0.03708 (18)0.04490 (19)0.00082 (15)0.01068 (16)0.00305 (16)
Bi20.04319 (18)0.03795 (18)0.04431 (19)0.00065 (15)0.00703 (15)0.00474 (16)
Bi30.03915 (17)0.0468 (2)0.0512 (2)0.00312 (16)0.00139 (16)0.00271 (18)
I10.0661 (5)0.0642 (5)0.0480 (4)0.0029 (4)0.0210 (3)0.0015 (4)
I20.0588 (4)0.0525 (4)0.0695 (5)0.0107 (4)0.0018 (4)0.0047 (4)
I30.0789 (5)0.0478 (4)0.0593 (5)0.0110 (4)0.0024 (4)0.0031 (4)
I40.0535 (4)0.0435 (4)0.0636 (5)0.0051 (3)0.0094 (3)0.0048 (3)
I50.0583 (4)0.0473 (4)0.0593 (4)0.0091 (3)0.0134 (3)0.0133 (3)
I60.0724 (5)0.0548 (4)0.0410 (4)0.0145 (4)0.0061 (3)0.0028 (3)
I70.0577 (4)0.0608 (5)0.0444 (4)0.0058 (4)0.0023 (3)0.0068 (3)
I80.0550 (4)0.0424 (4)0.0504 (4)0.0032 (3)0.0045 (3)0.0111 (3)
I90.0621 (5)0.0546 (5)0.0827 (6)0.0052 (4)0.0257 (4)0.0025 (4)
I100.0958 (7)0.0570 (5)0.0864 (7)0.0046 (5)0.0075 (5)0.0137 (5)
I110.0659 (5)0.1084 (8)0.0811 (7)0.0338 (5)0.0216 (5)0.0048 (6)
I120.0617 (5)0.0668 (5)0.0605 (5)0.0092 (4)0.0181 (4)0.0060 (4)
I130.0757 (5)0.0556 (5)0.0757 (6)0.0044 (4)0.0007 (5)0.0070 (4)
Co10.0452 (7)0.0521 (9)0.0466 (8)0.0125 (7)0.0058 (6)0.0026 (7)
Co20.0374 (6)0.0384 (6)0.0313 (6)0.0002 (5)0.0036 (5)0.0018 (5)
O10.085 (6)0.079 (6)0.054 (5)0.016 (5)0.017 (4)0.004 (4)
N10.050 (5)0.048 (5)0.051 (5)0.018 (4)0.004 (4)0.003 (4)
N20.037 (4)0.052 (5)0.051 (5)0.001 (4)0.007 (4)0.012 (4)
N30.049 (5)0.052 (5)0.053 (5)0.003 (4)0.014 (4)0.003 (4)
N40.037 (4)0.058 (5)0.048 (5)0.003 (4)0.005 (4)0.002 (4)
N50.042 (4)0.039 (4)0.036 (4)0.006 (3)0.007 (3)0.008 (3)
N60.033 (4)0.046 (5)0.036 (4)0.001 (3)0.000 (3)0.002 (3)
N70.038 (4)0.040 (5)0.050 (5)0.005 (4)0.010 (4)0.011 (4)
N80.053 (5)0.032 (4)0.032 (4)0.001 (4)0.000 (3)0.005 (3)
N90.045 (4)0.040 (4)0.031 (4)0.005 (4)0.003 (3)0.000 (3)
N100.038 (4)0.038 (4)0.042 (4)0.001 (3)0.007 (3)0.007 (4)
C10.077 (8)0.055 (7)0.055 (7)0.011 (6)0.022 (6)0.002 (6)
C20.066 (8)0.059 (8)0.083 (10)0.006 (7)0.033 (7)0.017 (7)
C30.055 (7)0.069 (9)0.093 (11)0.003 (7)0.044 (7)0.012 (8)
C40.033 (5)0.033 (6)0.114 (11)0.007 (4)0.013 (6)0.000 (6)
C50.040 (5)0.042 (6)0.062 (7)0.003 (4)0.007 (5)0.002 (5)
C60.048 (6)0.059 (8)0.133 (14)0.020 (6)0.004 (8)0.005 (9)
C70.055 (8)0.054 (8)0.134 (14)0.010 (6)0.030 (8)0.023 (9)
C80.050 (6)0.040 (6)0.082 (9)0.006 (5)0.016 (6)0.003 (6)
C90.041 (5)0.033 (5)0.070 (7)0.002 (4)0.004 (5)0.008 (5)
C100.059 (7)0.054 (8)0.078 (9)0.006 (6)0.016 (6)0.008 (6)
C110.072 (8)0.051 (7)0.059 (7)0.018 (6)0.012 (6)0.007 (6)
C120.051 (6)0.045 (6)0.058 (7)0.006 (5)0.001 (5)0.013 (5)
C130.053 (7)0.084 (10)0.095 (11)0.015 (7)0.021 (7)0.014 (8)
C140.081 (10)0.084 (11)0.105 (13)0.017 (9)0.030 (9)0.009 (10)
C150.097 (11)0.074 (10)0.079 (10)0.031 (9)0.000 (8)0.018 (8)
C160.055 (7)0.049 (7)0.085 (9)0.011 (6)0.005 (6)0.002 (6)
C170.035 (5)0.051 (6)0.046 (5)0.000 (4)0.003 (4)0.005 (5)
C180.082 (9)0.050 (7)0.097 (11)0.015 (7)0.004 (8)0.017 (7)
C190.080 (9)0.068 (9)0.088 (10)0.022 (7)0.000 (8)0.004 (8)
C200.046 (5)0.050 (6)0.053 (6)0.011 (5)0.003 (4)0.006 (5)
C210.048 (5)0.041 (5)0.031 (5)0.005 (4)0.000 (4)0.006 (4)
C220.056 (7)0.084 (9)0.051 (7)0.026 (6)0.020 (5)0.004 (6)
C230.056 (7)0.078 (9)0.057 (7)0.024 (6)0.020 (6)0.019 (6)
C240.053 (6)0.053 (7)0.055 (7)0.013 (5)0.017 (5)0.016 (5)
C250.049 (6)0.040 (6)0.050 (6)0.009 (5)0.008 (5)0.003 (4)
C260.057 (7)0.057 (7)0.057 (7)0.022 (6)0.011 (5)0.015 (6)
C270.046 (6)0.077 (8)0.052 (7)0.014 (6)0.010 (5)0.014 (6)
C280.036 (5)0.048 (6)0.038 (5)0.000 (4)0.001 (4)0.011 (4)
C290.036 (4)0.043 (5)0.027 (4)0.005 (4)0.005 (3)0.005 (4)
C300.057 (7)0.086 (9)0.038 (6)0.019 (6)0.016 (5)0.010 (6)
C310.062 (7)0.068 (8)0.041 (6)0.021 (6)0.003 (5)0.008 (5)
C320.041 (5)0.058 (7)0.038 (5)0.004 (5)0.002 (4)0.002 (5)
C330.026 (4)0.045 (6)0.041 (5)0.006 (4)0.002 (4)0.003 (4)
C340.065 (7)0.047 (7)0.058 (7)0.014 (6)0.007 (6)0.016 (5)
C350.057 (7)0.038 (6)0.077 (8)0.009 (5)0.005 (6)0.003 (6)
C360.049 (6)0.042 (6)0.058 (7)0.008 (5)0.012 (5)0.004 (5)
C370.032 (5)0.068 (8)0.086 (9)0.001 (5)0.018 (5)0.019 (7)
C380.060 (7)0.061 (8)0.085 (10)0.001 (6)0.026 (7)0.003 (7)
C390.065 (8)0.060 (8)0.074 (8)0.022 (6)0.036 (6)0.007 (6)
C400.061 (7)0.046 (6)0.046 (6)0.019 (5)0.020 (5)0.011 (5)
C410.050 (6)0.043 (6)0.034 (5)0.011 (5)0.004 (4)0.004 (4)
C420.087 (9)0.062 (8)0.031 (5)0.027 (7)0.021 (5)0.006 (5)
C430.113 (12)0.084 (10)0.034 (6)0.021 (9)0.010 (7)0.011 (6)
C440.085 (8)0.058 (7)0.031 (5)0.019 (6)0.014 (5)0.001 (5)
C450.051 (5)0.039 (5)0.029 (4)0.005 (4)0.000 (4)0.006 (4)
C460.089 (9)0.050 (7)0.065 (8)0.005 (7)0.037 (7)0.011 (6)
C470.067 (7)0.055 (7)0.051 (6)0.003 (6)0.009 (6)0.002 (5)
C480.043 (6)0.066 (8)0.048 (6)0.006 (5)0.007 (4)0.003 (5)
C490.052 (6)0.049 (6)0.053 (6)0.012 (5)0.005 (5)0.007 (5)
C500.095 (10)0.045 (7)0.057 (7)0.013 (7)0.008 (7)0.008 (6)
C510.099 (10)0.037 (6)0.050 (7)0.000 (6)0.006 (6)0.006 (5)
C520.068 (7)0.050 (7)0.042 (6)0.012 (6)0.013 (5)0.012 (5)
C530.049 (5)0.037 (5)0.034 (5)0.002 (4)0.005 (4)0.003 (4)
C540.056 (7)0.048 (7)0.082 (9)0.011 (6)0.016 (6)0.013 (6)
C550.034 (5)0.073 (8)0.101 (11)0.013 (5)0.009 (6)0.028 (8)
C560.035 (5)0.060 (7)0.063 (7)0.013 (5)0.009 (5)0.019 (6)
C570.047 (5)0.047 (6)0.039 (5)0.003 (4)0.004 (4)0.011 (4)
C580.036 (5)0.097 (10)0.083 (9)0.001 (6)0.027 (6)0.021 (8)
C590.063 (8)0.071 (9)0.062 (8)0.018 (7)0.020 (6)0.004 (6)
C600.056 (6)0.053 (7)0.046 (6)0.001 (5)0.020 (5)0.004 (5)
Geometric parameters (Å, º) top
Bi1—I12.8531 (10)C15—H150.9300
Bi1—I22.8901 (10)C16—C181.414 (17)
Bi1—I32.9037 (10)C16—C171.461 (15)
Bi1—I43.3444 (11)C17—C211.437 (13)
Bi1—I63.3778 (9)C18—C191.403 (18)
Bi1—I53.4186 (11)C18—H180.9300
Bi2—I93.0269 (10)C19—C201.458 (16)
Bi2—I63.0523 (10)C19—H190.9300
Bi2—I83.0713 (9)C20—C211.379 (13)
Bi2—I43.0955 (10)C20—C221.389 (15)
Bi2—I53.0992 (10)C22—C231.334 (17)
Bi2—I73.1756 (10)C22—H220.9300
Bi3—I102.9054 (11)C23—C241.357 (14)
Bi3—I122.9135 (10)C23—H230.9300
Bi3—I112.9244 (10)C24—H240.9300
Bi3—I93.3139 (11)C25—C261.415 (15)
Bi3—I73.3757 (10)C25—H250.9300
Bi3—I83.3829 (10)C26—C271.372 (16)
I13—Co12.7815 (18)C26—H260.9300
Co1—N12.104 (8)C27—C281.368 (15)
Co1—N42.128 (8)C27—H270.9300
Co1—N32.138 (9)C28—C291.410 (12)
Co1—O12.154 (8)C28—C301.436 (15)
Co1—N22.165 (9)C29—C331.406 (13)
Co2—N72.124 (7)C30—C311.357 (16)
Co2—N102.125 (7)C30—H300.9300
Co2—N92.126 (8)C31—C321.416 (15)
Co2—N52.126 (8)C31—H310.9300
Co2—N82.130 (8)C32—C341.408 (15)
Co2—N62.142 (8)C32—C331.420 (13)
N1—C51.322 (13)C34—C351.358 (16)
N1—C11.357 (14)C34—H340.9300
N2—C121.307 (13)C35—C361.378 (15)
N2—C91.350 (12)C35—H350.9300
N3—C171.336 (12)C36—H360.9300
N3—C131.338 (14)C37—C381.410 (15)
N4—C241.318 (12)C37—H370.9300
N4—C211.351 (12)C38—C391.375 (18)
N5—C251.309 (12)C38—H380.9300
N5—C291.379 (12)C39—C401.408 (17)
N6—C361.335 (12)C39—H390.9300
N6—C331.348 (12)C40—C411.410 (13)
N7—C371.346 (12)C40—C421.416 (16)
N7—C411.371 (12)C41—C451.444 (13)
N8—C481.324 (12)C42—C431.381 (18)
N8—C451.339 (11)C42—H420.9300
N9—C491.331 (12)C43—C441.419 (17)
N9—C531.354 (12)C43—H430.9300
N10—C601.353 (12)C44—C451.396 (13)
N10—C571.395 (12)C44—C461.413 (17)
C1—C21.399 (16)C46—C471.346 (18)
C1—H10.9300C46—H460.9300
C2—C31.325 (19)C47—C481.360 (15)
C2—H20.9300C47—H470.9300
C3—C41.367 (18)C48—H480.9300
C3—H30.9300C49—C501.401 (16)
C4—C51.410 (13)C49—H490.9300
C4—C61.423 (18)C50—C511.330 (17)
C5—C91.466 (15)C50—H500.9300
C6—C71.41 (2)C51—C521.373 (16)
C6—H60.9300C51—H510.9300
C7—C81.404 (17)C52—C531.414 (14)
C7—H70.9300C52—C541.464 (16)
C8—C91.387 (15)C53—C571.417 (13)
C8—C101.391 (18)C54—C551.316 (18)
C10—C111.318 (17)C54—H540.9300
C10—H100.9300C55—C561.392 (16)
C11—C121.403 (16)C55—H550.9300
C11—H110.9300C56—C571.409 (13)
C12—H120.9300C56—C581.432 (17)
C13—C141.369 (19)C58—C591.362 (18)
C13—H130.9300C58—H580.9300
C14—C151.39 (2)C59—C601.383 (15)
C14—H140.9300C59—H590.9300
C15—C161.333 (18)C60—H600.9300
I1—Bi1—I2100.02 (3)C11—C12—H12118.9
I1—Bi1—I393.24 (3)N3—C13—C14123.7 (13)
I2—Bi1—I394.38 (3)N3—C13—H13118.2
I1—Bi1—I494.08 (3)C14—C13—H13118.2
I2—Bi1—I488.66 (2)C13—C14—C15118.7 (13)
I3—Bi1—I4171.47 (3)C13—C14—H14120.6
I1—Bi1—I6163.21 (3)C15—C14—H14120.6
I2—Bi1—I694.34 (3)C16—C15—C14120.7 (14)
I3—Bi1—I694.30 (3)C16—C15—H15119.7
I4—Bi1—I677.50 (2)C14—C15—H15119.7
I1—Bi1—I585.67 (3)C15—C16—C18123.3 (13)
I2—Bi1—I5168.70 (2)C15—C16—C17117.2 (12)
I3—Bi1—I595.04 (2)C18—C16—C17119.4 (11)
I4—Bi1—I581.16 (2)N3—C17—C21118.6 (9)
I6—Bi1—I578.74 (2)N3—C17—C16122.2 (10)
I9—Bi2—I688.12 (3)C21—C17—C16119.2 (9)
I9—Bi2—I886.73 (2)C19—C18—C16119.5 (12)
I6—Bi2—I898.60 (3)C19—C18—H18120.3
I9—Bi2—I4174.50 (3)C16—C18—H18120.3
I6—Bi2—I486.37 (3)C18—C19—C20122.0 (12)
I8—Bi2—I494.13 (2)C18—C19—H19119.0
I9—Bi2—I589.36 (2)C20—C19—H19119.0
I6—Bi2—I588.99 (3)C21—C20—C22118.5 (10)
I8—Bi2—I5171.34 (2)C21—C20—C19118.4 (10)
I4—Bi2—I590.51 (2)C22—C20—C19123.1 (11)
I9—Bi2—I789.39 (3)N4—C21—C20122.6 (9)
I6—Bi2—I7177.41 (2)N4—C21—C17116.0 (9)
I8—Bi2—I781.97 (2)C20—C21—C17121.4 (9)
I4—Bi2—I796.11 (3)C23—C22—C20118.7 (10)
I5—Bi2—I790.27 (3)C23—C22—H22120.7
I10—Bi3—I1295.31 (3)C20—C22—H22120.7
I10—Bi3—I1195.90 (3)C22—C23—C24119.4 (11)
I12—Bi3—I1194.93 (3)C22—C23—H23120.3
I10—Bi3—I9171.74 (3)C24—C23—H23120.3
I12—Bi3—I991.82 (3)N4—C24—C23125.1 (11)
I11—Bi3—I987.62 (3)N4—C24—H24117.4
I10—Bi3—I790.71 (3)C23—C24—H24117.4
I12—Bi3—I7166.11 (3)N5—C25—C26122.2 (10)
I11—Bi3—I796.89 (3)N5—C25—H25118.9
I9—Bi3—I781.43 (2)C26—C25—H25118.9
I10—Bi3—I898.14 (3)C27—C26—C25118.9 (10)
I12—Bi3—I892.08 (3)C27—C26—H26120.5
I11—Bi3—I8163.65 (3)C25—C26—H26120.5
I9—Bi3—I877.40 (2)C28—C27—C26120.5 (10)
I7—Bi3—I874.65 (2)C28—C27—H27119.8
Bi2—I4—Bi179.24 (2)C26—C27—H27119.8
Bi2—I5—Bi178.040 (19)C27—C28—C29117.9 (10)
Bi2—I6—Bi179.31 (2)C27—C28—C30124.8 (10)
Bi2—I7—Bi379.86 (2)C29—C28—C30117.3 (9)
Bi2—I8—Bi381.218 (19)N5—C29—C33117.5 (8)
Bi2—I9—Bi383.02 (2)N5—C29—C28121.8 (9)
N1—Co1—N4168.9 (4)C33—C29—C28120.6 (9)
N1—Co1—N393.4 (3)C31—C30—C28122.9 (10)
N4—Co1—N377.4 (3)C31—C30—H30118.5
N1—Co1—O190.6 (4)C28—C30—H30118.5
N4—Co1—O195.6 (3)C30—C31—C32119.4 (10)
N3—Co1—O190.6 (4)C30—C31—H31120.3
N1—Co1—N278.1 (3)C32—C31—H31120.3
N4—Co1—N297.0 (3)C34—C32—C31122.7 (10)
N3—Co1—N298.7 (3)C34—C32—C33117.6 (10)
O1—Co1—N2165.7 (3)C31—C32—C33119.7 (10)
N1—Co1—I1392.8 (3)N6—C33—C29118.1 (8)
N4—Co1—I1397.0 (2)N6—C33—C32121.9 (9)
N3—Co1—I13170.6 (3)C29—C33—C32119.9 (9)
O1—Co1—I1382.3 (3)C35—C34—C32119.8 (10)
N2—Co1—I1389.4 (2)C35—C34—H34120.1
N7—Co2—N10166.7 (3)C32—C34—H34120.1
N7—Co2—N992.5 (3)C34—C35—C36118.3 (10)
N10—Co2—N978.5 (3)C34—C35—H35120.9
N7—Co2—N591.9 (3)C36—C35—H35120.9
N10—Co2—N598.7 (3)N6—C36—C35125.0 (10)
N9—Co2—N595.4 (3)N6—C36—H36117.5
N7—Co2—N878.0 (3)C35—C36—H36117.5
N10—Co2—N892.7 (3)N7—C37—C38122.7 (12)
N9—Co2—N894.1 (3)N7—C37—H37118.7
N5—Co2—N8166.5 (3)C38—C37—H37118.7
N7—Co2—N696.1 (3)C39—C38—C37118.7 (12)
N10—Co2—N694.1 (3)C39—C38—H38120.7
N9—Co2—N6169.2 (3)C37—C38—H38120.7
N5—Co2—N677.8 (3)C38—C39—C40120.7 (10)
N8—Co2—N694.1 (3)C38—C39—H39119.7
C5—N1—C1118.1 (10)C40—C39—H39119.7
C5—N1—Co1115.2 (7)C39—C40—C41116.9 (11)
C1—N1—Co1126.7 (8)C39—C40—C42124.9 (10)
C12—N2—C9119.1 (10)C41—C40—C42118.2 (11)
C12—N2—Co1128.4 (7)N7—C41—C40123.0 (10)
C9—N2—Co1111.6 (7)N7—C41—C45116.8 (8)
C17—N3—C13117.5 (10)C40—C41—C45120.1 (9)
C17—N3—Co1113.4 (7)C43—C42—C40121.5 (10)
C13—N3—Co1129.0 (9)C43—C42—H42119.2
C24—N4—C21115.7 (9)C40—C42—H42119.2
C24—N4—Co1129.7 (8)C42—C43—C44120.8 (12)
C21—N4—Co1114.6 (6)C42—C43—H43119.6
C25—N5—C29118.7 (9)C44—C43—H43119.6
C25—N5—Co2128.3 (7)C45—C44—C46117.8 (11)
C29—N5—Co2113.0 (6)C45—C44—C43119.1 (12)
C36—N6—C33117.3 (9)C46—C44—C43123.0 (12)
C36—N6—Co2129.1 (7)N8—C45—C44122.8 (10)
C33—N6—Co2113.2 (6)N8—C45—C41117.2 (8)
C37—N7—C41117.9 (9)C44—C45—C41119.9 (9)
C37—N7—Co2128.3 (7)C47—C46—C44118.3 (11)
C41—N7—Co2113.3 (6)C47—C46—H46120.8
C48—N8—C45116.4 (9)C44—C46—H46120.8
C48—N8—Co2129.3 (7)C46—C47—C48119.4 (12)
C45—N8—Co2114.3 (6)C46—C47—H47120.3
C49—N9—C53117.5 (9)C48—C47—H47120.3
C49—N9—Co2128.9 (7)N8—C48—C47125.1 (11)
C53—N9—Co2113.6 (6)N8—C48—H48117.4
C60—N10—C57118.5 (8)C47—C48—H48117.4
C60—N10—Co2128.8 (7)N9—C49—C50122.3 (11)
C57—N10—Co2112.6 (6)N9—C49—H49118.8
N1—C1—C2120.5 (13)C50—C49—H49118.8
N1—C1—H1119.8C51—C50—C49119.6 (11)
C2—C1—H1119.8C51—C50—H50120.2
C3—C2—C1120.6 (13)C49—C50—H50120.2
C3—C2—H2119.7C50—C51—C52120.8 (11)
C1—C2—H2119.7C50—C51—H51119.6
C2—C3—C4120.2 (12)C52—C51—H51119.6
C2—C3—H3119.9C51—C52—C53117.3 (11)
C4—C3—H3119.9C51—C52—C54125.9 (11)
C3—C4—C5117.5 (12)C53—C52—C54116.7 (11)
C3—C4—C6126.7 (12)N9—C53—C52122.4 (10)
C5—C4—C6115.8 (12)N9—C53—C57118.1 (9)
N1—C5—C4122.9 (11)C52—C53—C57119.5 (10)
N1—C5—C9116.8 (9)C55—C54—C52122.3 (11)
C4—C5—C9120.1 (11)C55—C54—H54118.8
C7—C6—C4124.2 (11)C52—C54—H54118.8
C7—C6—H6117.9C54—C55—C56121.8 (11)
C4—C6—H6117.9C54—C55—H55119.1
C8—C7—C6119.6 (12)C56—C55—H55119.1
C8—C7—H7120.2C55—C56—C57118.8 (11)
C6—C7—H7120.2C55—C56—C58123.6 (10)
C9—C8—C10118.3 (11)C57—C56—C58117.6 (10)
C9—C8—C7118.7 (13)N10—C57—C56122.2 (10)
C10—C8—C7123.0 (12)N10—C57—C53117.0 (8)
N2—C9—C8121.0 (11)C56—C57—C53120.8 (10)
N2—C9—C5117.5 (9)C59—C58—C56117.8 (10)
C8—C9—C5121.5 (10)C59—C58—H58121.1
C11—C10—C8120.2 (12)C56—C58—H58121.1
C11—C10—H10119.9C58—C59—C60123.3 (11)
C8—C10—H10119.9C58—C59—H59118.4
C10—C11—C12119.2 (12)C60—C59—H59118.4
C10—C11—H11120.4N10—C60—C59120.5 (11)
C12—C11—H11120.4N10—C60—H60119.7
N2—C12—C11122.2 (11)C59—C60—H60119.7
N2—C12—H12118.9

Experimental details

Crystal data
Chemical formula[Co(C12H8N2)3][CoI(C12H8N2)2(H2O)][Bi3I12]
Mr3313.6
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)35.188 (8), 17.641 (4), 12.793 (3)
V3)7941 (3)
Z4
Radiation typeMo Kα
µ (mm1)12.13
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.043, 0.088
No. of measured, independent and
observed [I > 2σ(I)] reflections
58697, 18072, 16129
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.082, 1.04
No. of reflections18072
No. of parameters802
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 2.13
Absolute structureFlack (1983), 8549 Friedel pairs
Absolute structure parameter0.021 (3)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Bi1—I12.8531 (10)Bi3—I93.3139 (11)
Bi1—I22.8901 (10)Bi3—I73.3757 (10)
Bi1—I32.9037 (10)Bi3—I83.3829 (10)
Bi1—I43.3444 (11)I13—Co12.7815 (18)
Bi1—I63.3778 (9)Co1—N12.104 (8)
Bi1—I53.4186 (11)Co1—N42.128 (8)
Bi2—I93.0269 (10)Co1—N32.138 (9)
Bi2—I63.0523 (10)Co1—O12.154 (8)
Bi2—I83.0713 (9)Co1—N22.165 (9)
Bi2—I43.0955 (10)Co2—N72.124 (7)
Bi2—I53.0992 (10)Co2—N102.125 (7)
Bi2—I73.1756 (10)Co2—N92.126 (8)
Bi3—I102.9054 (11)Co2—N52.126 (8)
Bi3—I122.9135 (10)Co2—N82.130 (8)
Bi3—I112.9244 (10)Co2—N62.142 (8)
 

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (Project 20803070) and the Natural Science Foundation of Zhejiang Province (Project Y4100610).

References

First citationArun Kumar, K., Dayalan, A. & SethuSankar, K. (2009). Acta Cryst. E65, m1300–m1301.  Google Scholar
First citationBoys, D., Escobar, C. & Wittke, O. (1984). Acta Cryst. C40, 1359–1362.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCarmalt, C. J., Farrugia, L. J. & Norman, N. C. (1995). Z. Anorg. Allg. Chem. 621, 47–56.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGeiser, U., Wade, E., Wang, H. H. & Williams, J. M. (1990). Acta Cryst. C46, 1547–1549.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHanauer, M., Neshat, A. & Bigioni, T. P. (2008). Acta Cryst. C64, m111–m113.  Google Scholar
First citationHarding, D. J., Harding, P. & Adams, H. (2008). Acta Cryst. E64, m1538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJozkow, J., Jakubas, R., Bator, G. & Pietraszko, A. (2001). J. Chem. Phys. 114, 7239–7246.  Google Scholar
First citationLiu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297–m299.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkrut, A. & Feldmann, C. (2006). Z. Anorg. Allg. Chem. 632, 409–412.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSharutin, V. V., Egorova, I. V., Klepikov, N. N., Boyarkina, E. A. & Sharutina, O. K. (2009). Russ. J. Inorg. Chem. 54, 52–68.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTershansy, M. A., Goforth, A. M., Smith, M. D., Peterson Jr, L. R. & zur Loye, H.-C. (2005). Acta Cryst. E61, m1680–m1681.  Google Scholar
First citationZhong, H., Zeng, X.-R., Liu, Y.-Q. & Luo, Q.-Y. (2006). Acta Cryst. E62, m2925–m2927.  Google Scholar
First citationZhong, H., Zeng, X.-R. & Luo, Q.-Y. (2007). Acta Cryst. E63, m221–m223.  Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1284-m1285
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds