metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­{1-[(1H-1,2,3-benzotriazol-1-yl)meth­yl]-1H-1,2,4-triazole}sulfato­cadmium dihydrate

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, bZhengZhou Trade and Industry Schools, Zhengzhou 450000, People's Republic of China, and cDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: 13623712409@139.com

(Received 6 July 2011; accepted 10 August 2011; online 17 August 2011)

In the title complex, [Cd(SO4)(C9H8N6)(H2O)4]·2H2O, the CdII ion is six-coordinated by one N atom from a 1-[(1H-1,2,3-benzotriazol-1-yl)meth­yl]-1H-1,2,4-triazole ligand and by five O atoms from four water mol­ecules and one monodentate sulfate anion in a distorted octa­hedral geometry. The sulfate tetra­hedron is rotationally disordered over two positions in a 0.651 (12):0.349 (12) ratio. In the crystal, adjacent mol­ecules are linked through O—H⋯O and O—H⋯N hydrogen bonds into a three-dimensional network.

Related literature

For background to complexes based on triazolyl or benzotriazolyl ligands, see: Meng et al. (2009[Meng, X.-R., Jin, S.-Z., Hou, H.-W., Du, C.-X. & Ng, S. W. (2009). Inorg. Chim. Acta, 362, 1519-1527.]); Yang et al. (2011[Yang, H., Zhang, J. & Zhao, D. (2011). Acta Cryst. E67, m602.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(SO4)(C9H8N6)(H2O)4]·2H2O

  • Mr = 516.77

  • Triclinic, [P \overline 1]

  • a = 7.7154 (15) Å

  • b = 8.0667 (16) Å

  • c = 16.369 (3) Å

  • α = 100.12 (3)°

  • β = 91.64 (3)°

  • γ = 112.38 (3)°

  • V = 922.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 293 K

  • 0.19 × 0.17 × 0.14 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.782, Tmax = 0.832

  • 8812 measured reflections

  • 3608 independent reflections

  • 3361 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.057

  • S = 1.05

  • 3608 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8W⋯O9 0.85 1.89 2.732 (3) 170
O6—H4W⋯O2′ 0.85 2.39 2.905 (19) 119
O5—H1W⋯O4i 0.85 1.91 2.719 (4) 157
O5—H1W⋯O4′i 0.85 1.84 2.672 (7) 166
O5—H2W⋯O1ii 0.85 1.97 2.817 (3) 172
O8—H7W⋯O3ii 0.85 2.00 2.795 (4) 156
O8—H7W⋯O3′ii 0.85 2.38 3.127 (15) 147
O6—H3W⋯O10iii 0.85 1.83 2.680 (3) 178
O6—H4W⋯N2iv 0.85 2.27 3.025 (3) 148
O7—H5W⋯O3v 0.85 1.93 2.730 (4) 157
O9—H9W⋯O4v 0.85 2.00 2.795 (6) 155
O7—H5W⋯O3′v 0.85 1.91 2.720 (8) 159
O9—H9W⋯O3′v 0.85 2.06 2.844 (14) 155
O7—H6W⋯O9vi 0.85 1.97 2.791 (3) 161
O9—H10W⋯O1vii 0.85 2.06 2.906 (3) 175
O9—H10W⋯O4′vii 0.85 2.48 3.030 (11) 123
O10—H11W⋯N6viii 0.85 2.01 2.861 (3) 177
O10—H12W⋯O2ix 0.85 2.02 2.809 (8) 155
O10—H12W⋯O4′ix 0.85 2.19 2.944 (14) 148
O10—H12W⋯O2′ix 0.85 2.51 3.280 (16) 151
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+2, -z+1; (iii) x-1, y+1, z; (iv) x, y+1, z; (v) x-1, y-1, z; (vi) -x-1, -y+1, -z+1; (vii) -x, -y+1, -z+1; (viii) -x+1, -y+1, -z+2; (ix) x, y-1, z.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Numerous supramolecular complexes based on triazolyl or benzotriazolyl ligands which have abundant N-donor sites have been synthesized. These show a variety of discrete or infinite frameworks of one-, two-, and three-dimensional motifs (Meng et al., 2009; Yang et al., 2011). In order to further explore frameworks with new structures, we used 1H-1,2,3-benzotriazol-1-yl)methyl]-1H-1,2,4-triazole to react with CdSO4 at room temperature and obtained the title complex [Cd(SO4) (C9H8N6) (H2O)4] (H2O)2, which is reported here. As shown in Fig. 1, the CdII ion is located in a distorted octahedral coordination environment and is coordinated to five oxygen atoms from four water molecules and one monodentate sulfate anion and one nitrogen atom from the 1H-1,2,3-benzotriazol-1-yl)methyl]-1H-1,2,4-triazole ligand. Atoms O1, O6, O7, O8 and Cd1 are nearly co-planar (the mean deviation from the plane is 0.0473 Å), O5 and N1 atoms are located in the apical positions. The SO4 tetrahedron is rotationally disordered about its S—O axis passing though O1 and S1 atoms. Intramolecular O—H···O hydrogen bonds stabilize the molecular configuration and O—H···O, O—H···N hydrogen bonds between adjacent molecules consolidate the crystal packing (Fig. 2).

Related literature top

For background to complexes based on triazolyl or benzotriazolyl ligands, see: Meng et al. (2009); Yang et al. (2011).

Experimental top

The ligand 1H-1,2,3-benzotriazol-1-yl)methyl]-1H-1,2,4-triazole (0.1 mmol) in methanol (4 ml) was added dropwise to an aqueous solution (3 ml) of cadmium sulfate (0.1 mmol). The resulting solution was allowed to stand at room temperature. After three weeks colourless crystals of good quality were obtained from the filtrate and dried in air.

Refinement top

The disordered sulfate anion has been modelled by splitting it into two parts (O2, O3, O4 and O2', O3', O4'), the site occupation factors of which refined in a ratio of 0.651 (12):0.349 (12). H atoms are positioned geometrically and refined as riding atoms, with C-H = 0.93 Å (aromatic), 0.97 Å (CH2) and O-H = 0.85 Å, and with Uiso(H) = 1.2 Ueq(C-H) or 1.5 Ueq(O-H).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex. Displacement ellipsoids are displayed at the 30% probability level. Only one orientation of the disordered SO42- tetrahedron is shown.
[Figure 2] Fig. 2. View of hydrogen bonds in the title complex. Hydrogen bonds are indicated by dashed lines.
Tetraaqua{1-[(1H-1,2,3-benzotriazol-1-yl)methyl]-1H- 1,2,4-triazole}sulfatocadmium dihydrate top
Crystal data top
[Cd(SO4)(C9H8N6)(H2O)4]·2H2OZ = 2
Mr = 516.77F(000) = 520
Triclinic, P1Dx = 1.861 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7154 (15) ÅCell parameters from 3156 reflections
b = 8.0667 (16) Åθ = 2.5–27.9°
c = 16.369 (3) ŵ = 1.36 mm1
α = 100.12 (3)°T = 293 K
β = 91.64 (3)°Prism, colourless
γ = 112.38 (3)°0.19 × 0.17 × 0.14 mm
V = 922.3 (3) Å3
Data collection top
Rigaku Saturn CCD
diffractometer
3608 independent reflections
Radiation source: fine-focus sealed tube3361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 28.6 pixels mm-1θmax = 26.0°, θmin = 2.5°
ω scansh = 99
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 99
Tmin = 0.782, Tmax = 0.832l = 1920
8812 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0278P)2 + 0.3915P]
where P = (Fo2 + 2Fc2)/3
3608 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cd(SO4)(C9H8N6)(H2O)4]·2H2Oγ = 112.38 (3)°
Mr = 516.77V = 922.3 (3) Å3
Triclinic, P1Z = 2
a = 7.7154 (15) ÅMo Kα radiation
b = 8.0667 (16) ŵ = 1.36 mm1
c = 16.369 (3) ÅT = 293 K
α = 100.12 (3)°0.19 × 0.17 × 0.14 mm
β = 91.64 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
3608 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3361 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.832Rint = 0.020
8812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.05Δρmax = 0.56 e Å3
3608 reflectionsΔρmin = 0.32 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.08817 (2)0.82498 (2)0.629897 (11)0.02758 (7)
N10.0196 (3)0.6456 (3)0.69209 (13)0.0317 (5)
N20.0601 (3)0.4169 (3)0.73914 (14)0.0350 (5)
N30.2076 (3)0.5783 (3)0.76785 (12)0.0291 (4)
N40.3177 (3)0.5906 (3)0.90746 (13)0.0326 (5)
N50.3149 (4)0.7462 (3)0.95407 (15)0.0458 (6)
N60.2707 (4)0.7145 (4)1.02726 (15)0.0490 (6)
O10.2166 (2)0.9862 (2)0.60171 (11)0.0379 (4)
O20.3964 (14)1.1563 (16)0.7348 (7)0.0486 (17)0.651 (12)
O30.3456 (6)1.3130 (5)0.6316 (4)0.0443 (13)0.651 (12)
O40.5488 (4)1.1527 (6)0.6098 (3)0.0417 (15)0.651 (12)
O2'0.345 (2)1.183 (3)0.7336 (12)0.049 (3)0.349 (12)
O3'0.438 (2)1.2932 (10)0.6056 (5)0.071 (4)0.349 (12)
O4'0.5348 (11)1.0724 (17)0.6482 (7)0.078 (4)0.349 (12)
O50.1905 (3)1.0094 (3)0.56985 (11)0.0386 (4)
H1W0.28701.02650.58640.058*
H2W0.18681.01550.51860.058*
O60.0542 (3)1.0205 (3)0.75212 (11)0.0434 (5)
H3W0.15471.02160.77180.065*
H4W0.02111.12710.74820.065*
O70.4009 (2)0.6650 (3)0.64632 (13)0.0440 (5)
H5W0.45230.55160.64690.066*
H6W0.47060.70030.61870.066*
O80.1160 (3)0.6613 (3)0.49667 (11)0.0438 (5)
H7W0.16160.70130.46040.066*
H8W0.18140.54790.49280.066*
O90.3463 (3)0.2982 (3)0.46744 (13)0.0448 (5)
H9W0.40380.26700.50900.067*
H10W0.31560.20990.44720.067*
O100.6339 (3)0.0317 (3)0.81643 (12)0.0507 (5)
H11W0.65750.10560.86310.076*
H12W0.58470.06890.78020.076*
C10.0485 (4)0.4643 (3)0.69349 (16)0.0334 (6)
H1A0.16250.38080.66450.040*
C20.1805 (4)0.7115 (3)0.73996 (16)0.0351 (6)
H2A0.26300.83400.75230.042*
C30.3661 (3)0.5908 (4)0.82319 (15)0.0337 (6)
H3A0.40060.48790.80380.040*
H3B0.47400.70230.82180.040*
C40.2737 (3)0.4545 (4)0.95223 (15)0.0310 (5)
C50.2629 (4)0.2757 (4)0.93464 (18)0.0397 (6)
H5A0.28440.22260.88280.048*
C60.2185 (4)0.1827 (4)0.9985 (2)0.0536 (8)
H6A0.20990.06260.98980.064*
C70.1853 (4)0.2624 (5)1.0768 (2)0.0590 (9)
H7A0.15380.19321.11800.071*
C80.1983 (4)0.4385 (6)1.09375 (19)0.0569 (9)
H8A0.17780.49141.14580.068*
C90.2439 (4)0.5364 (4)1.02929 (16)0.0398 (6)
S10.38047 (8)1.14858 (8)0.64711 (4)0.02752 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02582 (10)0.02909 (11)0.02891 (11)0.01048 (8)0.00083 (7)0.00959 (7)
N10.0320 (11)0.0299 (11)0.0327 (12)0.0096 (9)0.0026 (9)0.0116 (9)
N20.0355 (12)0.0249 (11)0.0421 (13)0.0093 (9)0.0025 (10)0.0070 (9)
N30.0284 (11)0.0295 (11)0.0292 (11)0.0104 (9)0.0007 (9)0.0081 (9)
N40.0379 (12)0.0340 (12)0.0274 (11)0.0173 (10)0.0031 (9)0.0037 (9)
N50.0579 (15)0.0407 (14)0.0426 (14)0.0280 (12)0.0038 (12)0.0004 (11)
N60.0556 (15)0.0610 (17)0.0357 (14)0.0349 (13)0.0019 (11)0.0035 (12)
O10.0281 (9)0.0364 (10)0.0360 (10)0.0002 (8)0.0014 (8)0.0029 (8)
O20.052 (4)0.061 (4)0.030 (2)0.019 (3)0.002 (3)0.011 (2)
O30.050 (2)0.0294 (17)0.054 (3)0.0158 (16)0.0026 (18)0.0101 (17)
O40.0226 (15)0.046 (2)0.051 (3)0.0101 (14)0.0063 (14)0.0032 (17)
O2'0.051 (9)0.055 (7)0.027 (4)0.014 (5)0.002 (5)0.005 (4)
O3'0.119 (10)0.027 (4)0.045 (4)0.003 (5)0.019 (5)0.011 (3)
O4'0.057 (5)0.118 (8)0.097 (7)0.067 (5)0.031 (5)0.044 (7)
O50.0441 (11)0.0479 (12)0.0365 (10)0.0281 (9)0.0057 (8)0.0174 (9)
O60.0446 (11)0.0376 (11)0.0372 (11)0.0065 (9)0.0068 (9)0.0023 (8)
O70.0288 (10)0.0359 (11)0.0651 (13)0.0060 (8)0.0016 (9)0.0205 (10)
O80.0536 (12)0.0360 (11)0.0327 (10)0.0095 (9)0.0013 (9)0.0029 (8)
O90.0456 (11)0.0347 (10)0.0569 (13)0.0171 (9)0.0098 (10)0.0124 (9)
O100.0591 (13)0.0506 (13)0.0394 (11)0.0218 (11)0.0020 (10)0.0013 (10)
C10.0322 (13)0.0281 (13)0.0366 (14)0.0092 (11)0.0034 (11)0.0058 (11)
C20.0347 (14)0.0276 (13)0.0388 (15)0.0058 (11)0.0059 (11)0.0123 (11)
C30.0294 (13)0.0456 (16)0.0292 (13)0.0164 (12)0.0010 (11)0.0119 (12)
C40.0257 (12)0.0395 (15)0.0285 (13)0.0136 (11)0.0036 (10)0.0078 (11)
C50.0399 (15)0.0398 (15)0.0390 (15)0.0169 (13)0.0044 (12)0.0056 (12)
C60.0485 (18)0.0426 (18)0.067 (2)0.0112 (15)0.0058 (16)0.0220 (16)
C70.0457 (18)0.081 (3)0.053 (2)0.0164 (18)0.0062 (15)0.0389 (19)
C80.0487 (18)0.099 (3)0.0331 (16)0.0346 (19)0.0138 (14)0.0239 (17)
C90.0332 (14)0.0583 (19)0.0291 (14)0.0214 (14)0.0001 (11)0.0048 (13)
S10.0238 (3)0.0256 (3)0.0280 (3)0.0054 (2)0.0010 (2)0.0029 (2)
Geometric parameters (Å, º) top
Cd1—O62.259 (2)O5—H2W0.8498
Cd1—O52.2733 (18)O6—H3W0.8501
Cd1—N12.282 (2)O6—H4W0.8500
Cd1—O82.300 (2)O7—H5W0.8500
Cd1—O72.3123 (19)O7—H6W0.8499
Cd1—O12.3190 (19)O8—H7W0.8500
N1—C21.317 (3)O8—H8W0.8500
N1—C11.358 (3)O9—H9W0.8464
N2—C11.309 (3)O9—H10W0.8508
N2—N31.356 (3)O10—H11W0.8499
N3—C21.322 (3)O10—H12W0.8500
N3—C31.462 (3)C1—H1A0.9300
N4—N51.357 (3)C2—H2A0.9300
N4—C41.368 (3)C3—H3A0.9700
N4—C31.440 (3)C3—H3B0.9700
N5—N61.297 (3)C4—C91.385 (4)
N6—C91.378 (4)C4—C51.390 (4)
O1—S11.4865 (19)C5—C61.369 (4)
O2—S11.425 (11)C5—H5A0.9300
O3—S11.510 (3)C6—C71.405 (5)
O4—S11.442 (3)C6—H6A0.9300
O2'—S11.45 (2)C7—C81.362 (5)
O3'—S11.386 (7)C7—H7A0.9300
O4'—S11.535 (8)C8—C91.401 (4)
O5—H1W0.8500C8—H8A0.9300
O6—Cd1—O586.64 (7)N3—C2—H2A125.0
O6—Cd1—N192.34 (8)N4—C3—N3110.7 (2)
O5—Cd1—N1178.69 (7)N4—C3—H3A109.5
O6—Cd1—O8171.79 (7)N3—C3—H3A109.5
O5—Cd1—O886.05 (7)N4—C3—H3B109.5
N1—Cd1—O894.91 (8)N3—C3—H3B109.5
O6—Cd1—O790.40 (8)H3A—C3—H3B108.1
O5—Cd1—O786.24 (7)N4—C4—C9103.5 (2)
N1—Cd1—O794.59 (7)N4—C4—C5133.5 (2)
O8—Cd1—O792.85 (8)C9—C4—C5123.0 (3)
O6—Cd1—O192.83 (8)C6—C5—C4115.7 (3)
O5—Cd1—O190.09 (7)C6—C5—H5A122.2
N1—Cd1—O189.14 (7)C4—C5—H5A122.2
O8—Cd1—O183.45 (8)C5—C6—C7122.2 (3)
O7—Cd1—O1174.97 (7)C5—C6—H6A118.9
C2—N1—C1103.1 (2)C7—C6—H6A118.9
C2—N1—Cd1122.73 (17)C8—C7—C6121.7 (3)
C1—N1—Cd1134.18 (17)C8—C7—H7A119.2
C1—N2—N3102.4 (2)C6—C7—H7A119.2
C2—N3—N2110.2 (2)C7—C8—C9117.1 (3)
C2—N3—C3128.2 (2)C7—C8—H8A121.5
N2—N3—C3121.6 (2)C9—C8—H8A121.5
N5—N4—C4111.0 (2)N6—C9—C4108.7 (2)
N5—N4—C3118.8 (2)N6—C9—C8130.9 (3)
C4—N4—C3130.2 (2)C4—C9—C8120.4 (3)
N6—N5—N4107.9 (2)O3'—S1—O2128.0 (6)
N5—N6—C9109.0 (2)O3'—S1—O472.3 (6)
S1—O1—Cd1135.01 (11)O2—S1—O4112.9 (3)
Cd1—O5—H1W118.7O3'—S1—O2'118.7 (9)
Cd1—O5—H2W124.1O2—S1—O2'20.7 (6)
H1W—O5—H2W108.5O4—S1—O2'131.2 (6)
Cd1—O6—H3W116.9O3'—S1—O1113.4 (4)
Cd1—O6—H4W109.1O2—S1—O1112.7 (5)
H3W—O6—H4W111.7O4—S1—O1109.03 (15)
Cd1—O7—H5W126.0O2'—S1—O1108.1 (8)
Cd1—O7—H6W109.7O3'—S1—O335.5 (6)
H5W—O7—H6W112.3O2—S1—O3108.7 (4)
Cd1—O8—H7W112.7O4—S1—O3107.5 (2)
Cd1—O8—H8W111.9O2'—S1—O391.6 (7)
H7W—O8—H8W109.5O1—S1—O3105.62 (16)
H9W—O9—H10W105.1O3'—S1—O4'108.7 (6)
H11W—O10—H12W109.9O2—S1—O4'83.7 (4)
N2—C1—N1114.3 (2)O4—S1—O4'37.4 (4)
N2—C1—H1A122.9O2'—S1—O4'104.4 (6)
N1—C1—H1A122.9O1—S1—O4'101.8 (4)
N1—C2—N3110.0 (2)O3—S1—O4'142.0 (5)
N1—C2—H2A125.0
O6—Cd1—N1—C252.6 (2)N5—N4—C3—N376.9 (3)
O5—Cd1—N1—C214 (3)C4—N4—C3—N3104.2 (3)
O8—Cd1—N1—C2123.5 (2)C2—N3—C3—N499.9 (3)
O7—Cd1—N1—C2143.2 (2)N2—N3—C3—N478.5 (3)
O1—Cd1—N1—C240.2 (2)N5—N4—C4—C90.1 (3)
O6—Cd1—N1—C1126.7 (2)C3—N4—C4—C9178.9 (2)
O5—Cd1—N1—C1166 (3)N5—N4—C4—C5177.7 (3)
O8—Cd1—N1—C157.2 (2)C3—N4—C4—C51.2 (5)
O7—Cd1—N1—C136.1 (2)N4—C4—C5—C6178.0 (3)
O1—Cd1—N1—C1140.6 (2)C9—C4—C5—C60.7 (4)
C1—N2—N3—C20.9 (3)C4—C5—C6—C70.2 (4)
C1—N2—N3—C3179.5 (2)C5—C6—C7—C80.9 (5)
C4—N4—N5—N60.0 (3)C6—C7—C8—C90.8 (5)
C3—N4—N5—N6179.1 (2)N5—N6—C9—C40.1 (3)
N4—N5—N6—C90.0 (3)N5—N6—C9—C8178.7 (3)
O6—Cd1—O1—S13.69 (17)N4—C4—C9—N60.1 (3)
O5—Cd1—O1—S190.33 (17)C5—C4—C9—N6178.1 (2)
N1—Cd1—O1—S188.62 (17)N4—C4—C9—C8178.8 (2)
O8—Cd1—O1—S1176.35 (17)C5—C4—C9—C80.8 (4)
O7—Cd1—O1—S1133.4 (7)C7—C8—C9—N6178.6 (3)
N3—N2—C1—N10.7 (3)C7—C8—C9—C40.1 (4)
C2—N1—C1—N20.3 (3)Cd1—O1—S1—O3'118.8 (8)
Cd1—N1—C1—N2179.11 (17)Cd1—O1—S1—O236.6 (4)
C1—N1—C2—N30.3 (3)Cd1—O1—S1—O4162.8 (3)
Cd1—N1—C2—N3179.79 (15)Cd1—O1—S1—O2'15.0 (7)
N2—N3—C2—N10.8 (3)Cd1—O1—S1—O382.0 (3)
C3—N3—C2—N1179.3 (2)Cd1—O1—S1—O4'124.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8W···O90.851.892.732 (3)170
O6—H4W···O20.852.392.905 (19)119
O5—H1W···O4i0.851.912.719 (4)157
O5—H1W···O4i0.851.842.672 (7)166
O5—H2W···O1ii0.851.972.817 (3)172
O5—H2W···S1ii0.852.893.616 (2)145
O8—H7W···O3ii0.852.002.795 (4)156
O8—H7W···O3ii0.852.383.127 (15)147
O6—H3W···O10iii0.851.832.680 (3)178
O6—H4W···N2iv0.852.273.025 (3)148
O7—H5W···O3v0.851.932.730 (4)157
O7—H5W···S1v0.853.013.856 (2)178
O9—H9W···O4v0.852.002.795 (6)155
O9—H9W···S1v0.852.923.770 (2)177
O7—H5W···O3v0.851.912.720 (8)159
O9—H9W···O3v0.852.062.844 (14)155
O7—H6W···O9vi0.851.972.791 (3)161
O9—H10W···O1vii0.852.062.906 (3)175
O9—H10W···S1vii0.852.883.667 (2)155
O9—H10W···O4vii0.852.483.030 (11)123
O10—H11W···N6viii0.852.012.861 (3)177
O10—H12W···O2ix0.852.022.809 (8)155
O10—H12W···S1ix0.852.953.796 (2)173
O10—H12W···O4ix0.852.192.944 (14)148
O10—H12W···O2ix0.852.513.280 (16)151
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1; (iii) x1, y+1, z; (iv) x, y+1, z; (v) x1, y1, z; (vi) x1, y+1, z+1; (vii) x, y+1, z+1; (viii) x+1, y+1, z+2; (ix) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cd(SO4)(C9H8N6)(H2O)4]·2H2O
Mr516.77
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7154 (15), 8.0667 (16), 16.369 (3)
α, β, γ (°)100.12 (3), 91.64 (3), 112.38 (3)
V3)922.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.19 × 0.17 × 0.14
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.782, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
8812, 3608, 3361
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 1.05
No. of reflections3608
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.32

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8W···O90.851.892.732 (3)170.4
O6—H4W···O2'0.852.392.905 (19)119.1
O5—H1W···O4i0.851.912.719 (4)157.4
O5—H1W···O4'i0.851.842.672 (7)165.6
O5—H2W···O1ii0.851.972.817 (3)172.1
O5—H2W···S1ii0.852.893.616 (2)144.8
O8—H7W···O3ii0.852.002.795 (4)155.9
O8—H7W···O3'ii0.852.383.127 (15)146.7
O6—H3W···O10iii0.851.832.680 (3)178.1
O6—H4W···N2iv0.852.273.025 (3)147.5
O7—H5W···O3v0.851.932.730 (4)156.6
O7—H5W···S1v0.853.013.856 (2)177.7
O9—H9W···O4v0.852.002.795 (6)155.0
O9—H9W···S1v0.852.923.770 (2)177.2
O7—H5W···O3'v0.851.912.720 (8)158.9
O9—H9W···O3'v0.852.062.844 (14)154.7
O7—H6W···O9vi0.851.972.791 (3)161.3
O9—H10W···O1vii0.852.062.906 (3)174.7
O9—H10W···S1vii0.852.883.667 (2)155.2
O9—H10W···O4'vii0.852.483.030 (11)123.1
O10—H11W···N6viii0.852.012.861 (3)176.7
O10—H12W···O2ix0.852.022.809 (8)154.9
O10—H12W···S1ix0.852.953.796 (2)172.6
O10—H12W···O4'ix0.852.192.944 (14)147.6
O10—H12W···O2'ix0.852.513.280 (16)151.2
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1; (iii) x1, y+1, z; (iv) x, y+1, z; (v) x1, y1, z; (vi) x1, y+1, z+1; (vii) x, y+1, z+1; (viii) x+1, y+1, z+2; (ix) x, y1, z.
 

References

First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMeng, X.-R., Jin, S.-Z., Hou, H.-W., Du, C.-X. & Ng, S. W. (2009). Inorg. Chim. Acta, 362, 1519–1527.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H., Zhang, J. & Zhao, D. (2011). Acta Cryst. E67, m602.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds