organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2321-o2322

A 1:1 co-crystal of the herbicide triflusulfuron-methyl and its degradation product triazine amine

aInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 5 July 2011; accepted 4 August 2011; online 11 August 2011)

The herbicide triflusulfuron-methyl (systematic name: methyl 2-{[4-dimethyl­amino-6-(2,2,2-trifluoro­eth­oxy)-1,3,5-triazin-2-yl]carbamoylsulfamo­yl}-3-methyl­benzoate) and its degradation product triazine amine [systematic name: 2-amino-4-dimethyl­amino-6-(2,2,2-trifluoro­eth­oxy)-1,3,5-triazine] form a triclinic 1:1 co-crystal of the title compound, C7H10F3N5O·C17H19F3N6O6S, in which its two components are connected via a pair of complementary N—H⋯N hydrogen bonds, similar to the monoclinic crystal structure of the parent compound triflusulfuron-methyl [Mereiter (2011[Mereiter, K. (2011). Acta Cryst. E67, o1778-o1779.]). Acta Cryst. E67, o1778–o1779] in which a pair of mol­ecules related by a twofold axis are linked by two N—H⋯N bonds. The triflusulfuron-methyl mol­ecules of both crystal structures are similar in geometric parameters and conformation, which is due to stiffening by a short intra­molecular N—H⋯N bond [N⋯N = 2.620 (4) Å] and an intra­molecular dipole–dipole inter­action between the sulfamide and the carboxyl moieties, with Os⋯Cc = 2.802 (5) Å and Oc⋯Ns = 2.846 (4) Å. Inter­molecular N—H⋯O hydrogen bonds and slipped ππ stacking inter­actions between the diamino­triazine moieties [perpendicular distances of 3.25 Å within hydrogen-bonded tetra­mers and 3.27 Å between adjacent tetra­mers] link the two constituents of the co-crystal into columns parallel to the a axis. An intra­molecular C—H⋯O hydrogen bond occurs in the triflusulfuron-methyl mol­ecule and inter­molecular C—H⋯O inter­actions between triflusulfuron-methyl mol­ecules occur in the crystal structure. In the triflusulfuron-methyl molecule the dihedral angle between the least-squares planes of the two rings is 75.8 (1)°. In the triazine molecule, the CF3 group is partly orientationally disordered.

Related literature

For the crystal structure of the herbicide triflusulfuron-methyl, see: Mereiter (2011[Mereiter, K. (2011). Acta Cryst. E67, o1778-o1779.]). For information on the synthesis and herbicidal properties of triflusulfuron-methyl, see: Moon (1989[Moon, M. P. (1989). WO Patent 8909214 A1.]); Peeples et al. (1991[Peeples, K. A., Moon, M. P., Lichtner, F. T., Wittenbach, V. A., Carski, T. H., Woodward, M. D., Graham, K. & Reinke, H. (1991). Weeds, 2, 25-30.]); Wittenbach et al. (1994[Wittenbach, V. A., Koeppe, M. K., Lichtner, F. T., Zimmerman, W. T. & Reiser, R. W. (1994). Pestic. Biochem. Physiol. 49, 72-81.]). For general information on the herbicidal properties of triflusulfuron-methyl and its degradation product triazine amine, see: EFSA (2008[EFSA (2008). European Food Saftey Authority. Scientific Report, 195, 1-115. (Conclusion on the peer review of triflusulfuron) www.efsa.europa.eu/en/efsajournal/pub/195r.html.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10F3N5O·C17H19F3N6O6S

  • Mr = 729.64

  • Monoclinic, P 21 /n

  • a = 9.0388 (18) Å

  • b = 12.120 (2) Å

  • c = 27.820 (5) Å

  • β = 91.883 (3)°

  • V = 3046.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.42 × 0.03 × 0.03 mm

Data collection
  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.87, Tmax = 0.99

  • 29573 measured reflections

  • 5239 independent reflections

  • 3575 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.152

  • S = 1.04

  • 5239 reflections

  • 461 parameters

  • 31 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N5 0.88 1.94 2.620 (4) 133
N2—H2N⋯N8 0.88 2.20 3.080 (4) 176
N7—H7NA⋯N3 0.88 2.11 2.989 (5) 174
N7—H7NB⋯O3i 0.88 2.13 2.996 (4) 167
C5—H5⋯O2ii 0.95 2.57 3.434 (5) 152
C8—H8A⋯O2iii 0.98 2.43 3.398 (5) 170
C9—H9A⋯O5 0.98 2.40 3.210 (5) 140
C16—H16B⋯O5i 0.99 2.47 3.373 (5) 152
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT, SADABS and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of the triazinylsulfonylurea herbicide triflusulfuron-methyl, C17H19F3N6O6S, marketed under the trade names UpBeet, Debut, and Safari (originator DuPontTM; Moon, 1989; Peeples et al., 1991; Wittenbach et al., 1994) for crop protection of sugar beet and fodder beet, was recently reported (Mereiter, 2011). The compound crystallizes in a monoclinic lattice of space group C2/c with a = 16.7107 (11) Å, b = 15.6406 (11) Å, c = 17.1875 (12) Å, β = 107.035 (1)°, V = 4295.1 (5) Å3, and Z = 8 at T = 100 K. This crystal form is subsequently denoted CMTFS whereas the chemical entity triflusulfuron-methyl is denoted TFS. Triflusulfuron-methyl degrades in aqueous solutions by hydrolytic cleavage of the sulfonylurea bridge yielding CO2, CH3OH, methyl-saccharine [systematic name: 7-methyl-1,2-benzisothiazol-3(2H)-one-1,1-dioxide, C8H7NO3S] and triazine amine [2-amino-4-(dimethylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazine, C7H10F3N5O], denoted TA, as the primary products (EFSA, 2008). TA is a relevant impurity of technical TFS and should not exceed 0.6% for crop protection purposes (EFSA, 2008). During crystallization experiments of TFS (Mereiter, 2011), a new crystal species of triclinic symmetry and space group P1 was obtained the crystal structure of which is reported here. The title compound, (I), is a 1:1 cocrystal of TFS and TA as shown in Scheme 1 and Fig. 1. In this crystal structure, the TFS molecule exhibits geometric features similar to those in CMTFS (Mereiter, 2011). These characteristics are: (i) an approximately planar system formed by the diaminotriazine moiety and the adjacent atoms N2, C10, O5, N1, S1, O1, O6, and C16 (r.m.s. deviation from planarity 0.139 Å); (ii) a flat 2-methylphenyl group inclined to (i) at an angle of 75.8 (1)°; (iii) a flat carboxymethyl group inclined to (ii) by 47.9 (2)°; (iv) a short intramolecular hydrogen bond N1—H1n···N5, N1···N5 = 2.620 (4) Å (Table 1); and (v) a striking intramolecular dipole-dipole interaction between the sulfamide and the carboxylate moiety with the short distances O1···C7 = 2.802 (5) Å and O3···N1 = 2.846 (4) Å, which are important for the conformation of the molecule and its chemical reactivity. The corresponding dimensions in CMTFS are 75.26 (2)° and 48.07 (6)° for the interplanar angles and 2.641 (1), 2.800 (1), and 2.835 (1) Å, respectively, for the distances (Mereiter, 2011). At variance with CMTFS the carbon atom C17 of the CF3 group in (I) is not coplanar with the triazine ring but twisted from it and has a torsion angle of C12—O6—C16—C17 = 127.5 (4)°. The corresponding angle in CMTFS is 176.1 (1)°. The TA molecule in (I) has dimensions similar to the corresponding fragment in the TFS molecule. Here too, is the carbon atom C24 of the CF3 group not coplanar with the rest of the molecule. This CF3 group is disordered over two sets of sites (see section refinement), of which the dominant set has a torsion angle of C19—O7—C23—C24 = -110.7 (4)° and the subordinate set an angle of C19—O7—C23—C24' = -141.0 (8)°. The mutual arrangement of the two components of (I) in the asymmetric unit and their connection by a pair of complementary N—H···N hydrogen bonds, N2—H2n···N8 (N···N = 3.080 (4) Å) and N7—H7na···N3 (N···N = 2.989 (5) Å) is visualized in Fig. 1. The two triazine rings in Fig. 1 deviate only by 0.038 Å from a common l.s. plane. This pair of molecules is linked with another centrosymmetric pair via two hydrogen bonds N7—H7nb···O3i (N···O = 2.996 (4) Å, O3 is a carboxyl oxygen) to form a finite cyclically hydrogen bonded tetramer of two TFS and two TA molecules shown in Fig. 2. The tetramers are stacked one above the other along the a-axis to form infinite columns, as shown in Fig. 3. Coherence within and between the hydrogen-bonded tetramers along the a-axis is provided by slipped π-π-stacking interactions with perpendicular distances of 3.25 Å within hydrogen bonded tetramers and 3.27 Å between adjacent tetramers. These distances refer to the combined mean plane of the two triazine rings in TFS and TA mentioned above; the planes are approximately parallel to either (111) or to its symmetry equivalent (111). A view of the resulting crystal structure seen along the a-axis, i.e. along the π-π-stacked columns, is given in Fig. 4. Perpendicular to the a-axis the columns are held together by van der Waals forces and several unremarkable C—H···O interactions (Table 1). The a-axis is also the needle axis of the crystals. The hydrogen bonded dimer TFS and TA shown in Fig. 1 resembles closely the situation in CMTFS, where a pair of TFS molecules related by a twofold axis is linked via two complementary N—H···N bonds measuring N···N = 2.900 (1) Å (Mereiter, 2011). However, the further spatial arrangement of the molecules in CMTFS differs significantly from (I).

Concluding remark: Cocrystal formation of bioactive compounds is a field of research nowadays very actively pursued with the goal of achieving new solids with superior properties like crystallization propensity, improved chemical stability, solubility, dissolution rate, etc.. In case of the title compound the cocrystal formation is interesting, but is not desirable on following grounds: The triazine amine as one of the two components of the cocrystal of (I) has unwanted biocidal properties, and the cocrystal formation may probably impede the purification of triazine amine contaminated triflusulfuron-methyl by industrial batch crystallization.

Related literature top

For the crystal structure of the herbicide triflusulfuron-methyl, see: Mereiter (2011). For information on the synthesis and herbicidal properties of triflusulfuron-methyl, see: Moon (1989); Peeples et al. (1991); Wittenbach et al. (1994). For general information on the herbicidal properties of triflusulfuron-methyl and its degradation product triazine amine, see: EFSA (2008).

Experimental top

In search of new crystal polymorphs a sample of technical triflusulfuron-methyl contaminated by some triazine amine (2-amino-4-(dimethylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazine) was dissolved in hot ethanol and boiled under reflux for 10 minutes. The solution was then cooled to room temperature and the solvent slowly evaporated within two days. Thin colorless needles of the title compound accompanied by larger crystals of triflusulfuron-methyl were obtained.

Refinement top

H atoms were located in a difference Fourier map, placed in calculated positions (N—H = 0.88 Å, C—H = 0.95 - 0.99 Å) and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso(H) = 1.2Ueq(C,N) for CH, CH2, NH and NH2 groups; Uiso(H) = 1.5Ueq(C) for CH3 groups. The CF3 group of the triazine amine molecule (C24, F4, F5, and F6) is disordered over two sets of sites in a 0.790 (5)/0.210 (5) ratio. In the final refinement both sets of sites were stabilized with three SADI 0.03 restraints of program SHELXL97 for the bonds C23—C24/C23—C24', for the C—F bonds, and for the internal F—F distances. The atoms of the subordinate set of sites were refined with isotropic displacement parameters fixed at Uiso(C) = 0.031 and Uiso(F) = 0.046 Å2 corresponding to the Ueq values of the corresponding dominant sites (mean value of F4, F5, F6 for F4', F5', F6').

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT, SADABS and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. Hydrogen bonds are drawn as dashed red lines. Symmetry code i: 1 - x, 1 - y, 1 - z. Intramolecular interactions are N1···N5 = 2.620 (4) Å, O1···C7 = 2.802 (5) Å, and O3···N1 = 2.846 (4) Å. Here and in all subsequent Figures only the dominant set of sites of the disordered C24F3 group is shown.
[Figure 2] Fig. 2. Top and side view of the cyclically hydrogen bonded tetramer of two TFS and two TA molecules in (I). C-bonded hydrogen atoms omitted for clarity.
[Figure 3] Fig. 3. π-π-Stacking of the hydrogen bonded tetramers shown in Fig. 2 to form a column parallel to the a-axis. The coloured planes are fitted through each two triazine rings. Plane-to-plane distances are given on the right. C-bonded H-atoms omitted for clarity. Origin of the unit cell marked by an asterisk.
[Figure 4] Fig. 4. Packing diagram of (I) in a view down the a-axis. C-bonded H-atoms omitted for clarity. Origin of the unit cell marked by an asterisk.
methyl 2-{[4-dimethylamino-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2- yl]carbamoylsulfamoyl}-3-methylbenzoate– 2-amino-4-dimethylamino-6-(2,2,2-trifluoroethoxy)-1,3,5-triazine (1/1) top
Crystal data top
C7H10F3N5O·C17H19F3N6O6SF(000) = 1504
Mr = 729.64Dx = 1.591 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3426 reflections
a = 9.0388 (18) Åθ = 2.8–22.4°
b = 12.120 (2) ŵ = 0.21 mm1
c = 27.820 (5) ÅT = 100 K
β = 91.883 (3)°Needle, colourless
V = 3046.0 (10) Å30.42 × 0.03 × 0.03 mm
Z = 4
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
5239 independent reflections
Radiation source: fine-focus sealed tube3575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ϕ and ω scansθmax = 24.9°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.87, Tmax = 0.99k = 1414
29573 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0577P)2 + 6.8112P]
where P = (Fo2 + 2Fc2)/3
5239 reflections(Δ/σ)max < 0.001
461 parametersΔρmax = 0.36 e Å3
31 restraintsΔρmin = 0.45 e Å3
Crystal data top
C7H10F3N5O·C17H19F3N6O6SV = 3046.0 (10) Å3
Mr = 729.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0388 (18) ŵ = 0.21 mm1
b = 12.120 (2) ÅT = 100 K
c = 27.820 (5) Å0.42 × 0.03 × 0.03 mm
β = 91.883 (3)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
5239 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3575 reflections with I > 2σ(I)
Tmin = 0.87, Tmax = 0.99Rint = 0.085
29573 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05931 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
5239 reflectionsΔρmin = 0.45 e Å3
461 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.56559 (11)0.62819 (8)0.28174 (3)0.0203 (2)
F10.6128 (3)0.0664 (2)0.52691 (10)0.0370 (6)
F20.4339 (3)0.0220 (2)0.57256 (9)0.0375 (7)
F30.5905 (3)0.1477 (2)0.59451 (8)0.0375 (7)
O10.4429 (3)0.5738 (2)0.25762 (10)0.0264 (7)
O20.7026 (3)0.6337 (2)0.25783 (10)0.0255 (7)
O30.3005 (3)0.6299 (2)0.35343 (10)0.0281 (7)
O40.1280 (3)0.6875 (2)0.29946 (10)0.0309 (7)
O50.7345 (3)0.6836 (2)0.37178 (10)0.0247 (7)
O60.5061 (3)0.2805 (2)0.51957 (9)0.0231 (6)
N10.5902 (4)0.5577 (3)0.33139 (11)0.0212 (8)
H1N0.55230.49090.33260.025*
N20.6642 (3)0.5309 (3)0.41268 (11)0.0181 (7)
H2N0.72530.55020.43650.022*
N30.5872 (3)0.4023 (3)0.46661 (11)0.0189 (7)
N40.4099 (3)0.2653 (3)0.44242 (11)0.0176 (7)
N50.4945 (3)0.3976 (3)0.38546 (11)0.0184 (7)
N60.3250 (4)0.2637 (3)0.36367 (11)0.0205 (7)
C10.5087 (4)0.7661 (3)0.29462 (13)0.0221 (9)
C20.3565 (4)0.7803 (3)0.30249 (13)0.0225 (9)
C30.2952 (5)0.8858 (4)0.29946 (14)0.0280 (10)
H30.19200.89640.30310.034*
C40.3865 (5)0.9744 (4)0.29105 (15)0.0317 (11)
H40.34531.04620.28770.038*
C50.5362 (5)0.9600 (4)0.28741 (14)0.0303 (11)
H50.59681.02340.28420.036*
C60.6036 (5)0.8560 (3)0.28827 (14)0.0238 (9)
C70.2625 (4)0.6893 (4)0.32031 (14)0.0239 (9)
C80.0305 (5)0.6065 (4)0.31996 (17)0.0349 (11)
H8A0.06340.60490.30140.052*
H8B0.01190.62630.35340.052*
H8C0.07710.53360.31900.052*
C90.7692 (5)0.8509 (4)0.28342 (16)0.0312 (11)
H9A0.81170.79940.30720.047*
H9B0.81170.92440.28880.047*
H9C0.79190.82560.25100.047*
C100.6673 (4)0.5971 (3)0.37173 (14)0.0199 (9)
C110.5788 (4)0.4397 (3)0.42095 (13)0.0172 (8)
C120.4983 (4)0.3161 (3)0.47348 (13)0.0181 (9)
C130.4114 (4)0.3103 (3)0.39785 (13)0.0180 (8)
C140.3193 (5)0.3087 (4)0.31491 (15)0.0336 (11)
H14A0.41660.30100.30070.050*
H14B0.29230.38700.31600.050*
H14C0.24520.26840.29530.050*
C150.2340 (5)0.1684 (3)0.37523 (15)0.0239 (9)
H15A0.17710.18470.40380.036*
H15B0.29790.10440.38170.036*
H15C0.16600.15200.34800.036*
C160.4144 (4)0.1905 (3)0.53311 (14)0.0213 (9)
H16A0.36340.15820.50440.026*
H16B0.33860.21600.55550.026*
C170.5130 (5)0.1069 (3)0.55699 (15)0.0255 (10)
O70.9666 (3)0.7180 (2)0.44998 (10)0.0295 (7)
N70.7687 (4)0.4755 (3)0.55253 (12)0.0223 (8)
H7NA0.71090.45090.52880.027*
H7NB0.76340.44650.58140.027*
N80.8653 (3)0.5975 (3)0.49936 (11)0.0189 (7)
N91.0539 (4)0.7211 (3)0.52842 (12)0.0231 (8)
N100.9501 (3)0.5909 (3)0.58237 (11)0.0203 (8)
N111.1295 (4)0.7147 (3)0.60813 (12)0.0265 (8)
C180.8641 (4)0.5565 (3)0.54471 (14)0.0168 (8)
C190.9634 (4)0.6784 (3)0.49539 (14)0.0197 (9)
C201.0409 (4)0.6737 (3)0.57225 (14)0.0218 (9)
C211.1218 (5)0.6725 (4)0.65693 (15)0.0350 (11)
H21A1.09980.59340.65590.053*
H21B1.04340.71120.67370.053*
H21C1.21690.68450.67410.053*
C221.2214 (5)0.8123 (4)0.60188 (17)0.0310 (11)
H22A1.23140.82680.56750.046*
H22B1.31960.79960.61690.046*
H22C1.17510.87590.61700.046*
C231.0678 (5)0.8054 (4)0.44104 (18)0.0373 (12)
H23A1.13080.81880.47020.045*
H23B1.13290.78410.41460.045*
C240.9862 (6)0.9065 (5)0.4312 (2)0.0309 (14)0.790 (5)
F41.0785 (5)0.9900 (3)0.42348 (16)0.0455 (13)0.790 (5)
F50.8890 (5)0.9023 (4)0.39341 (13)0.0451 (13)0.790 (5)
F60.9060 (4)0.9328 (3)0.46897 (14)0.0463 (11)0.790 (5)
C24'1.0073 (19)0.8858 (14)0.4087 (6)0.031*0.210 (5)
F4'1.089 (2)0.9758 (16)0.4046 (7)0.046*0.210 (5)
F5'0.8679 (19)0.9135 (19)0.4108 (7)0.046*0.210 (5)
F6'1.0249 (14)0.8267 (10)0.3691 (4)0.046*0.210 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0215 (5)0.0214 (5)0.0180 (5)0.0006 (4)0.0005 (4)0.0022 (4)
F10.0255 (13)0.0324 (15)0.0534 (17)0.0003 (12)0.0053 (12)0.0091 (13)
F20.0352 (15)0.0279 (14)0.0492 (16)0.0085 (12)0.0033 (12)0.0154 (12)
F30.0422 (16)0.0447 (16)0.0247 (13)0.0129 (13)0.0143 (12)0.0080 (12)
O10.0283 (16)0.0277 (16)0.0228 (15)0.0022 (13)0.0050 (12)0.0015 (13)
O20.0235 (15)0.0285 (16)0.0250 (15)0.0012 (13)0.0055 (12)0.0008 (13)
O30.0240 (15)0.0363 (17)0.0241 (16)0.0005 (14)0.0005 (13)0.0098 (14)
O40.0246 (16)0.0371 (18)0.0306 (17)0.0011 (14)0.0037 (13)0.0042 (14)
O50.0268 (16)0.0226 (16)0.0246 (15)0.0058 (13)0.0023 (12)0.0034 (13)
O60.0266 (15)0.0256 (16)0.0171 (14)0.0106 (13)0.0006 (12)0.0057 (12)
N10.0266 (19)0.0157 (17)0.0210 (18)0.0041 (15)0.0029 (15)0.0025 (14)
N20.0200 (17)0.0176 (17)0.0165 (16)0.0026 (14)0.0022 (14)0.0013 (14)
N30.0203 (17)0.0190 (17)0.0174 (17)0.0013 (14)0.0002 (14)0.0038 (14)
N40.0195 (17)0.0161 (17)0.0172 (17)0.0011 (14)0.0018 (14)0.0007 (14)
N50.0223 (18)0.0149 (17)0.0179 (17)0.0013 (14)0.0012 (14)0.0004 (14)
N60.0205 (18)0.0198 (18)0.0209 (18)0.0043 (15)0.0040 (14)0.0010 (14)
C10.028 (2)0.025 (2)0.013 (2)0.0004 (19)0.0004 (17)0.0039 (17)
C20.027 (2)0.029 (2)0.0112 (19)0.0020 (19)0.0018 (17)0.0025 (17)
C30.034 (2)0.031 (3)0.019 (2)0.007 (2)0.0013 (18)0.0015 (19)
C40.045 (3)0.026 (2)0.024 (2)0.013 (2)0.007 (2)0.0048 (19)
C50.047 (3)0.023 (2)0.021 (2)0.002 (2)0.003 (2)0.0041 (18)
C60.030 (2)0.027 (2)0.015 (2)0.0036 (19)0.0035 (17)0.0028 (17)
C70.021 (2)0.030 (2)0.020 (2)0.0044 (19)0.0001 (17)0.0036 (19)
C80.021 (2)0.040 (3)0.043 (3)0.006 (2)0.000 (2)0.005 (2)
C90.034 (3)0.030 (3)0.029 (2)0.008 (2)0.003 (2)0.005 (2)
C100.018 (2)0.022 (2)0.020 (2)0.0035 (18)0.0022 (17)0.0001 (17)
C110.017 (2)0.017 (2)0.018 (2)0.0030 (17)0.0025 (16)0.0015 (16)
C120.020 (2)0.020 (2)0.014 (2)0.0003 (18)0.0012 (16)0.0016 (16)
C130.019 (2)0.017 (2)0.018 (2)0.0030 (17)0.0052 (16)0.0007 (17)
C140.046 (3)0.034 (3)0.020 (2)0.009 (2)0.008 (2)0.003 (2)
C150.026 (2)0.020 (2)0.026 (2)0.0012 (18)0.0015 (18)0.0030 (18)
C160.020 (2)0.023 (2)0.021 (2)0.0070 (18)0.0007 (17)0.0032 (18)
C170.028 (2)0.024 (2)0.024 (2)0.0104 (19)0.0005 (19)0.0041 (19)
O70.0242 (16)0.0336 (17)0.0304 (17)0.0128 (13)0.0059 (13)0.0152 (14)
N70.0244 (18)0.0258 (19)0.0164 (17)0.0059 (16)0.0016 (14)0.0028 (15)
N80.0188 (17)0.0189 (17)0.0191 (17)0.0002 (14)0.0009 (14)0.0020 (14)
N90.0217 (18)0.0203 (18)0.0269 (19)0.0009 (15)0.0048 (15)0.0023 (15)
N100.0207 (18)0.0220 (19)0.0183 (17)0.0004 (15)0.0006 (14)0.0030 (14)
N110.0265 (19)0.027 (2)0.0258 (19)0.0064 (16)0.0035 (15)0.0050 (16)
C180.0152 (19)0.015 (2)0.020 (2)0.0055 (16)0.0003 (16)0.0014 (16)
C190.018 (2)0.017 (2)0.024 (2)0.0020 (17)0.0012 (17)0.0020 (17)
C200.020 (2)0.021 (2)0.023 (2)0.0029 (18)0.0002 (18)0.0043 (18)
C210.040 (3)0.039 (3)0.026 (2)0.009 (2)0.005 (2)0.005 (2)
C220.027 (2)0.024 (2)0.041 (3)0.006 (2)0.008 (2)0.006 (2)
C230.030 (3)0.037 (3)0.044 (3)0.014 (2)0.004 (2)0.016 (2)
C240.028 (3)0.026 (3)0.038 (4)0.012 (3)0.006 (3)0.009 (3)
F40.039 (2)0.027 (2)0.071 (3)0.0163 (18)0.002 (2)0.017 (2)
F50.051 (3)0.038 (2)0.044 (3)0.0095 (19)0.024 (2)0.017 (2)
F60.037 (2)0.033 (2)0.069 (3)0.0029 (16)0.0150 (19)0.0078 (18)
Geometric parameters (Å, º) top
S1—O21.426 (3)C9—H9B0.9800
S1—O11.438 (3)C9—H9C0.9800
S1—N11.633 (3)C14—H14A0.9800
S1—C11.789 (4)C14—H14B0.9800
F1—C171.343 (5)C14—H14C0.9800
F2—C171.334 (5)C15—H15A0.9800
F3—C171.333 (5)C15—H15B0.9800
O3—C71.211 (5)C15—H15C0.9800
O4—C71.329 (5)C16—C171.491 (6)
O4—C81.448 (5)C16—H16A0.9900
O5—C101.213 (5)C16—H16B0.9900
O6—C121.353 (4)O7—C191.353 (5)
O6—C161.428 (5)O7—C231.427 (5)
N1—C101.386 (5)N7—C181.329 (5)
N1—H1N0.8800N7—H7NA0.8800
N2—C111.371 (5)N7—H7NB0.8800
N2—C101.395 (5)N8—C191.329 (5)
N2—H2N0.8800N8—C181.357 (5)
N3—C121.336 (5)N9—C191.316 (5)
N3—C111.349 (5)N9—C201.356 (5)
N4—C121.311 (5)N10—C201.332 (5)
N4—C131.355 (5)N10—C181.350 (5)
N5—C111.329 (5)N11—C201.354 (5)
N5—C131.349 (5)N11—C211.454 (5)
N6—C131.335 (5)N11—C221.459 (5)
N6—C151.461 (5)C21—H21A0.9800
N6—C141.461 (5)C21—H21B0.9800
C1—C61.402 (6)C21—H21C0.9800
C1—C21.410 (6)C22—H22A0.9800
C2—C31.394 (6)C22—H22B0.9800
C2—C71.488 (6)C22—H22C0.9800
C3—C41.379 (6)C23—C24'1.422 (18)
C3—H30.9500C23—C241.451 (7)
C4—C51.371 (6)C23—H23A0.9900
C4—H40.9500C23—H23B0.9900
C5—C61.400 (6)C24—F41.334 (6)
C5—H50.9500C24—F61.335 (7)
C6—C91.509 (6)C24—F51.349 (6)
C8—H8A0.9800C24'—F5'1.307 (14)
C8—H8B0.9800C24'—F4'1.322 (14)
C8—H8C0.9800C24'—F6'1.330 (14)
C9—H9A0.9800
O2—S1—O1118.18 (17)N6—C15—H15A109.5
O2—S1—N1108.84 (17)N6—C15—H15B109.5
O1—S1—N1103.68 (17)H15A—C15—H15B109.5
O2—S1—C1108.01 (18)N6—C15—H15C109.5
O1—S1—C1107.44 (18)H15A—C15—H15C109.5
N1—S1—C1110.57 (17)H15B—C15—H15C109.5
C7—O4—C8113.5 (3)O6—C16—C17107.0 (3)
C12—O6—C16118.8 (3)O6—C16—H16A110.3
C10—N1—S1123.8 (3)C17—C16—H16A110.3
C10—N1—H1N118.1O6—C16—H16B110.3
S1—N1—H1N118.1C17—C16—H16B110.3
C11—N2—C10128.8 (3)H16A—C16—H16B108.6
C11—N2—H2N115.6F3—C17—F2107.8 (3)
C10—N2—H2N115.6F3—C17—F1106.1 (3)
C12—N3—C11112.5 (3)F2—C17—F1107.4 (3)
C12—N4—C13113.0 (3)F3—C17—C16112.8 (3)
C11—N5—C13114.9 (3)F2—C17—C16110.5 (3)
C13—N6—C15119.9 (3)F1—C17—C16112.0 (3)
C13—N6—C14120.4 (3)C19—O7—C23117.4 (3)
C15—N6—C14119.8 (3)C18—N7—H7NA120.0
C6—C1—C2121.9 (4)C18—N7—H7NB120.0
C6—C1—S1121.3 (3)H7NA—N7—H7NB120.0
C2—C1—S1115.7 (3)C19—N8—C18111.9 (3)
C3—C2—C1119.4 (4)C19—N9—C20113.0 (3)
C3—C2—C7118.0 (4)C20—N10—C18114.3 (3)
C1—C2—C7122.1 (4)C20—N11—C21120.9 (4)
C4—C3—C2119.0 (4)C20—N11—C22122.3 (4)
C4—C3—H3120.5C21—N11—C22116.2 (3)
C2—C3—H3120.5N7—C18—N10117.5 (3)
C5—C4—C3120.8 (4)N7—C18—N8116.6 (3)
C5—C4—H4119.6N10—C18—N8125.9 (4)
C3—C4—H4119.6N9—C19—N8129.3 (4)
C4—C5—C6122.9 (4)N9—C19—O7118.7 (3)
C4—C5—H5118.5N8—C19—O7112.0 (3)
C6—C5—H5118.5N10—C20—N11118.3 (4)
C5—C6—C1115.7 (4)N10—C20—N9125.5 (4)
C5—C6—C9117.9 (4)N11—C20—N9116.2 (4)
C1—C6—C9126.4 (4)N11—C21—H21A109.5
O3—C7—O4123.7 (4)N11—C21—H21B109.5
O3—C7—C2122.9 (4)H21A—C21—H21B109.5
O4—C7—C2113.0 (4)N11—C21—H21C109.5
O4—C8—H8A109.5H21A—C21—H21C109.5
O4—C8—H8B109.5H21B—C21—H21C109.5
H8A—C8—H8B109.5N11—C22—H22A109.5
O4—C8—H8C109.5N11—C22—H22B109.5
H8A—C8—H8C109.5H22A—C22—H22B109.5
H8B—C8—H8C109.5N11—C22—H22C109.5
C6—C9—H9A109.5H22A—C22—H22C109.5
C6—C9—H9B109.5H22B—C22—H22C109.5
H9A—C9—H9B109.5O7—C23—C24109.6 (4)
C6—C9—H9C109.5O7—C23—H23A109.5
H9A—C9—H9C109.5C24—C23—H23A107.0
H9B—C9—H9C109.5O7—C23—H23B109.6
O5—C10—N1122.5 (4)C24—C23—H23B113.0
O5—C10—N2121.4 (4)H23A—C23—H23B108.1
N1—C10—N2116.1 (3)C24'—C23—O7112.5 (8)
N5—C11—N3125.7 (4)C24'—C23—H23A127.2
N5—C11—N2119.8 (3)C24'—C23—H23B86.3
N3—C11—N2114.5 (3)F4—C24—F6107.7 (5)
N4—C12—N3129.0 (3)F4—C24—F5107.3 (4)
N4—C12—O6119.1 (3)F6—C24—F5105.4 (5)
N3—C12—O6111.8 (3)F4—C24—C23110.7 (5)
N6—C13—N5117.8 (3)F6—C24—C23109.8 (4)
N6—C13—N4117.3 (3)F5—C24—C23115.4 (5)
N5—C13—N4124.9 (3)F5'—C24'—F4'109.3 (16)
N6—C14—H14A109.5F5'—C24'—F6'108.4 (15)
N6—C14—H14B109.5F4'—C24'—F6'106.9 (14)
H14A—C14—H14B109.5F5'—C24'—C23120.0 (17)
N6—C14—H14C109.5F4'—C24'—C23114.6 (16)
H14A—C14—H14C109.5F6'—C24'—C2395.8 (12)
H14B—C14—H14C109.5
O2—S1—N1—C1072.3 (3)C16—O6—C12—N41.8 (5)
O1—S1—N1—C10161.1 (3)C16—O6—C12—N3178.3 (3)
C1—S1—N1—C1046.2 (4)C15—N6—C13—N5179.5 (3)
O2—S1—C1—C69.8 (4)C14—N6—C13—N51.5 (5)
O1—S1—C1—C6138.3 (3)C15—N6—C13—N40.1 (5)
N1—S1—C1—C6109.2 (3)C14—N6—C13—N4179.1 (4)
O2—S1—C1—C2158.7 (3)C11—N5—C13—N6179.5 (3)
O1—S1—C1—C230.2 (3)C11—N5—C13—N40.2 (5)
N1—S1—C1—C282.3 (3)C12—N4—C13—N6179.8 (3)
C6—C1—C2—C36.1 (6)C12—N4—C13—N50.4 (5)
S1—C1—C2—C3162.3 (3)C12—O6—C16—C17127.5 (4)
C6—C1—C2—C7165.6 (4)O6—C16—C17—F356.6 (4)
S1—C1—C2—C726.0 (5)O6—C16—C17—F2177.4 (3)
C1—C2—C3—C43.0 (6)O6—C16—C17—F163.0 (4)
C7—C2—C3—C4169.0 (4)C20—N10—C18—N7178.7 (3)
C2—C3—C4—C52.3 (6)C20—N10—C18—N80.9 (5)
C3—C4—C5—C64.9 (7)C19—N8—C18—N7179.5 (3)
C4—C5—C6—C11.9 (6)C19—N8—C18—N100.0 (5)
C4—C5—C6—C9179.4 (4)C20—N9—C19—N80.4 (6)
C2—C1—C6—C53.6 (6)C20—N9—C19—O7179.4 (3)
S1—C1—C6—C5164.1 (3)C18—N8—C19—N90.2 (6)
C2—C1—C6—C9175.0 (4)C18—N8—C19—O7178.9 (3)
S1—C1—C6—C917.2 (6)C23—O7—C19—N90.8 (5)
C8—O4—C7—O30.4 (6)C23—O7—C19—N8180.0 (4)
C8—O4—C7—C2174.0 (3)C18—N10—C20—N11179.0 (3)
C3—C2—C7—O3126.3 (4)C18—N10—C20—N91.6 (6)
C1—C2—C7—O345.5 (6)C21—N11—C20—N102.4 (6)
C3—C2—C7—O447.4 (5)C22—N11—C20—N10173.6 (4)
C1—C2—C7—O4140.8 (4)C21—N11—C20—N9178.1 (4)
S1—N1—C10—O57.0 (5)C22—N11—C20—N96.9 (6)
S1—N1—C10—N2173.4 (3)C19—N9—C20—N101.4 (6)
C11—N2—C10—O5170.2 (4)C19—N9—C20—N11179.2 (3)
C11—N2—C10—N110.2 (6)C19—O7—C23—C24110.7 (4)
C13—N5—C11—N30.3 (5)O7—C23—C24—F4179.0 (4)
C13—N5—C11—N2177.9 (3)O7—C23—C24—F660.1 (5)
C12—N3—C11—N50.7 (5)O7—C23—C24—F558.8 (6)
C12—N3—C11—N2177.6 (3)C19—O7—C23—C24'141.0 (8)
C10—N2—C11—N56.9 (6)O7—C23—C24'—F5'37.7 (17)
C10—N2—C11—N3171.5 (4)C24—C23—C24'—F5'52.0 (16)
C13—N4—C12—N30.9 (6)O7—C23—C24'—F4'171.0 (11)
C13—N4—C12—O6179.2 (3)C24—C23—C24'—F4'81.3 (18)
C11—N3—C12—N41.1 (6)O7—C23—C24'—F6'77.5 (11)
C11—N3—C12—O6179.1 (3)C24—C23—C24'—F6'167 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N50.881.942.620 (4)133
N2—H2N···N80.882.203.080 (4)176
N7—H7NA···N30.882.112.989 (5)174
N7—H7NB···O3i0.882.132.996 (4)167
C5—H5···O2ii0.952.573.434 (5)152
C8—H8A···O2iii0.982.433.398 (5)170
C9—H9A···O50.982.403.210 (5)140
C16—H16B···O5i0.992.473.373 (5)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC7H10F3N5O·C17H19F3N6O6S
Mr729.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.0388 (18), 12.120 (2), 27.820 (5)
β (°) 91.883 (3)
V3)3046.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.42 × 0.03 × 0.03
Data collection
DiffractometerBruker KAPPA APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.87, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
29573, 5239, 3575
Rint0.085
(sin θ/λ)max1)0.591
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.152, 1.04
No. of reflections5239
No. of parameters461
No. of restraints31
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.45

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SAINT, SADABS and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N50.881.942.620 (4)132.9
N2—H2N···N80.882.203.080 (4)176.0
N7—H7NA···N30.882.112.989 (5)173.5
N7—H7NB···O3i0.882.132.996 (4)167.1
C5—H5···O2ii0.952.573.434 (5)152.1
C8—H8A···O2iii0.982.433.398 (5)170.4
C9—H9A···O50.982.403.210 (5)139.6
C16—H16B···O5i0.992.473.373 (5)151.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+1/2; (iii) x1, y, z.
 

References

First citationBruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEFSA (2008). European Food Saftey Authority. Scientific Report, 195, 1–115. (Conclusion on the peer review of triflusulfuron) www.efsa.europa.eu/en/efsajournal/pub/195r.html.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMereiter, K. (2011). Acta Cryst. E67, o1778–o1779.  CrossRef IUCr Journals Google Scholar
First citationMoon, M. P. (1989). WO Patent 8909214 A1.  Google Scholar
First citationPeeples, K. A., Moon, M. P., Lichtner, F. T., Wittenbach, V. A., Carski, T. H., Woodward, M. D., Graham, K. & Reinke, H. (1991). Weeds, 2, 25–30.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWittenbach, V. A., Koeppe, M. K., Lichtner, F. T., Zimmerman, W. T. & Reiser, R. W. (1994). Pestic. Biochem. Physiol. 49, 72–81.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2321-o2322
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds