metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(cyanamide-κN)[4-(1H-imidazol-1-yl)phenol-κN3]bis­­(nitrato-κO)copper(II)

aCollege of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China, and bDepartment of Chemistry and Life and Science, Xiangnan University, Chenzhou, Hunan 423000, People's Republic of China
*Correspondence e-mail: gzxian2010@yahoo.cn

(Received 7 July 2011; accepted 10 August 2011; online 17 August 2011)

A pair of linear cyanamide (NCNH2) ligands, two monodentate 4-(1H-imidazol-1-yl)phenol (L) ligands and two nitrate anions link the CuII atom into a mononuclear unit, [Cu(NO3)2(C9H8N2O)2(NCNH2)2]. The coordination polyhedron of the Cu atom is an elongated octa­hedron distorted by Jahn–Teller effects. Inter­molecular O—H⋯O, O—H⋯N, N—H⋯O and N—H⋯N hydrogen-bonding inter­actions link these units into a three-dimensional supra­molecular architecture.

Related literature

For background to related compounds, see: Ferlay et al. (1995[Ferlay, S., Mallah, T., Ouahes, R., Veillet, P. & Verdaguer, M. (1995). Nature (London), 378, 701-703.]); Ribas et al. (1999[Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortes, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193, 1027-1068.]). For related structures, see: Becker et al. (2000[Becker, M., Nuss, J. & Jansen, M. (2000). Z. Anorg. Allg. Chem. 626, 2505-2508.]); Berger & Schnick (1994[Berger, U. & Schnick, W. (1994). J. Alloys Compd, 206, 179-184.]); Liao & Dronskowski (2006[Liao, W.-P. & Dronskowski, R. (2006). Inorg. Chem. 45, 3828-3830.]); Liu et al. (2005[Liu, X.-H., Krott, M., Muller, P., Hu, C.-H., Lueken, H. & Dronskowski, R. (2005). Inorg. Chem. 44, 3001-3003.]); Meyer et al. (2000[Meyer, F., Hyla-Krypsin, I., Kaifer, E. & Kircher, P. (2000). Eur. J. Inorg. Chem. 39, 771-781.]); Chaudhuri et al. (1985[Chaudhuri, P., Wieghardt, K., Nuber, B. & Weiss, J. (1985). J. Chem. Soc. Chem. Commun. pp. 265-266.]); Tanabe et al. (2002[Tanabe, Y., Kuwata, S. & Ishii, Y. (2002). J. Am. Chem. Soc. 124, 6528-6529.]); Yuan et al. (2004[Yuan, M., Gao, S., Sun, H.-L. & Su, G. (2004). Inorg. Chem. 43, 8221-8223.], 2007[Yuan, M., Zhao, F., Zhang, W., Pan, F., Wang, Z.-M. & Gao, S. (2007). Chem. Eur. J. 13, 2937-2952.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C9H8N2O)2(CH2N2)2]

  • Mr = 592.00

  • Triclinic, [P \overline 1]

  • a = 8.2235 (7) Å

  • b = 8.7144 (8) Å

  • c = 9.4553 (9) Å

  • α = 110.808 (1)°

  • β = 96.696 (2)°

  • γ = 98.883 (2)°

  • V = 614.92 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 273 K

  • 0.25 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.796, Tmax = 0.847

  • 4951 measured reflections

  • 2396 independent reflections

  • 2229 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.105

  • S = 1.07

  • 2396 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HO1⋯O3i 0.84 1.88 2.704 (3) 168
O1—HO1⋯O4i 0.84 2.51 2.970 (3) 115
O1—HO1⋯N5i 0.84 2.55 3.262 (3) 143
N2—HN2B⋯O4ii 0.86 2.04 2.888 (3) 168
N2—HN2B⋯O2ii 0.86 2.55 3.096 (3) 122
N2—HN2B⋯N5ii 0.86 2.64 3.399 (3) 148
N2—HN2A⋯O1iii 0.86 2.09 2.904 (3) 157
N2—HN2A⋯O4iv 0.86 2.50 3.049 (3) 122
Symmetry codes: (i) x+1, y+1, z; (ii) x-1, y, z; (iii) -x+1, -y+2, -z+1; (iv) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of transition-metal coordination compounds with small conjugated molecules and groups, such as cyano, azide, oxalate and nitrido are currently attracting great interest for their diversity of structure and applications in molecule-based magnets (Ferlay et al., 1995; Ribas et al., 1999). As a potential nitrogen based ligand, cyanamide(NCNH2) has been used to prepare a number of alkali metal (Becker et al., 2000), alkaline-earth metal (Berger & Schnick 1994), and rare-earth metal (Liao et al., 2006) salts by different synthetic methods. Dronskowski and coworkers reported the first and only carbodiimide of a magnetic transition-metal compound in 2005 (Liu et al., 2005). However, to our knowledge, structures of transition-metal cyanamide complexes are limited (Meyer et al., 2000; Chaudhuri et al., 1985; Tanabe et al., 2002; Yuan et al., 2004; Yuan et al., 2007). Since NCNH- is isoelectronic with the azide anion, polymers bridged by NCNH- should also transfer favorable magnetic interactions. In attempts to synthesize such polymers, the title compound [Cu(L)2(NCNH2)2(NO3)2] was obtained.

The molecular structure of the complex is shown in Fig. 1. The Cu(II) atom, is located on an inversion center. The asymmetric unit contains one Cu(II) ion, one L ligand, one NCNH2, and one nitrate anion. The Cu(II) atom displays an elongated octahedral geometry with two N atoms from L ligand (Cu—N = 1.984 (2) Å), two N atoms from NCNH2 (Cu—N = 1.974 (2) Å) and two atoms from NO3- (with Cu—O bond length 2.598 (2) Å). The dihedral angle between the benzene ring and imidazol plane is 40.242 (2) °.

The molecules are assembled into a three-dimensional supramolecular architecture by intermolecular hydrogen-bonding interactions. The two hydrogen atoms of NCNH2 link two neighboring nitrates and one hydroxyl group through N—H···O hydrogen bonds. The hydroxyl group also connects a nitrate through an O—H···O hydrogen bond. Each nitrate links two NCNH2 and one hydroxyl group from three neighboring units through hydrogen bonds. These hydrogen bonding interactions extend these units into a three-dimensional molecular architecture (Fig. 2).

Related literature top

For background to related compounds, see: Ferlay et al. (1995); Ribas et al. (1999). For related structures, see: Becker et al. (2000); Berger & Schnick (1994); Liao & Dronskowski (2006); Liu et al. (2005); Meyer et al. (2000); Chaudhuri et al. (1985); Tanabe et al. (2002); Yuan et al. (2004, 2007).

Experimental top

To a methanol solution (20 mL) of copper(II) nitrate (0.060 g, 0.25 mmol) and L (0.080 g, 0.05 mmol), a water solution (5 ml) of cyanamide (0.020 g, 0.05 mmol) was added slowly with stirring over 30 min. at room temperature. The resulting solution was filtered, and the filtrate was evaporated at room temperature. After a few days, blue single crystals were obtained (yield: 20%).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic, imidazole H atoms, N—H = 0.86Å and Uiso(H) = 1.2Ueq(C) for amido H atoms, O—H = 0.85Å and Uiso(H) = 1.5Ueq(O) for H atoms of the hydroxyl group.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are potted at the 30% probability level. Atoms with the symmetry code A are related by inversion (-x, 1 - y, -z).
[Figure 2] Fig. 2. The three-dimensional hydrogen-bonded network in the compound.
Bis(cyanamide-κN)[4-(1H-imidazol-1-yl)phenol- κN3]bis(nitrato-κO)copper(II) top
Crystal data top
[Cu(NO3)2(C9H8N2O)2(CH2N2)2]Z = 1
Mr = 592.00F(000) = 303
Triclinic, P1Dx = 1.599 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2235 (7) ÅCell parameters from 2396 reflections
b = 8.7144 (8) Åθ = 2.4–26.0°
c = 9.4553 (9) ŵ = 0.96 mm1
α = 110.808 (1)°T = 273 K
β = 96.696 (2)°Block, blue
γ = 98.883 (2)°0.25 × 0.21 × 0.18 mm
V = 614.92 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2396 independent reflections
Radiation source: fine-focus sealed tube2229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 910
Tmin = 0.796, Tmax = 0.847k = 1010
4951 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.059P)2 + 0.2239P]
where P = (Fo2 + 2Fc2)/3
2396 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
[Cu(NO3)2(C9H8N2O)2(CH2N2)2]γ = 98.883 (2)°
Mr = 592.00V = 614.92 (10) Å3
Triclinic, P1Z = 1
a = 8.2235 (7) ÅMo Kα radiation
b = 8.7144 (8) ŵ = 0.96 mm1
c = 9.4553 (9) ÅT = 273 K
α = 110.808 (1)°0.25 × 0.21 × 0.18 mm
β = 96.696 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2396 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2229 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.847Rint = 0.016
4951 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.07Δρmax = 0.44 e Å3
2396 reflectionsΔρmin = 0.18 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.00000.03730 (17)
O11.0200 (2)1.3124 (2)0.3638 (2)0.0522 (5)
HO11.05591.30390.28220.078*
O30.1612 (2)0.3321 (3)0.1247 (2)0.0588 (5)
O40.3655 (3)0.4115 (4)0.3168 (3)0.0738 (7)
O20.4149 (3)0.4075 (3)0.0983 (2)0.0598 (5)
N10.1364 (3)0.5376 (3)0.1629 (3)0.0465 (5)
N20.2913 (3)0.5888 (3)0.3748 (3)0.0516 (6)
HN2B0.38760.52300.35780.062*
HN2A0.23310.60830.46360.062*
N30.1547 (3)0.7184 (2)0.1239 (2)0.0390 (5)
N40.3757 (2)0.9254 (2)0.2240 (2)0.0389 (5)
N50.3155 (3)0.3834 (3)0.1788 (3)0.0433 (5)
C10.1064 (3)0.8598 (3)0.2122 (3)0.0473 (6)
H10.00250.86630.22740.057*
C20.2407 (3)0.9884 (3)0.2740 (3)0.0484 (7)
H20.24171.09810.33780.058*
C30.3189 (3)0.7628 (3)0.1334 (3)0.0392 (6)
H30.38530.69100.08410.047*
C40.5449 (3)1.0196 (3)0.2591 (3)0.0372 (5)
C50.6081 (3)1.1383 (3)0.4066 (3)0.0459 (6)
H50.54321.15330.48280.055*
C60.7685 (3)1.2339 (3)0.4393 (3)0.0460 (6)
H60.81221.31300.53810.055*
C70.8639 (3)1.2124 (3)0.3258 (3)0.0393 (6)
C80.8007 (3)1.0926 (3)0.1790 (3)0.0427 (6)
H80.86561.07740.10280.051*
C90.6406 (3)0.9957 (3)0.1462 (3)0.0415 (6)
H90.59800.91460.04810.050*
C100.2100 (3)0.5568 (3)0.2602 (3)0.0387 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0265 (2)0.0408 (3)0.0357 (3)0.00682 (16)0.00593 (17)0.00971 (18)
O10.0305 (10)0.0649 (12)0.0477 (11)0.0127 (8)0.0005 (8)0.0169 (9)
O30.0357 (11)0.0773 (14)0.0555 (12)0.0089 (9)0.0010 (9)0.0269 (10)
O40.0382 (12)0.125 (2)0.0533 (13)0.0089 (12)0.0036 (10)0.0399 (13)
O20.0486 (12)0.0711 (13)0.0574 (13)0.0021 (10)0.0240 (10)0.0215 (10)
N10.0330 (12)0.0554 (13)0.0397 (12)0.0069 (10)0.0084 (10)0.0108 (10)
N20.0368 (12)0.0724 (15)0.0368 (12)0.0016 (11)0.0091 (10)0.0138 (11)
N30.0290 (11)0.0387 (11)0.0431 (12)0.0023 (8)0.0051 (9)0.0127 (9)
N40.0281 (11)0.0352 (10)0.0461 (12)0.0018 (8)0.0040 (9)0.0111 (9)
N50.0352 (12)0.0428 (11)0.0474 (13)0.0025 (9)0.0101 (10)0.0132 (10)
C10.0298 (13)0.0472 (14)0.0621 (17)0.0050 (11)0.0115 (12)0.0176 (13)
C20.0367 (14)0.0362 (13)0.0633 (18)0.0045 (10)0.0115 (13)0.0090 (12)
C30.0291 (12)0.0369 (12)0.0439 (14)0.0008 (10)0.0059 (10)0.0098 (10)
C40.0279 (12)0.0341 (11)0.0448 (14)0.0013 (9)0.0027 (10)0.0139 (10)
C50.0369 (14)0.0490 (14)0.0430 (14)0.0049 (11)0.0085 (11)0.0125 (11)
C60.0392 (14)0.0472 (14)0.0378 (14)0.0070 (11)0.0001 (11)0.0086 (11)
C70.0279 (12)0.0402 (12)0.0461 (14)0.0017 (10)0.0002 (10)0.0175 (11)
C80.0338 (13)0.0488 (14)0.0415 (14)0.0039 (11)0.0086 (11)0.0139 (11)
C90.0342 (13)0.0382 (12)0.0405 (14)0.0001 (10)0.0006 (11)0.0069 (10)
C100.0281 (12)0.0408 (13)0.0386 (14)0.0028 (10)0.0008 (11)0.0114 (10)
Geometric parameters (Å, º) top
Cu1—N11.974 (2)N4—C21.372 (3)
Cu1—N1i1.974 (2)N4—C41.438 (3)
Cu1—N31.9837 (19)C1—C21.349 (4)
Cu1—N3i1.9837 (19)C1—H10.9300
O1—C71.365 (3)C2—H20.9300
O1—HO10.8409C3—H30.9300
O3—N51.259 (3)C4—C91.375 (4)
O4—N51.244 (3)C4—C51.388 (4)
O2—N51.224 (3)C5—C61.383 (4)
N1—C101.136 (3)C5—H50.9300
N2—C101.308 (3)C6—C71.378 (4)
N2—HN2B0.8638C6—H60.9300
N2—HN2A0.8613C7—C81.386 (4)
N3—C31.329 (3)C8—C91.385 (3)
N3—C11.368 (3)C8—H80.9300
N4—C31.342 (3)C9—H90.9300
N1—Cu1—N1i180.00 (14)C1—C2—H2126.8
N1—Cu1—N389.82 (9)N4—C2—H2126.8
N1i—Cu1—N390.18 (8)N3—C3—N4110.7 (2)
N1—Cu1—N3i90.18 (9)N3—C3—H3124.7
N1i—Cu1—N3i89.82 (8)N4—C3—H3124.7
N3—Cu1—N3i180.0C9—C4—C5120.6 (2)
C7—O1—HO1108.5C9—C4—N4120.2 (2)
C10—N1—Cu1177.0 (2)C5—C4—N4119.1 (2)
C10—N2—HN2B116.0C6—C5—C4119.4 (3)
C10—N2—HN2A115.8C6—C5—H5120.3
HN2B—N2—HN2A112.2C4—C5—H5120.3
C3—N3—C1106.0 (2)C7—C6—C5120.2 (2)
C3—N3—Cu1129.22 (18)C7—C6—H6119.9
C1—N3—Cu1124.71 (17)C5—C6—H6119.9
C3—N4—C2107.3 (2)O1—C7—C6117.7 (2)
C3—N4—C4127.0 (2)O1—C7—C8122.1 (2)
C2—N4—C4125.7 (2)C6—C7—C8120.2 (2)
O2—N5—O4120.4 (2)C9—C8—C7119.7 (2)
O2—N5—O3120.9 (2)C9—C8—H8120.1
O4—N5—O3118.8 (2)C7—C8—H8120.1
C2—C1—N3109.6 (2)C4—C9—C8119.8 (2)
C2—C1—H1125.2C4—C9—H9120.1
N3—C1—H1125.2C8—C9—H9120.1
C1—C2—N4106.5 (2)N1—C10—N2176.6 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···O3ii0.841.882.704 (3)168
O1—HO1···O4ii0.842.512.970 (3)115
O1—HO1···N5ii0.842.553.262 (3)143
N2—HN2B···O4iii0.862.042.888 (3)168
N2—HN2B···O2iii0.862.553.096 (3)122
N2—HN2B···N5iii0.862.643.399 (3)148
N2—HN2A···O1iv0.862.092.904 (3)157
N2—HN2A···O4v0.862.503.049 (3)122
Symmetry codes: (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+1, y+2, z+1; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C9H8N2O)2(CH2N2)2]
Mr592.00
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)8.2235 (7), 8.7144 (8), 9.4553 (9)
α, β, γ (°)110.808 (1), 96.696 (2), 98.883 (2)
V3)614.92 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.25 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.796, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
4951, 2396, 2229
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.105, 1.07
No. of reflections2396
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.18

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···O3i0.841.882.704 (3)167.8
O1—HO1···O4i0.842.512.970 (3)115.2
O1—HO1···N5i0.842.553.262 (3)143.1
N2—HN2B···O4ii0.862.042.888 (3)167.7
N2—HN2B···O2ii0.862.553.096 (3)122.3
N2—HN2B···N5ii0.862.643.399 (3)147.5
N2—HN2A···O1iii0.862.092.904 (3)157.3
N2—HN2A···O4iv0.862.503.049 (3)122.3
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x, y+1, z+1.
 

Acknowledgements

This work was supported by the Foundation of Northwest A&F University (01140420.

References

First citationBecker, M., Nuss, J. & Jansen, M. (2000). Z. Anorg. Allg. Chem. 626, 2505–2508.  Google Scholar
First citationBerger, U. & Schnick, W. (1994). J. Alloys Compd, 206, 179–184.  Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhuri, P., Wieghardt, K., Nuber, B. & Weiss, J. (1985). J. Chem. Soc. Chem. Commun. pp. 265–266.  Google Scholar
First citationFerlay, S., Mallah, T., Ouahes, R., Veillet, P. & Verdaguer, M. (1995). Nature (London), 378, 701–703.  CrossRef CAS Web of Science Google Scholar
First citationLiao, W.-P. & Dronskowski, R. (2006). Inorg. Chem. 45, 3828–3830.  Google Scholar
First citationLiu, X.-H., Krott, M., Muller, P., Hu, C.-H., Lueken, H. & Dronskowski, R. (2005). Inorg. Chem. 44, 3001–3003.  Google Scholar
First citationMeyer, F., Hyla-Krypsin, I., Kaifer, E. & Kircher, P. (2000). Eur. J. Inorg. Chem. 39, 771–781.  Google Scholar
First citationRibas, J., Escuer, A., Monfort, M., Vicente, R., Cortes, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193, 1027–1068.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanabe, Y., Kuwata, S. & Ishii, Y. (2002). J. Am. Chem. Soc. 124, 6528–6529.  Google Scholar
First citationYuan, M., Gao, S., Sun, H.-L. & Su, G. (2004). Inorg. Chem. 43, 8221–8223.  Google Scholar
First citationYuan, M., Zhao, F., Zhang, W., Pan, F., Wang, Z.-M. & Gao, S. (2007). Chem. Eur. J. 13, 2937–2952.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds