metal-organic compounds
Bis(cyanamide-κN)[4-(1H-imidazol-1-yl)phenol-κN3]bis(nitrato-κO)copper(II)
aCollege of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China, and bDepartment of Chemistry and Life and Science, Xiangnan University, Chenzhou, Hunan 423000, People's Republic of China
*Correspondence e-mail: gzxian2010@yahoo.cn
A pair of linear cyanamide (NCNH2) ligands, two monodentate 4-(1H-imidazol-1-yl)phenol (L) ligands and two nitrate anions link the CuII atom into a mononuclear unit, [Cu(NO3)2(C9H8N2O)2(NCNH2)2]. The of the Cu atom is an elongated octahedron distorted by Jahn–Teller effects. Intermolecular O—H⋯O, O—H⋯N, N—H⋯O and N—H⋯N hydrogen-bonding interactions link these units into a three-dimensional supramolecular architecture.
Related literature
For background to related compounds, see: Ferlay et al. (1995); Ribas et al. (1999). For related structures, see: Becker et al. (2000); Berger & Schnick (1994); Liao & Dronskowski (2006); Liu et al. (2005); Meyer et al. (2000); Chaudhuri et al. (1985); Tanabe et al. (2002); Yuan et al. (2004, 2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811032399/pk2338sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811032399/pk2338Isup2.hkl
To a methanol solution (20 mL) of copper(II) nitrate (0.060 g, 0.25 mmol) and L (0.080 g, 0.05 mmol), a water solution (5 ml) of cyanamide (0.020 g, 0.05 mmol) was added slowly with stirring over 30 min. at room temperature. The resulting solution was filtered, and the filtrate was evaporated at room temperature. After a few days, blue single crystals were obtained (yield: 20%).
H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic, imidazole H atoms, N—H = 0.86Å and Uiso(H) = 1.2Ueq(C) for amido H atoms, O—H = 0.85Å and Uiso(H) = 1.5Ueq(O) for H atoms of the hydroxyl group.
Data collection: SMART (Bruker, 1998); cell
SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are potted at the 30% probability level. Atoms with the symmetry code A are related by inversion (-x, 1 - y, -z). | |
Fig. 2. The three-dimensional hydrogen-bonded network in the compound. |
[Cu(NO3)2(C9H8N2O)2(CH2N2)2] | Z = 1 |
Mr = 592.00 | F(000) = 303 |
Triclinic, P1 | Dx = 1.599 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2235 (7) Å | Cell parameters from 2396 reflections |
b = 8.7144 (8) Å | θ = 2.4–26.0° |
c = 9.4553 (9) Å | µ = 0.96 mm−1 |
α = 110.808 (1)° | T = 273 K |
β = 96.696 (2)° | Block, blue |
γ = 98.883 (2)° | 0.25 × 0.21 × 0.18 mm |
V = 614.92 (10) Å3 |
Bruker SMART CCD area-detector diffractometer | 2396 independent reflections |
Radiation source: fine-focus sealed tube | 2229 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −9→10 |
Tmin = 0.796, Tmax = 0.847 | k = −10→10 |
4951 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.059P)2 + 0.2239P] where P = (Fo2 + 2Fc2)/3 |
2396 reflections | (Δ/σ)max < 0.001 |
178 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
[Cu(NO3)2(C9H8N2O)2(CH2N2)2] | γ = 98.883 (2)° |
Mr = 592.00 | V = 614.92 (10) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.2235 (7) Å | Mo Kα radiation |
b = 8.7144 (8) Å | µ = 0.96 mm−1 |
c = 9.4553 (9) Å | T = 273 K |
α = 110.808 (1)° | 0.25 × 0.21 × 0.18 mm |
β = 96.696 (2)° |
Bruker SMART CCD area-detector diffractometer | 2396 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 2229 reflections with I > 2σ(I) |
Tmin = 0.796, Tmax = 0.847 | Rint = 0.016 |
4951 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.44 e Å−3 |
2396 reflections | Δρmin = −0.18 e Å−3 |
178 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.5000 | 0.0000 | 0.03730 (17) | |
O1 | 1.0200 (2) | 1.3124 (2) | 0.3638 (2) | 0.0522 (5) | |
HO1 | 1.0559 | 1.3039 | 0.2822 | 0.078* | |
O3 | 0.1612 (2) | 0.3321 (3) | 0.1247 (2) | 0.0588 (5) | |
O4 | 0.3655 (3) | 0.4115 (4) | 0.3168 (3) | 0.0738 (7) | |
O2 | 0.4149 (3) | 0.4075 (3) | 0.0983 (2) | 0.0598 (5) | |
N1 | −0.1364 (3) | 0.5376 (3) | 0.1629 (3) | 0.0465 (5) | |
N2 | −0.2913 (3) | 0.5888 (3) | 0.3748 (3) | 0.0516 (6) | |
HN2B | −0.3876 | 0.5230 | 0.3578 | 0.062* | |
HN2A | −0.2331 | 0.6083 | 0.4636 | 0.062* | |
N3 | 0.1547 (3) | 0.7184 (2) | 0.1239 (2) | 0.0390 (5) | |
N4 | 0.3757 (2) | 0.9254 (2) | 0.2240 (2) | 0.0389 (5) | |
N5 | 0.3155 (3) | 0.3834 (3) | 0.1788 (3) | 0.0433 (5) | |
C1 | 0.1064 (3) | 0.8598 (3) | 0.2122 (3) | 0.0473 (6) | |
H1 | −0.0025 | 0.8663 | 0.2274 | 0.057* | |
C2 | 0.2407 (3) | 0.9884 (3) | 0.2740 (3) | 0.0484 (7) | |
H2 | 0.2417 | 1.0981 | 0.3378 | 0.058* | |
C3 | 0.3189 (3) | 0.7628 (3) | 0.1334 (3) | 0.0392 (6) | |
H3 | 0.3853 | 0.6910 | 0.0841 | 0.047* | |
C4 | 0.5449 (3) | 1.0196 (3) | 0.2591 (3) | 0.0372 (5) | |
C5 | 0.6081 (3) | 1.1383 (3) | 0.4066 (3) | 0.0459 (6) | |
H5 | 0.5432 | 1.1533 | 0.4828 | 0.055* | |
C6 | 0.7685 (3) | 1.2339 (3) | 0.4393 (3) | 0.0460 (6) | |
H6 | 0.8122 | 1.3130 | 0.5381 | 0.055* | |
C7 | 0.8639 (3) | 1.2124 (3) | 0.3258 (3) | 0.0393 (6) | |
C8 | 0.8007 (3) | 1.0926 (3) | 0.1790 (3) | 0.0427 (6) | |
H8 | 0.8656 | 1.0774 | 0.1028 | 0.051* | |
C9 | 0.6406 (3) | 0.9957 (3) | 0.1462 (3) | 0.0415 (6) | |
H9 | 0.5980 | 0.9146 | 0.0481 | 0.050* | |
C10 | −0.2100 (3) | 0.5568 (3) | 0.2602 (3) | 0.0387 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0265 (2) | 0.0408 (3) | 0.0357 (3) | −0.00682 (16) | 0.00593 (17) | 0.00971 (18) |
O1 | 0.0305 (10) | 0.0649 (12) | 0.0477 (11) | −0.0127 (8) | 0.0005 (8) | 0.0169 (9) |
O3 | 0.0357 (11) | 0.0773 (14) | 0.0555 (12) | −0.0089 (9) | 0.0010 (9) | 0.0269 (10) |
O4 | 0.0382 (12) | 0.125 (2) | 0.0533 (13) | −0.0089 (12) | 0.0036 (10) | 0.0399 (13) |
O2 | 0.0486 (12) | 0.0711 (13) | 0.0574 (13) | 0.0021 (10) | 0.0240 (10) | 0.0215 (10) |
N1 | 0.0330 (12) | 0.0554 (13) | 0.0397 (12) | −0.0069 (10) | 0.0084 (10) | 0.0108 (10) |
N2 | 0.0368 (12) | 0.0724 (15) | 0.0368 (12) | 0.0016 (11) | 0.0091 (10) | 0.0138 (11) |
N3 | 0.0290 (11) | 0.0387 (11) | 0.0431 (12) | −0.0023 (8) | 0.0051 (9) | 0.0127 (9) |
N4 | 0.0281 (11) | 0.0352 (10) | 0.0461 (12) | −0.0018 (8) | 0.0040 (9) | 0.0111 (9) |
N5 | 0.0352 (12) | 0.0428 (11) | 0.0474 (13) | 0.0025 (9) | 0.0101 (10) | 0.0132 (10) |
C1 | 0.0298 (13) | 0.0472 (14) | 0.0621 (17) | 0.0050 (11) | 0.0115 (12) | 0.0176 (13) |
C2 | 0.0367 (14) | 0.0362 (13) | 0.0633 (18) | 0.0045 (10) | 0.0115 (13) | 0.0090 (12) |
C3 | 0.0291 (12) | 0.0369 (12) | 0.0439 (14) | −0.0008 (10) | 0.0059 (10) | 0.0098 (10) |
C4 | 0.0279 (12) | 0.0341 (11) | 0.0448 (14) | −0.0013 (9) | 0.0027 (10) | 0.0139 (10) |
C5 | 0.0369 (14) | 0.0490 (14) | 0.0430 (14) | −0.0049 (11) | 0.0085 (11) | 0.0125 (11) |
C6 | 0.0392 (14) | 0.0472 (14) | 0.0378 (14) | −0.0070 (11) | 0.0001 (11) | 0.0086 (11) |
C7 | 0.0279 (12) | 0.0402 (12) | 0.0461 (14) | −0.0017 (10) | 0.0002 (10) | 0.0175 (11) |
C8 | 0.0338 (13) | 0.0488 (14) | 0.0415 (14) | 0.0039 (11) | 0.0086 (11) | 0.0139 (11) |
C9 | 0.0342 (13) | 0.0382 (12) | 0.0405 (14) | −0.0001 (10) | −0.0006 (11) | 0.0069 (10) |
C10 | 0.0281 (12) | 0.0408 (13) | 0.0386 (14) | −0.0028 (10) | −0.0008 (11) | 0.0114 (10) |
Cu1—N1 | 1.974 (2) | N4—C2 | 1.372 (3) |
Cu1—N1i | 1.974 (2) | N4—C4 | 1.438 (3) |
Cu1—N3 | 1.9837 (19) | C1—C2 | 1.349 (4) |
Cu1—N3i | 1.9837 (19) | C1—H1 | 0.9300 |
O1—C7 | 1.365 (3) | C2—H2 | 0.9300 |
O1—HO1 | 0.8409 | C3—H3 | 0.9300 |
O3—N5 | 1.259 (3) | C4—C9 | 1.375 (4) |
O4—N5 | 1.244 (3) | C4—C5 | 1.388 (4) |
O2—N5 | 1.224 (3) | C5—C6 | 1.383 (4) |
N1—C10 | 1.136 (3) | C5—H5 | 0.9300 |
N2—C10 | 1.308 (3) | C6—C7 | 1.378 (4) |
N2—HN2B | 0.8638 | C6—H6 | 0.9300 |
N2—HN2A | 0.8613 | C7—C8 | 1.386 (4) |
N3—C3 | 1.329 (3) | C8—C9 | 1.385 (3) |
N3—C1 | 1.368 (3) | C8—H8 | 0.9300 |
N4—C3 | 1.342 (3) | C9—H9 | 0.9300 |
N1—Cu1—N1i | 180.00 (14) | C1—C2—H2 | 126.8 |
N1—Cu1—N3 | 89.82 (9) | N4—C2—H2 | 126.8 |
N1i—Cu1—N3 | 90.18 (8) | N3—C3—N4 | 110.7 (2) |
N1—Cu1—N3i | 90.18 (9) | N3—C3—H3 | 124.7 |
N1i—Cu1—N3i | 89.82 (8) | N4—C3—H3 | 124.7 |
N3—Cu1—N3i | 180.0 | C9—C4—C5 | 120.6 (2) |
C7—O1—HO1 | 108.5 | C9—C4—N4 | 120.2 (2) |
C10—N1—Cu1 | 177.0 (2) | C5—C4—N4 | 119.1 (2) |
C10—N2—HN2B | 116.0 | C6—C5—C4 | 119.4 (3) |
C10—N2—HN2A | 115.8 | C6—C5—H5 | 120.3 |
HN2B—N2—HN2A | 112.2 | C4—C5—H5 | 120.3 |
C3—N3—C1 | 106.0 (2) | C7—C6—C5 | 120.2 (2) |
C3—N3—Cu1 | 129.22 (18) | C7—C6—H6 | 119.9 |
C1—N3—Cu1 | 124.71 (17) | C5—C6—H6 | 119.9 |
C3—N4—C2 | 107.3 (2) | O1—C7—C6 | 117.7 (2) |
C3—N4—C4 | 127.0 (2) | O1—C7—C8 | 122.1 (2) |
C2—N4—C4 | 125.7 (2) | C6—C7—C8 | 120.2 (2) |
O2—N5—O4 | 120.4 (2) | C9—C8—C7 | 119.7 (2) |
O2—N5—O3 | 120.9 (2) | C9—C8—H8 | 120.1 |
O4—N5—O3 | 118.8 (2) | C7—C8—H8 | 120.1 |
C2—C1—N3 | 109.6 (2) | C4—C9—C8 | 119.8 (2) |
C2—C1—H1 | 125.2 | C4—C9—H9 | 120.1 |
N3—C1—H1 | 125.2 | C8—C9—H9 | 120.1 |
C1—C2—N4 | 106.5 (2) | N1—C10—N2 | 176.6 (3) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—HO1···O3ii | 0.84 | 1.88 | 2.704 (3) | 168 |
O1—HO1···O4ii | 0.84 | 2.51 | 2.970 (3) | 115 |
O1—HO1···N5ii | 0.84 | 2.55 | 3.262 (3) | 143 |
N2—HN2B···O4iii | 0.86 | 2.04 | 2.888 (3) | 168 |
N2—HN2B···O2iii | 0.86 | 2.55 | 3.096 (3) | 122 |
N2—HN2B···N5iii | 0.86 | 2.64 | 3.399 (3) | 148 |
N2—HN2A···O1iv | 0.86 | 2.09 | 2.904 (3) | 157 |
N2—HN2A···O4v | 0.86 | 2.50 | 3.049 (3) | 122 |
Symmetry codes: (ii) x+1, y+1, z; (iii) x−1, y, z; (iv) −x+1, −y+2, −z+1; (v) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(NO3)2(C9H8N2O)2(CH2N2)2] |
Mr | 592.00 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 273 |
a, b, c (Å) | 8.2235 (7), 8.7144 (8), 9.4553 (9) |
α, β, γ (°) | 110.808 (1), 96.696 (2), 98.883 (2) |
V (Å3) | 614.92 (10) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.96 |
Crystal size (mm) | 0.25 × 0.21 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.796, 0.847 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4951, 2396, 2229 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.105, 1.07 |
No. of reflections | 2396 |
No. of parameters | 178 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.18 |
Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—HO1···O3i | 0.84 | 1.88 | 2.704 (3) | 167.8 |
O1—HO1···O4i | 0.84 | 2.51 | 2.970 (3) | 115.2 |
O1—HO1···N5i | 0.84 | 2.55 | 3.262 (3) | 143.1 |
N2—HN2B···O4ii | 0.86 | 2.04 | 2.888 (3) | 167.7 |
N2—HN2B···O2ii | 0.86 | 2.55 | 3.096 (3) | 122.3 |
N2—HN2B···N5ii | 0.86 | 2.64 | 3.399 (3) | 147.5 |
N2—HN2A···O1iii | 0.86 | 2.09 | 2.904 (3) | 157.3 |
N2—HN2A···O4iv | 0.86 | 2.50 | 3.049 (3) | 122.3 |
Symmetry codes: (i) x+1, y+1, z; (ii) x−1, y, z; (iii) −x+1, −y+2, −z+1; (iv) −x, −y+1, −z+1. |
Acknowledgements
This work was supported by the Foundation of Northwest A&F University (01140420.
References
Becker, M., Nuss, J. & Jansen, M. (2000). Z. Anorg. Allg. Chem. 626, 2505–2508. Google Scholar
Berger, U. & Schnick, W. (1994). J. Alloys Compd, 206, 179–184. Google Scholar
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chaudhuri, P., Wieghardt, K., Nuber, B. & Weiss, J. (1985). J. Chem. Soc. Chem. Commun. pp. 265–266. Google Scholar
Ferlay, S., Mallah, T., Ouahes, R., Veillet, P. & Verdaguer, M. (1995). Nature (London), 378, 701–703. CrossRef CAS Web of Science Google Scholar
Liao, W.-P. & Dronskowski, R. (2006). Inorg. Chem. 45, 3828–3830. Google Scholar
Liu, X.-H., Krott, M., Muller, P., Hu, C.-H., Lueken, H. & Dronskowski, R. (2005). Inorg. Chem. 44, 3001–3003. Google Scholar
Meyer, F., Hyla-Krypsin, I., Kaifer, E. & Kircher, P. (2000). Eur. J. Inorg. Chem. 39, 771–781. Google Scholar
Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortes, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193, 1027–1068. Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanabe, Y., Kuwata, S. & Ishii, Y. (2002). J. Am. Chem. Soc. 124, 6528–6529. Google Scholar
Yuan, M., Gao, S., Sun, H.-L. & Su, G. (2004). Inorg. Chem. 43, 8221–8223. Google Scholar
Yuan, M., Zhao, F., Zhang, W., Pan, F., Wang, Z.-M. & Gao, S. (2007). Chem. Eur. J. 13, 2937–2952. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and synthesis of transition-metal coordination compounds with small conjugated molecules and groups, such as cyano, azide, oxalate and nitrido are currently attracting great interest for their diversity of structure and applications in molecule-based magnets (Ferlay et al., 1995; Ribas et al., 1999). As a potential nitrogen based ligand, cyanamide(NCNH2) has been used to prepare a number of alkali metal (Becker et al., 2000), alkaline-earth metal (Berger & Schnick 1994), and rare-earth metal (Liao et al., 2006) salts by different synthetic methods. Dronskowski and coworkers reported the first and only carbodiimide of a magnetic transition-metal compound in 2005 (Liu et al., 2005). However, to our knowledge, structures of transition-metal cyanamide complexes are limited (Meyer et al., 2000; Chaudhuri et al., 1985; Tanabe et al., 2002; Yuan et al., 2004; Yuan et al., 2007). Since NCNH- is isoelectronic with the azide anion, polymers bridged by NCNH- should also transfer favorable magnetic interactions. In attempts to synthesize such polymers, the title compound [Cu(L)2(NCNH2)2(NO3)2] was obtained.
The molecular structure of the complex is shown in Fig. 1. The Cu(II) atom, is located on an inversion center. The asymmetric unit contains one Cu(II) ion, one L ligand, one NCNH2, and one nitrate anion. The Cu(II) atom displays an elongated octahedral geometry with two N atoms from L ligand (Cu—N = 1.984 (2) Å), two N atoms from NCNH2 (Cu—N = 1.974 (2) Å) and two atoms from NO3- (with Cu—O bond length 2.598 (2) Å). The dihedral angle between the benzene ring and imidazol plane is 40.242 (2) °.
The molecules are assembled into a three-dimensional supramolecular architecture by intermolecular hydrogen-bonding interactions. The two hydrogen atoms of NCNH2 link two neighboring nitrates and one hydroxyl group through N—H···O hydrogen bonds. The hydroxyl group also connects a nitrate through an O—H···O hydrogen bond. Each nitrate links two NCNH2 and one hydroxyl group from three neighboring units through hydrogen bonds. These hydrogen bonding interactions extend these units into a three-dimensional molecular architecture (Fig. 2).