organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl N-[4-(3-methyl-4,5-di­hydro­benzo[g]indazol-1-yl)phenyl­sulfon­yl]thio­carbam­ate ethanol monosolvate

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah,Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 15 August 2011; accepted 19 August 2011; online 27 August 2011)

The title compound, C21H20N3O3S2·CH3CH2OH, comprises two independent organic mol­ecules and two ethanol solvent mol­ecules. The mol­ecules are related by pseudo-mirror symmetry. In both mol­ecules, the N-bound benzene ring is twisted out of the plane of the pyrazole ring [the dihedral angles are 51.4 (3) and 44.1 (3)°, respectively]. Similarly, the benzene ring of the 1,2-dihydro­naphthalene residue is inclined with respect to the five-membered ring [dihedral angles 18.3 (3) and 22.2 (3)°]. Overall, each mol­ecule has a flattened U shape. Dimeric aggregates mediated by O—H⋯N(pyrazole) and amide-N—H⋯O hydrogen bonds feature in the crystal packing, whereby the ethanol mol­ecules link the independent organic mol­ecules, leading to four-mol­ecule aggregates.

Related literature

For background to the biological activity of species related to the title compound, see: Faidallah et al. (2007[Faidallah, H. M., Al-Saadi, M. S., Rostom, S. A. F. & Fahmy, H. T. Y. (2007). Med. Chem. Res. 16, 300-318.]); Al-Saadi et al. (2008[Al-Saadi, M. S., Rostom, S. A. F. & Faidallah, H. M. (2008). Arch. Pharm. Chem. Life Sci, 341, 181-190.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N3O3S2·C2H6O

  • Mr = 473.60

  • Monoclinic, P 21 /c

  • a = 22.673 (2) Å

  • b = 12.5563 (8) Å

  • c = 17.3831 (17) Å

  • β = 110.410 (11)°

  • V = 4638.1 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.786, Tmax = 1.000

  • 21133 measured reflections

  • 10333 independent reflections

  • 4871 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.087

  • wR(F2) = 0.261

  • S = 1.03

  • 10333 reflections

  • 581 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O8 0.88 1.82 2.700 (5) 174
N6—H6⋯O7 0.88 1.88 2.750 (6) 170
O7—H7⋯N1 0.84 2.03 2.839 (6) 161
O8—H8⋯N4 0.84 1.98 2.807 (5) 170

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structural analysis of the title compound, (I), was conducted in the context of on-going investigations into the biological activity of related species (Faidallah et al., 2007; Al-Saadi et al., 2008).

Two independent organic molecules and two solvent ethanol molecules comprise the crystallographic asymmetric unit in (I), Fig. 1. As seen from the overlay diagram, Fig. 2, the molecules are related by a pseudo mirror plane but there are measurable conformational differences between them. Focusing upon N-bound-benzene rings first, the dihedral angle formed between it and the pyrazole ring is 51.4 (3) and 44.1 (3)°, respectively for the S1- and S2-containing molecules. With respect to the 1,2-dihydronaphthalene residue, the β-methylene groups lie to opposite sides of the plane through the pyrazole ring in the two molecules but to approximately the same extent as reflected in the dihedral angles formed between the five-membered ring and the benzene rings of 18.3 (3) and 22.2 (3)°, respectively. Globally, the molecules have a flattened U-shape as the terminal ethoxycarbothioamide group is orientated to the same side of the molecule as the 1,2-dihydronaphthalene residue, with both directed over the N-bound benzene ring.

As anticipated there is hydrogen bonding in operation in the crystal structure of (I), Table 1. Thus, there are close associations between the ethanol and organic molecules with each solvent molecule forming a hydrogen bond to a pyrazole-N and at the same time accepting a hydrogen bond from an amide-H. As shown in Fig. 3, the ethanol molecules link the independent organic molecules into four-molecule aggregates.

Related literature top

For background to the biological activity of species related to the title compound, see: Faidallah et al. (2007); Al-Saadi et al. (2008).

Experimental top

A mixture of 3-methyl-2-(p-sulfamylphenyl)-4,5-dihydronaphtho[1,2-c]pyrazole (10 mmol) and anhydrous K2CO3 (20 mmol) in dry acetone (25 ml) was stirred and treated with phenylisothiocyanate (12 mmol). After the mixture was stirred and refluxed for 10 h, acetone was removed under pressure. The isolated solid mass dissolved in water and acidified with 2 N HCl. The crude product was purified by recrystallization from ethanol as colourless plates m.p. 457–458 K.

Refinement top

Carbon-bound H atoms were placed in calculated positions [O—H = 0.84 Å, N—H = 0.88 Å and C—H 0.95 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(parent atom)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent organic molecules and two independent ethanol molecules that comprise the crystallographic asymmetric unit in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Overlay diagram of the two independent organic molecules. The image in red contains the S1 atom.
[Figure 3] Fig. 3. Four-molecule aggregate in (I) mediated by O—H···N and N—H···O hydrogen bonding, shown as orange and blue dashed lines, respectively.
Ethyl N-[4-(3-methyl-4,5-dihydrobenzo[g]indazol- 1-yl}phenylsulfonyl]thiocarbamate ethanol monosolvate top
Crystal data top
C21H21N3O3S2·C2H6OF(000) = 2000
Mr = 473.60Dx = 1.356 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2528 reflections
a = 22.673 (2) Åθ = 2.3–29.2°
b = 12.5563 (8) ŵ = 0.27 mm1
c = 17.3831 (17) ÅT = 100 K
β = 110.410 (11)°Plate, colourless
V = 4638.1 (7) Å30.25 × 0.25 × 0.05 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
10333 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4871 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.089
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 2929
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1616
Tmin = 0.786, Tmax = 1.000l = 2215
21133 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.261H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0853P)2 + 2.6042P]
where P = (Fo2 + 2Fc2)/3
10333 reflections(Δ/σ)max = 0.001
581 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
C21H21N3O3S2·C2H6OV = 4638.1 (7) Å3
Mr = 473.60Z = 8
Monoclinic, P21/cMo Kα radiation
a = 22.673 (2) ŵ = 0.27 mm1
b = 12.5563 (8) ÅT = 100 K
c = 17.3831 (17) Å0.25 × 0.25 × 0.05 mm
β = 110.410 (11)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
10333 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4871 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 1.000Rint = 0.089
21133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0870 restraints
wR(F2) = 0.261H-atom parameters constrained
S = 1.03Δρmax = 0.80 e Å3
10333 reflectionsΔρmin = 0.67 e Å3
581 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63991 (6)0.65962 (9)0.32992 (7)0.0230 (3)
S20.48267 (6)0.75296 (10)0.39121 (8)0.0304 (3)
S30.85528 (6)0.60975 (10)0.68288 (8)0.0286 (3)
S41.00959 (7)0.52174 (13)0.61264 (11)0.0488 (4)
O10.67067 (16)0.5629 (3)0.3649 (2)0.0299 (8)
O20.61421 (15)0.6701 (3)0.24243 (19)0.0269 (8)
O30.55384 (15)0.8286 (2)0.3102 (2)0.0258 (8)
O40.82340 (15)0.7052 (3)0.6486 (2)0.0354 (9)
O50.87921 (16)0.5965 (3)0.7695 (2)0.0359 (9)
O60.94417 (16)0.4448 (3)0.7010 (2)0.0425 (10)
O70.9183 (2)0.7617 (3)0.5384 (2)0.0476 (11)
H70.90090.82090.53740.071*
O80.57919 (17)0.5072 (3)0.4670 (2)0.0327 (9)
H80.59340.44540.46670.049*
N10.88022 (19)0.9783 (3)0.5172 (3)0.0329 (11)
N20.82352 (18)1.0079 (3)0.4619 (2)0.0250 (9)
N30.58346 (16)0.6722 (3)0.3695 (2)0.0220 (9)
H30.58070.62150.40310.026*
N40.61940 (17)0.2944 (3)0.4789 (2)0.0228 (9)
N50.67529 (18)0.2618 (3)0.5351 (2)0.0228 (9)
N60.91276 (18)0.6036 (3)0.6451 (3)0.0313 (10)
H60.91690.65850.61600.038*
C10.9816 (3)1.0621 (5)0.5914 (4)0.0582 (19)
H1A0.99360.98770.60540.087*
H1B0.98481.10170.64130.087*
H1C1.00971.09400.56590.087*
C20.9157 (2)1.0667 (4)0.5330 (4)0.0380 (14)
C30.8815 (2)1.1527 (4)0.4871 (4)0.0368 (14)
C40.8972 (3)1.2687 (5)0.4828 (4)0.0478 (16)
H4A0.94291.27740.49490.057*
H4B0.88531.31000.52380.057*
C50.8603 (2)1.3084 (5)0.3963 (4)0.0453 (16)
H5A0.86451.38680.39480.054*
H5B0.87891.27750.35750.054*
C60.7913 (2)1.2797 (4)0.3684 (3)0.0300 (12)
C70.7462 (2)1.3491 (4)0.3195 (3)0.0291 (12)
H7A0.75891.41560.30450.035*
C80.6829 (2)1.3228 (4)0.2922 (3)0.0322 (12)
H8A0.65251.37030.25760.039*
C90.6642 (2)1.2273 (4)0.3156 (3)0.0323 (13)
H90.62071.21000.29830.039*
C100.7083 (2)1.1564 (4)0.3640 (3)0.0268 (11)
H100.69501.09100.37990.032*
C110.7721 (2)1.1805 (4)0.3896 (3)0.0267 (11)
C120.8226 (2)1.1134 (4)0.4426 (3)0.0273 (11)
C130.7777 (2)0.9263 (4)0.4294 (3)0.0247 (11)
C140.7501 (2)0.9129 (4)0.3456 (3)0.0285 (12)
H140.76090.95860.30910.034*
C150.7067 (2)0.8328 (4)0.3154 (3)0.0298 (12)
H150.68750.82280.25790.036*
C160.6911 (2)0.7664 (4)0.3699 (3)0.0217 (10)
C170.7199 (2)0.7789 (4)0.4539 (3)0.0232 (11)
H170.71030.73160.49050.028*
C180.7627 (2)0.8606 (4)0.4841 (3)0.0247 (11)
H180.78170.87150.54160.030*
C190.5410 (2)0.7528 (4)0.3555 (3)0.0239 (11)
C200.5116 (2)0.9195 (4)0.2846 (3)0.0274 (11)
H20A0.50400.95190.33230.033*
H20B0.47070.89770.24360.033*
C210.5449 (2)0.9962 (4)0.2478 (4)0.0382 (14)
H21A0.51911.06030.22970.057*
H21B0.55180.96280.20070.057*
H21C0.58551.01570.28900.057*
C220.5185 (2)0.2126 (4)0.3980 (3)0.0302 (12)
H22A0.50660.28730.38540.045*
H22B0.48930.17880.42090.045*
H22C0.51680.17540.34770.045*
C230.5837 (2)0.2068 (4)0.4591 (3)0.0225 (10)
C240.6165 (2)0.1188 (4)0.5031 (3)0.0216 (10)
C250.5996 (2)0.0043 (4)0.5062 (3)0.0273 (12)
H25A0.61330.03790.46730.033*
H25B0.55340.00340.49070.033*
C260.6328 (2)0.0357 (4)0.5943 (3)0.0287 (12)
H26A0.61330.00180.63100.034*
H26B0.62670.11370.59600.034*
C270.7019 (2)0.0116 (4)0.6251 (3)0.0249 (11)
C280.7457 (2)0.0822 (4)0.6748 (3)0.0300 (12)
H280.73160.14680.69110.036*
C290.8099 (3)0.0602 (4)0.7014 (3)0.0338 (13)
H290.83930.10960.73530.041*
C300.8310 (2)0.0348 (4)0.6778 (3)0.0296 (12)
H300.87470.05000.69510.035*
C310.7880 (2)0.1061 (4)0.6294 (3)0.0288 (12)
H310.80240.17050.61320.035*
C320.7233 (2)0.0856 (4)0.6036 (3)0.0251 (11)
C330.6746 (2)0.1558 (4)0.5512 (3)0.0217 (10)
C340.7211 (2)0.3412 (4)0.5721 (3)0.0215 (10)
C350.7516 (2)0.3434 (4)0.6567 (3)0.0243 (11)
H350.74270.29140.69080.029*
C360.7954 (2)0.4234 (4)0.6902 (3)0.0245 (11)
H360.81810.42480.74760.029*
C370.8058 (2)0.5001 (4)0.6406 (3)0.0225 (11)
C380.7746 (2)0.4989 (4)0.5558 (3)0.0251 (11)
H380.78210.55320.52220.030*
C390.7328 (2)0.4180 (4)0.5214 (3)0.0243 (11)
H390.71200.41460.46360.029*
C400.9545 (2)0.5220 (4)0.6545 (4)0.0340 (13)
C410.9835 (3)0.3542 (5)0.7199 (4)0.0536 (17)
H41A1.02580.37330.75850.064*
H41B0.98780.32460.66940.064*
C420.9540 (3)0.2769 (6)0.7571 (5)0.075 (2)
H42A0.97980.21220.77060.112*
H42B0.91200.25940.71850.112*
H42C0.95040.30700.80730.112*
C430.9085 (3)0.7272 (5)0.4543 (4)0.0462 (15)
H43A0.94900.70300.45090.055*
H43B0.89360.78850.41660.055*
C440.8618 (3)0.6393 (5)0.4277 (4)0.0432 (15)
H44A0.85740.61710.37200.065*
H44B0.82100.66410.42850.065*
H44C0.87610.57880.46530.065*
C450.5806 (3)0.5323 (4)0.5479 (4)0.0415 (15)
H45A0.59470.46910.58360.050*
H45B0.53760.55050.54580.050*
C460.6234 (3)0.6228 (5)0.5839 (4)0.0492 (16)
H46A0.62240.63870.63870.074*
H46B0.60950.68560.54870.074*
H46C0.66630.60410.58820.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0252 (6)0.0213 (6)0.0217 (7)0.0029 (5)0.0071 (5)0.0010 (5)
S20.0292 (7)0.0309 (8)0.0350 (8)0.0008 (6)0.0161 (6)0.0001 (6)
S30.0247 (7)0.0228 (7)0.0364 (8)0.0001 (5)0.0082 (6)0.0052 (6)
S40.0395 (9)0.0491 (10)0.0624 (12)0.0001 (7)0.0233 (8)0.0027 (8)
O10.0339 (19)0.0236 (19)0.031 (2)0.0047 (16)0.0105 (16)0.0007 (15)
O20.0310 (19)0.030 (2)0.0183 (19)0.0004 (15)0.0073 (15)0.0036 (14)
O30.0292 (18)0.0232 (18)0.026 (2)0.0015 (15)0.0108 (16)0.0008 (15)
O40.030 (2)0.0216 (19)0.054 (3)0.0012 (16)0.0142 (18)0.0043 (17)
O50.036 (2)0.040 (2)0.030 (2)0.0021 (17)0.0082 (17)0.0061 (17)
O60.027 (2)0.047 (3)0.050 (3)0.0079 (19)0.0093 (19)0.004 (2)
O70.055 (3)0.038 (2)0.047 (3)0.003 (2)0.015 (2)0.0058 (19)
O80.047 (2)0.0231 (19)0.035 (2)0.0059 (17)0.0223 (18)0.0018 (16)
N10.023 (2)0.036 (3)0.035 (3)0.001 (2)0.005 (2)0.006 (2)
N20.021 (2)0.028 (2)0.025 (2)0.0039 (18)0.0066 (18)0.0008 (18)
N30.020 (2)0.020 (2)0.026 (2)0.0016 (17)0.0077 (18)0.0059 (17)
N40.020 (2)0.024 (2)0.024 (2)0.0039 (18)0.0063 (17)0.0018 (18)
N50.022 (2)0.023 (2)0.022 (2)0.0007 (17)0.0063 (17)0.0004 (17)
N60.020 (2)0.026 (2)0.046 (3)0.0009 (18)0.009 (2)0.004 (2)
C10.031 (3)0.053 (4)0.073 (5)0.006 (3)0.004 (3)0.017 (4)
C20.027 (3)0.034 (3)0.049 (4)0.004 (3)0.009 (3)0.002 (3)
C30.026 (3)0.036 (3)0.046 (4)0.008 (2)0.008 (3)0.000 (3)
C40.029 (3)0.046 (4)0.059 (4)0.014 (3)0.004 (3)0.002 (3)
C50.030 (3)0.041 (4)0.060 (4)0.010 (3)0.009 (3)0.013 (3)
C60.031 (3)0.035 (3)0.026 (3)0.006 (2)0.012 (2)0.003 (2)
C70.043 (3)0.025 (3)0.021 (3)0.006 (2)0.014 (2)0.001 (2)
C80.035 (3)0.031 (3)0.032 (3)0.001 (2)0.014 (3)0.003 (2)
C90.027 (3)0.035 (3)0.038 (3)0.005 (2)0.014 (2)0.005 (2)
C100.025 (3)0.028 (3)0.030 (3)0.001 (2)0.014 (2)0.002 (2)
C110.025 (3)0.028 (3)0.027 (3)0.003 (2)0.009 (2)0.000 (2)
C120.028 (3)0.028 (3)0.028 (3)0.005 (2)0.011 (2)0.003 (2)
C130.018 (2)0.028 (3)0.028 (3)0.000 (2)0.008 (2)0.001 (2)
C140.028 (3)0.038 (3)0.017 (3)0.006 (2)0.005 (2)0.010 (2)
C150.028 (3)0.035 (3)0.023 (3)0.001 (2)0.005 (2)0.003 (2)
C160.019 (2)0.028 (3)0.020 (3)0.000 (2)0.008 (2)0.002 (2)
C170.028 (3)0.023 (3)0.018 (3)0.000 (2)0.007 (2)0.004 (2)
C180.024 (2)0.030 (3)0.016 (3)0.001 (2)0.002 (2)0.002 (2)
C190.024 (2)0.020 (3)0.024 (3)0.005 (2)0.004 (2)0.007 (2)
C200.032 (3)0.024 (3)0.027 (3)0.007 (2)0.012 (2)0.003 (2)
C210.042 (3)0.026 (3)0.048 (4)0.013 (3)0.017 (3)0.013 (3)
C220.033 (3)0.025 (3)0.029 (3)0.001 (2)0.006 (2)0.001 (2)
C230.027 (3)0.027 (3)0.015 (2)0.002 (2)0.009 (2)0.003 (2)
C240.022 (2)0.026 (3)0.018 (3)0.002 (2)0.009 (2)0.005 (2)
C250.025 (3)0.026 (3)0.029 (3)0.003 (2)0.008 (2)0.001 (2)
C260.038 (3)0.025 (3)0.023 (3)0.004 (2)0.011 (2)0.001 (2)
C270.034 (3)0.021 (3)0.023 (3)0.001 (2)0.014 (2)0.000 (2)
C280.047 (3)0.017 (3)0.028 (3)0.001 (2)0.016 (3)0.002 (2)
C290.046 (3)0.022 (3)0.030 (3)0.011 (3)0.010 (3)0.002 (2)
C300.030 (3)0.031 (3)0.024 (3)0.004 (2)0.005 (2)0.006 (2)
C310.036 (3)0.018 (3)0.033 (3)0.004 (2)0.012 (2)0.002 (2)
C320.027 (3)0.023 (3)0.022 (3)0.003 (2)0.005 (2)0.008 (2)
C330.019 (2)0.023 (3)0.023 (3)0.001 (2)0.007 (2)0.002 (2)
C340.022 (2)0.017 (2)0.025 (3)0.002 (2)0.007 (2)0.000 (2)
C350.030 (3)0.026 (3)0.020 (3)0.001 (2)0.012 (2)0.002 (2)
C360.025 (3)0.024 (3)0.025 (3)0.004 (2)0.010 (2)0.002 (2)
C370.023 (2)0.018 (2)0.027 (3)0.005 (2)0.009 (2)0.002 (2)
C380.020 (2)0.023 (3)0.034 (3)0.003 (2)0.012 (2)0.006 (2)
C390.026 (3)0.025 (3)0.024 (3)0.001 (2)0.010 (2)0.004 (2)
C400.021 (3)0.033 (3)0.045 (4)0.010 (2)0.008 (2)0.002 (3)
C410.045 (4)0.041 (4)0.068 (5)0.001 (3)0.010 (3)0.010 (3)
C420.048 (4)0.055 (5)0.109 (7)0.012 (4)0.011 (4)0.035 (4)
C430.046 (4)0.055 (4)0.043 (4)0.010 (3)0.021 (3)0.011 (3)
C440.041 (3)0.058 (4)0.034 (3)0.004 (3)0.017 (3)0.002 (3)
C450.066 (4)0.034 (3)0.037 (4)0.002 (3)0.033 (3)0.000 (3)
C460.038 (3)0.077 (5)0.030 (4)0.005 (3)0.008 (3)0.012 (3)
Geometric parameters (Å, º) top
S1—O11.427 (3)C17—C181.385 (6)
S1—O21.432 (3)C17—H170.9500
S1—N31.659 (4)C18—H180.9500
S1—C161.751 (5)C20—C211.498 (7)
S2—C191.644 (5)C20—H20A0.9900
S3—O41.419 (4)C20—H20B0.9900
S3—O51.421 (4)C21—H21A0.9800
S3—N61.653 (4)C21—H21B0.9800
S3—C371.766 (5)C21—H21C0.9800
S4—C401.650 (5)C22—C231.490 (7)
O3—C191.332 (6)C22—H22A0.9800
O3—C201.456 (5)C22—H22B0.9800
O6—C401.335 (6)C22—H22C0.9800
O6—C411.411 (7)C23—C241.401 (7)
O7—C431.465 (7)C24—C331.372 (6)
O7—H70.8400C24—C251.494 (6)
O8—C451.431 (6)C25—C261.536 (7)
O8—H80.8400C25—H25A0.9900
N1—C21.341 (6)C25—H25B0.9900
N1—N21.361 (5)C26—C271.500 (7)
N2—C121.366 (6)C26—H26A0.9900
N2—C131.427 (6)C26—H26B0.9900
N3—C191.359 (6)C27—C281.385 (7)
N3—H30.8800C27—C321.410 (7)
N4—C231.338 (6)C28—C291.393 (7)
N4—N51.365 (5)C28—H280.9500
N5—C331.362 (6)C29—C301.399 (7)
N5—C341.421 (6)C29—H290.9500
N6—C401.365 (6)C30—C311.373 (7)
N6—H60.8800C30—H300.9500
C1—C21.486 (7)C31—C321.401 (7)
C1—H1A0.9800C31—H310.9500
C1—H1B0.9800C32—C331.458 (6)
C1—H1C0.9800C34—C351.390 (6)
C2—C31.405 (8)C34—C391.393 (6)
C3—C121.380 (7)C35—C361.389 (7)
C3—C41.507 (7)C35—H350.9500
C4—C51.527 (8)C36—C371.367 (7)
C4—H4A0.9900C36—H360.9500
C4—H4B0.9900C37—C381.396 (7)
C5—C61.512 (7)C38—C391.376 (6)
C5—H5A0.9900C38—H380.9500
C5—H5B0.9900C39—H390.9500
C6—C71.385 (7)C41—C421.451 (9)
C6—C111.410 (7)C41—H41A0.9900
C7—C81.386 (7)C41—H41B0.9900
C7—H7A0.9500C42—H42A0.9800
C8—C91.380 (7)C42—H42B0.9800
C8—H8A0.9500C42—H42C0.9800
C9—C101.383 (7)C43—C441.487 (8)
C9—H90.9500C43—H43A0.9900
C10—C111.390 (6)C43—H43B0.9900
C10—H100.9500C44—H44A0.9800
C11—C121.460 (7)C44—H44B0.9800
C13—C141.381 (7)C44—H44C0.9800
C13—C181.388 (7)C45—C461.483 (8)
C14—C151.375 (7)C45—H45A0.9900
C14—H140.9500C45—H45B0.9900
C15—C161.397 (7)C46—H46A0.9800
C15—H150.9500C46—H46B0.9800
C16—C171.385 (6)C46—H46C0.9800
O1—S1—O2119.2 (2)C20—C21—H21C109.5
O1—S1—N3103.7 (2)H21A—C21—H21C109.5
O2—S1—N3110.19 (19)H21B—C21—H21C109.5
O1—S1—C16109.0 (2)C23—C22—H22A109.5
O2—S1—C16108.6 (2)C23—C22—H22B109.5
N3—S1—C16105.2 (2)H22A—C22—H22B109.5
O4—S3—O5119.6 (2)C23—C22—H22C109.5
O4—S3—N6103.3 (2)H22A—C22—H22C109.5
O5—S3—N6110.7 (2)H22B—C22—H22C109.5
O4—S3—C37109.1 (2)N4—C23—C24110.4 (4)
O5—S3—C37107.6 (2)N4—C23—C22120.3 (4)
N6—S3—C37105.8 (2)C24—C23—C22129.3 (4)
C19—O3—C20119.0 (4)C33—C24—C23106.2 (4)
C40—O6—C41119.8 (4)C33—C24—C25120.6 (4)
C43—O7—H7109.5C23—C24—C25133.2 (4)
C45—O8—H8109.5C24—C25—C26107.9 (4)
C2—N1—N2105.7 (4)C24—C25—H25A110.1
N1—N2—C12111.6 (4)C26—C25—H25A110.1
N1—N2—C13117.5 (4)C24—C25—H25B110.1
C12—N2—C13130.7 (4)C26—C25—H25B110.1
C19—N3—S1126.7 (3)H25A—C25—H25B108.4
C19—N3—H3116.6C27—C26—C25112.2 (4)
S1—N3—H3116.6C27—C26—H26A109.2
C23—N4—N5105.4 (4)C25—C26—H26A109.2
C33—N5—N4111.4 (4)C27—C26—H26B109.2
C33—N5—C34130.6 (4)C25—C26—H26B109.2
N4—N5—C34117.6 (4)H26A—C26—H26B107.9
C40—N6—S3126.7 (4)C28—C27—C32118.8 (5)
C40—N6—H6116.6C28—C27—C26121.7 (4)
S3—N6—H6116.6C32—C27—C26119.5 (4)
C2—C1—H1A109.5C27—C28—C29121.3 (5)
C2—C1—H1B109.5C27—C28—H28119.4
H1A—C1—H1B109.5C29—C28—H28119.4
C2—C1—H1C109.5C28—C29—C30119.7 (5)
H1A—C1—H1C109.5C28—C29—H29120.2
H1B—C1—H1C109.5C30—C29—H29120.2
N1—C2—C3110.3 (5)C31—C30—C29119.6 (5)
N1—C2—C1119.7 (5)C31—C30—H30120.2
C3—C2—C1129.9 (5)C29—C30—H30120.2
C12—C3—C2106.1 (5)C30—C31—C32121.1 (5)
C12—C3—C4121.1 (5)C30—C31—H31119.5
C2—C3—C4132.7 (5)C32—C31—H31119.5
C3—C4—C5107.9 (5)C31—C32—C27119.5 (5)
C3—C4—H4A110.1C31—C32—C33124.7 (4)
C5—C4—H4A110.1C27—C32—C33115.8 (4)
C3—C4—H4B110.1N5—C33—C24106.5 (4)
C5—C4—H4B110.1N5—C33—C32131.3 (4)
H4A—C4—H4B108.4C24—C33—C32122.2 (4)
C6—C5—C4112.8 (5)C35—C34—C39121.4 (4)
C6—C5—H5A109.0C35—C34—N5120.6 (4)
C4—C5—H5A109.0C39—C34—N5118.0 (4)
C6—C5—H5B109.0C36—C35—C34118.5 (4)
C4—C5—H5B109.0C36—C35—H35120.7
H5A—C5—H5B107.8C34—C35—H35120.7
C7—C6—C11119.1 (5)C37—C36—C35120.0 (5)
C7—C6—C5120.5 (5)C37—C36—H36120.0
C11—C6—C5120.4 (5)C35—C36—H36120.0
C6—C7—C8121.0 (5)C36—C37—C38121.5 (4)
C6—C7—H7A119.5C36—C37—S3120.8 (4)
C8—C7—H7A119.5C38—C37—S3117.5 (3)
C9—C8—C7119.6 (5)C39—C38—C37119.0 (4)
C9—C8—H8A120.2C39—C38—H38120.5
C7—C8—H8A120.2C37—C38—H38120.5
C8—C9—C10120.5 (5)C38—C39—C34119.4 (5)
C8—C9—H9119.8C38—C39—H39120.3
C10—C9—H9119.8C34—C39—H39120.3
C9—C10—C11120.4 (5)O6—C40—N6110.8 (4)
C9—C10—H10119.8O6—C40—S4125.9 (4)
C11—C10—H10119.8N6—C40—S4123.3 (4)
C10—C11—C6119.3 (5)O6—C41—C42107.0 (5)
C10—C11—C12125.1 (4)O6—C41—H41A110.3
C6—C11—C12115.4 (4)C42—C41—H41A110.3
N2—C12—C3106.3 (4)O6—C41—H41B110.3
N2—C12—C11131.0 (4)C42—C41—H41B110.3
C3—C12—C11122.7 (5)H41A—C41—H41B108.6
C14—C13—C18121.4 (4)C41—C42—H42A109.5
C14—C13—N2120.3 (4)C41—C42—H42B109.5
C18—C13—N2118.3 (4)H42A—C42—H42B109.5
C15—C14—C13119.6 (4)C41—C42—H42C109.5
C15—C14—H14120.2H42A—C42—H42C109.5
C13—C14—H14120.2H42B—C42—H42C109.5
C14—C15—C16119.6 (5)O7—C43—C44111.9 (5)
C14—C15—H15120.2O7—C43—H43A109.2
C16—C15—H15120.2C44—C43—H43A109.2
C17—C16—C15120.6 (4)O7—C43—H43B109.2
C17—C16—S1120.5 (3)C44—C43—H43B109.2
C15—C16—S1118.6 (4)H43A—C43—H43B107.9
C16—C17—C18119.6 (4)C43—C44—H44A109.5
C16—C17—H17120.2C43—C44—H44B109.5
C18—C17—H17120.2H44A—C44—H44B109.5
C17—C18—C13119.2 (4)C43—C44—H44C109.5
C17—C18—H18120.4H44A—C44—H44C109.5
C13—C18—H18120.4H44B—C44—H44C109.5
O3—C19—N3110.5 (4)O8—C45—C46111.8 (4)
O3—C19—S2126.4 (4)O8—C45—H45A109.3
N3—C19—S2123.1 (4)C46—C45—H45A109.3
O3—C20—C21105.0 (4)O8—C45—H45B109.3
O3—C20—H20A110.7C46—C45—H45B109.3
C21—C20—H20A110.7H45A—C45—H45B107.9
O3—C20—H20B110.7C45—C46—H46A109.5
C21—C20—H20B110.7C45—C46—H46B109.5
H20A—C20—H20B108.8H46A—C46—H46B109.5
C20—C21—H21A109.5C45—C46—H46C109.5
C20—C21—H21B109.5H46A—C46—H46C109.5
H21A—C21—H21B109.5H46B—C46—H46C109.5
C2—N1—N2—C120.1 (6)C20—O3—C19—N3176.7 (4)
C2—N1—N2—C13175.4 (4)C20—O3—C19—S23.5 (6)
O1—S1—N3—C19179.5 (4)S1—N3—C19—O35.8 (6)
O2—S1—N3—C1951.8 (4)S1—N3—C19—S2174.4 (3)
C16—S1—N3—C1965.1 (4)C19—O3—C20—C21170.9 (4)
C23—N4—N5—C330.7 (5)N5—N4—C23—C240.6 (5)
C23—N4—N5—C34175.2 (4)N5—N4—C23—C22179.8 (4)
O4—S3—N6—C40174.6 (4)N4—C23—C24—C330.2 (5)
O5—S3—N6—C4056.2 (5)C22—C23—C24—C33179.8 (5)
C37—S3—N6—C4060.1 (5)N4—C23—C24—C25178.9 (5)
N2—N1—C2—C30.3 (6)C22—C23—C24—C250.7 (9)
N2—N1—C2—C1179.6 (5)C33—C24—C25—C2633.2 (6)
N1—C2—C3—C120.6 (7)C23—C24—C25—C26145.9 (5)
C1—C2—C3—C12179.7 (6)C24—C25—C26—C2751.6 (5)
N1—C2—C3—C4177.9 (6)C25—C26—C27—C28142.9 (5)
C1—C2—C3—C43.0 (12)C25—C26—C27—C3237.5 (6)
C12—C3—C4—C533.0 (7)C32—C27—C28—C292.1 (7)
C2—C3—C4—C5150.1 (6)C26—C27—C28—C29178.3 (5)
C3—C4—C5—C649.6 (7)C27—C28—C29—C300.2 (8)
C4—C5—C6—C7144.4 (5)C28—C29—C30—C310.8 (8)
C4—C5—C6—C1137.7 (8)C29—C30—C31—C320.3 (8)
C11—C6—C7—C80.8 (8)C30—C31—C32—C272.3 (7)
C5—C6—C7—C8178.8 (5)C30—C31—C32—C33178.9 (5)
C6—C7—C8—C91.6 (8)C28—C27—C32—C313.2 (7)
C7—C8—C9—C101.9 (8)C26—C27—C32—C31177.3 (4)
C8—C9—C10—C110.2 (8)C28—C27—C32—C33180.0 (4)
C9—C10—C11—C62.5 (7)C26—C27—C32—C330.4 (7)
C9—C10—C11—C12178.1 (5)N4—N5—C33—C240.6 (5)
C7—C6—C11—C102.8 (7)C34—N5—C33—C24174.1 (4)
C5—C6—C11—C10179.2 (5)N4—N5—C33—C32177.4 (5)
C7—C6—C11—C12178.8 (5)C34—N5—C33—C329.1 (8)
C5—C6—C11—C123.2 (7)C23—C24—C33—N50.2 (5)
N1—N2—C12—C30.5 (6)C25—C24—C33—N5179.5 (4)
C13—N2—C12—C3174.3 (5)C23—C24—C33—C32177.4 (4)
N1—N2—C12—C11177.2 (5)C25—C24—C33—C323.3 (7)
C13—N2—C12—C118.1 (9)C31—C32—C33—N521.4 (8)
C2—C3—C12—N20.6 (6)C27—C32—C33—N5161.9 (5)
C4—C3—C12—N2178.3 (5)C31—C32—C33—C24155.0 (5)
C2—C3—C12—C11177.3 (5)C27—C32—C33—C2421.7 (7)
C4—C3—C12—C110.4 (8)C33—N5—C34—C3541.2 (7)
C10—C11—C12—N218.5 (9)N4—N5—C34—C35132.0 (4)
C6—C11—C12—N2165.7 (5)C33—N5—C34—C39140.9 (5)
C10—C11—C12—C3158.8 (5)N4—N5—C34—C3945.9 (6)
C6—C11—C12—C317.0 (7)C39—C34—C35—C361.2 (7)
N1—N2—C13—C14125.8 (5)N5—C34—C35—C36179.0 (4)
C12—N2—C13—C1448.6 (7)C34—C35—C36—C372.6 (7)
N1—N2—C13—C1853.1 (6)C35—C36—C37—C381.8 (7)
C12—N2—C13—C18132.4 (5)C35—C36—C37—S3173.7 (3)
C18—C13—C14—C150.1 (7)O4—S3—C37—C36129.6 (4)
N2—C13—C14—C15179.0 (4)O5—S3—C37—C361.5 (4)
C13—C14—C15—C160.2 (7)N6—S3—C37—C36119.8 (4)
C14—C15—C16—C171.5 (7)O4—S3—C37—C3846.0 (4)
C14—C15—C16—S1175.7 (4)O5—S3—C37—C38177.1 (3)
O1—S1—C16—C1752.2 (4)N6—S3—C37—C3864.5 (4)
O2—S1—C16—C17176.5 (4)C36—C37—C38—C390.6 (7)
N3—S1—C16—C1758.5 (4)S3—C37—C38—C39176.1 (4)
O1—S1—C16—C15121.9 (4)C37—C38—C39—C341.9 (7)
O2—S1—C16—C159.4 (4)C35—C34—C39—C381.0 (7)
N3—S1—C16—C15127.3 (4)N5—C34—C39—C38176.8 (4)
C15—C16—C17—C182.6 (7)C41—O6—C40—N6178.4 (5)
S1—C16—C17—C18176.6 (4)C41—O6—C40—S41.7 (8)
C16—C17—C18—C132.3 (7)S3—N6—C40—O61.3 (7)
C14—C13—C18—C171.0 (7)S3—N6—C40—S4178.6 (3)
N2—C13—C18—C17178.0 (4)C40—O6—C41—C42169.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O80.881.822.700 (5)174
N6—H6···O70.881.882.750 (6)170
O7—H7···N10.842.032.839 (6)161
O8—H8···N40.841.982.807 (5)170

Experimental details

Crystal data
Chemical formulaC21H21N3O3S2·C2H6O
Mr473.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)22.673 (2), 12.5563 (8), 17.3831 (17)
β (°) 110.410 (11)
V3)4638.1 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.25 × 0.25 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.786, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21133, 10333, 4871
Rint0.089
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.261, 1.03
No. of reflections10333
No. of parameters581
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.67

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O80.881.822.700 (5)174
N6—H6···O70.881.882.750 (6)170
O7—H7···N10.842.032.839 (6)161
O8—H8···N40.841.982.807 (5)170
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing research facilities. The authors also thank the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAl-Saadi, M. S., Rostom, S. A. F. & Faidallah, H. M. (2008). Arch. Pharm. Chem. Life Sci, 341, 181–190.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFaidallah, H. M., Al-Saadi, M. S., Rostom, S. A. F. & Fahmy, H. T. Y. (2007). Med. Chem. Res. 16, 300–318.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds