organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1-Adamant­yl)-1-(3-amino­phen­yl)ethanol

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 16 August 2011; accepted 24 August 2011; online 27 August 2011)

In the crystal structure of the title compound, C18H25NO, mol­ecules are linked via O—H⋯N hydrogen bonds, forming chains parallel to the c axis. Additional weak N—H⋯O inter­actions stabilize the crystal packing. The adamantane cage consists of three fused cyclo­hexane rings in almost ideal chair conformations, with C—C—C angles in the range 107.9 (10)–111.3 (11)°.

Related literature

For the biological activity of adamantane-bearing compounds, see: van der Schyf & Geldenhuys (2009)[Schyf, C. J. van der & Geldenhuys, W. J. (2009). Neurotherapeutics, 6, 175-186.]. For related structures, see: Rouchal et al. (2009[Rouchal, M., Nečas, M. & Vícha, R. (2009). Acta Cryst. E65, o1018.], 2010[Rouchal, M., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o1736.]).

[Scheme 1]

Experimental

Crystal data
  • C18H25NO

  • Mr = 271.39

  • Orthorhombic, P c c n

  • a = 16.4467 (7) Å

  • b = 22.1873 (9) Å

  • c = 8.1033 (4) Å

  • V = 2957.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Kuma KM-4 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.984, Tmax = 1.000

  • 30937 measured reflections

  • 2602 independent reflections

  • 1716 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.068

  • S = 0.85

  • 2602 reflections

  • 190 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.84 2.10 2.9400 (14) 176
N1—H1C⋯O1ii 0.930 (15) 2.295 (15) 3.2048 (16) 166.0 (13)
N1—H1B⋯O1iii 0.930 (16) 2.357 (16) 3.2472 (16) 160.1 (14)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x, y, z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It is matter of common knowledge that the well advised introduction of the highly lipophilic adamantane moiety into biologically active compounds might improve some pharmacological properties of the resulting molecule (van der Schyf & Geldenhuys, 2009). The title compound belongs to the series of recently synthesized building blocks for drug modification based on adamantylated aromatic amines.

The asymmetric unit of the title compound consists of a single molecule (Fig. 1). The benzene ring is nearly planar with a maximum deviation from the best plane being 0.006 (13) Å for C13. The torsion angles describing an arrangement of adamantane cage, benzene ring and aliphatic linker C1–C11–C12–C13, C11–C12–C13–C18, and C10–C1–C11–C12 are 158.37 (11), -95.75 (14), and -178.42 (11)°, respectively. The presented structure is linked into pairs by O–H···N hydrogen bonds (Fig. 2, Table 1). The crystal packing is further stabilized via intermolecular N–H···O interactions (Table 1).

Related literature top

For the biological activity of adamantane-bearing compounds, see: van der Schyf & Geldenhuys (2009). For related structures, see: Rouchal et al. (2009, 2010).

Experimental top

2-(1-Adamantyl)-1-(3-nitrophenyl)ethanol (350 mg, 1.16 mmol) was dissolved in methanol (34 cm3) and 7 cm3 of hydrochloric acid/water (1/1, v/v) was added. Into the refluxed and well stirred mixture, portions of an iron powder were added successively. The reaction was stopped when TLC indicated the consumption of all starting material. The mixture was neutralized with 5% solution of NaOH (50 cm3) and extracted with diethyl ether (6 × 10 cm3). Combined organic layers were twice washed with brine, dried over sodium sulfate and evaporated in vacuum. The purification of crude material by washing with hexane provided the desired product as a colourless crystalline powder (258 mg, 82%, mp 415–418 K). The crystal used for data collection was grown by spontaneous evaporation from diethyl ether at room temperature.

Refinement top

All carbon bound H atoms were placed at calculated positions and were refined as riding with their Uiso set to 1.2Ueq of the respective carrier atoms. The oxygen bound hydrogen was placed at calculated coordinates refined with a torsional degree of freedom, and with Uiso set to 1.5Ueq of the carrier atom. Nitrogen bound H atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot of the asymmetric unit with atoms represented as 50% probability ellipsoids. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing the H-bonds (dashed lines). H-atoms (except those which are involved in H-bonding) have been omitted for clarity. Symmetry codes: (i) -x+0.5,y,z-0.5; (ii) x,-y+1.5,z+0.5; (iii) x,y,z+1.
2-(1-Adamantyl)-1-(3-aminophenyl)ethanol top
Crystal data top
C18H25NODx = 1.219 Mg m3
Mr = 271.39Melting point: 417 K
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 6715 reflections
a = 16.4467 (7) Åθ = 2.9–27.3°
b = 22.1873 (9) ŵ = 0.07 mm1
c = 8.1033 (4) ÅT = 120 K
V = 2957.0 (2) Å3Block, colourless
Z = 80.30 × 0.20 × 0.10 mm
F(000) = 1184
Data collection top
Kuma KM-4 CCD
diffractometer
2602 independent reflections
Radiation source: fine-focus sealed tube1716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 0.06 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1819
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 2626
Tmin = 0.984, Tmax = 1.000l = 89
30937 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.0369P)2]
where P = (Fo2 + 2Fc2)/3
2602 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H25NOV = 2957.0 (2) Å3
Mr = 271.39Z = 8
Orthorhombic, PccnMo Kα radiation
a = 16.4467 (7) ŵ = 0.07 mm1
b = 22.1873 (9) ÅT = 120 K
c = 8.1033 (4) Å0.30 × 0.20 × 0.10 mm
Data collection top
Kuma KM-4 CCD
diffractometer
2602 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1716 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 1.000Rint = 0.053
30937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.14 e Å3
2602 reflectionsΔρmin = 0.15 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36193 (5)0.68130 (4)0.21617 (11)0.0266 (2)
H1A0.31390.68100.25130.040*
N10.30745 (7)0.68654 (6)0.83127 (16)0.0257 (3)
C10.54376 (8)0.63700 (5)0.11634 (15)0.0185 (3)
C20.53840 (8)0.57371 (6)0.04034 (16)0.0240 (3)
H2A0.55600.54340.12270.029*
H2B0.48130.56490.01020.029*
C30.59193 (8)0.56895 (6)0.11291 (17)0.0271 (4)
H30.58750.52740.15990.033*
C40.68033 (8)0.58181 (6)0.06886 (18)0.0290 (4)
H4A0.69980.55190.01270.035*
H4B0.71470.57850.16880.035*
C50.68711 (8)0.64514 (6)0.00313 (17)0.0258 (3)
H50.74500.65360.03320.031*
C60.65776 (8)0.69158 (6)0.12231 (18)0.0281 (4)
H6A0.69230.69000.22220.034*
H6B0.66190.73260.07460.034*
C70.56932 (8)0.67818 (6)0.16850 (17)0.0254 (3)
H70.55030.70820.25190.030*
C80.51604 (8)0.68229 (6)0.01404 (15)0.0228 (3)
H8A0.51910.72360.03190.027*
H8B0.45870.67410.04400.027*
C90.56360 (8)0.61470 (6)0.24141 (16)0.0282 (4)
H9A0.50670.60600.27370.034*
H9B0.59810.61180.34120.034*
C100.63360 (8)0.64953 (6)0.15736 (17)0.0242 (3)
H10A0.63870.69040.20560.029*
H10B0.65270.62010.24050.029*
C110.49559 (8)0.64112 (6)0.27851 (16)0.0226 (3)
H11A0.52050.61250.35740.027*
H11B0.50390.68210.32380.027*
C120.40426 (8)0.62906 (6)0.27706 (16)0.0221 (3)
H120.39320.59450.20090.027*
C130.37566 (8)0.61198 (6)0.44839 (16)0.0197 (3)
C140.35838 (7)0.65598 (6)0.56444 (16)0.0199 (3)
H140.36450.69720.53560.024*
C150.33224 (7)0.64093 (6)0.72247 (17)0.0209 (3)
C160.32485 (8)0.58040 (6)0.76474 (17)0.0250 (3)
H160.30710.56940.87210.030*
C170.34335 (8)0.53647 (6)0.65039 (18)0.0277 (4)
H170.33900.49520.68040.033*
C180.36811 (8)0.55162 (6)0.49282 (17)0.0259 (3)
H180.38000.52090.41490.031*
H1B0.3144 (9)0.6768 (6)0.942 (2)0.045 (5)*
H1C0.3315 (8)0.7235 (7)0.8081 (17)0.033 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0216 (5)0.0341 (5)0.0241 (6)0.0052 (4)0.0027 (5)0.0062 (5)
N10.0280 (7)0.0324 (8)0.0166 (8)0.0026 (6)0.0010 (6)0.0003 (6)
C10.0189 (8)0.0208 (7)0.0158 (8)0.0003 (6)0.0010 (6)0.0002 (6)
C20.0250 (8)0.0223 (7)0.0247 (8)0.0017 (6)0.0019 (6)0.0005 (6)
C30.0303 (8)0.0224 (7)0.0286 (9)0.0005 (6)0.0046 (7)0.0073 (7)
C40.0272 (9)0.0322 (8)0.0276 (9)0.0082 (6)0.0086 (7)0.0036 (7)
C50.0160 (7)0.0359 (8)0.0257 (9)0.0040 (6)0.0009 (6)0.0016 (7)
C60.0296 (9)0.0280 (8)0.0268 (9)0.0056 (6)0.0071 (7)0.0018 (7)
C70.0270 (8)0.0281 (8)0.0210 (8)0.0034 (6)0.0015 (6)0.0073 (7)
C80.0212 (7)0.0241 (7)0.0230 (8)0.0027 (6)0.0003 (6)0.0011 (6)
C90.0255 (8)0.0403 (9)0.0188 (8)0.0011 (7)0.0026 (7)0.0045 (7)
C100.0239 (8)0.0267 (8)0.0221 (8)0.0004 (6)0.0040 (7)0.0005 (6)
C110.0252 (8)0.0241 (7)0.0185 (8)0.0008 (6)0.0023 (6)0.0001 (6)
C120.0229 (8)0.0232 (7)0.0202 (8)0.0023 (6)0.0005 (7)0.0006 (6)
C130.0157 (7)0.0256 (7)0.0177 (8)0.0003 (6)0.0007 (6)0.0008 (6)
C140.0174 (7)0.0217 (7)0.0206 (8)0.0004 (6)0.0006 (6)0.0044 (6)
C150.0153 (7)0.0291 (8)0.0182 (8)0.0010 (6)0.0018 (6)0.0001 (6)
C160.0214 (8)0.0331 (8)0.0205 (9)0.0026 (6)0.0009 (6)0.0081 (7)
C170.0279 (9)0.0239 (8)0.0315 (10)0.0037 (6)0.0023 (7)0.0070 (7)
C180.0277 (8)0.0244 (7)0.0255 (9)0.0005 (6)0.0004 (7)0.0022 (7)
Geometric parameters (Å, º) top
O1—C121.4393 (14)C7—C91.5302 (18)
O1—H1A0.8400C7—C81.5305 (17)
N1—C151.4027 (17)C7—H71.0000
N1—H1C0.930 (14)C8—H8A0.9900
N1—H1B0.934 (16)C8—H8B0.9900
C1—C81.5277 (16)C9—H9A0.9900
C1—C21.5360 (16)C9—H9B0.9900
C1—C111.5373 (17)C10—H10A0.9900
C1—C101.5397 (18)C10—H10B0.9900
C2—C31.5258 (17)C11—C121.5257 (18)
C2—H2A0.9900C11—H11A0.9900
C2—H2B0.9900C11—H11B0.9900
C3—C41.5240 (18)C12—C131.5141 (17)
C3—C91.5271 (18)C12—H121.0000
C3—H31.0000C13—C141.3850 (17)
C4—C51.5254 (18)C13—C181.3923 (17)
C4—H4A0.9900C14—C151.3915 (18)
C4—H4B0.9900C14—H140.9500
C5—C61.5258 (18)C15—C161.3912 (17)
C5—C101.5317 (18)C16—C171.3789 (19)
C5—H51.0000C16—H160.9500
C6—C71.5311 (18)C17—C181.3817 (18)
C6—H6A0.9900C17—H170.9500
C6—H6B0.9900C18—H180.9500
C12—O1—H1A109.5C1—C8—H8A109.5
C15—N1—H1C112.7 (9)C7—C8—H8A109.5
C15—N1—H1B113.8 (9)C1—C8—H8B109.5
H1C—N1—H1B110.3 (13)C7—C8—H8B109.5
C8—C1—C2107.88 (10)H8A—C8—H8B108.1
C8—C1—C11113.47 (10)C3—C9—C7109.26 (11)
C2—C1—C11111.57 (10)C3—C9—H9A109.8
C8—C1—C10108.48 (10)C7—C9—H9A109.8
C2—C1—C10107.86 (10)C3—C9—H9B109.8
C11—C1—C10107.42 (10)C7—C9—H9B109.8
C3—C2—C1110.89 (10)H9A—C9—H9B108.3
C3—C2—H2A109.5C5—C10—C1111.33 (11)
C1—C2—H2A109.5C5—C10—H10A109.4
C3—C2—H2B109.5C1—C10—H10A109.4
C1—C2—H2B109.5C5—C10—H10B109.4
H2A—C2—H2B108.1C1—C10—H10B109.4
C2—C3—C4110.29 (11)H10A—C10—H10B108.0
C2—C3—C9109.45 (11)C12—C11—C1119.36 (11)
C4—C3—C9109.04 (11)C12—C11—H11A107.5
C2—C3—H3109.3C1—C11—H11A107.5
C4—C3—H3109.3C12—C11—H11B107.5
C9—C3—H3109.3C1—C11—H11B107.5
C5—C4—C3109.38 (11)H11A—C11—H11B107.0
C5—C4—H4A109.8O1—C12—C13111.45 (10)
C3—C4—H4A109.8O1—C12—C11109.72 (10)
C5—C4—H4B109.8C13—C12—C11110.04 (11)
C3—C4—H4B109.8O1—C12—H12108.5
H4A—C4—H4B108.2C13—C12—H12108.5
C6—C5—C4110.13 (11)C11—C12—H12108.5
C6—C5—C10108.59 (11)C14—C13—C18118.96 (12)
C4—C5—C10109.19 (11)C14—C13—C12120.66 (11)
C6—C5—H5109.6C18—C13—C12120.37 (12)
C4—C5—H5109.6C13—C14—C15121.27 (12)
C10—C5—H5109.6C13—C14—H14119.4
C5—C6—C7109.41 (11)C15—C14—H14119.4
C5—C6—H6A109.8C14—C15—C16119.03 (12)
C7—C6—H6A109.8C14—C15—N1119.67 (12)
C5—C6—H6B109.8C16—C15—N1121.08 (13)
C7—C6—H6B109.8C17—C16—C15119.84 (13)
H6A—C6—H6B108.2C17—C16—H16120.1
C6—C7—C9109.36 (11)C15—C16—H16120.1
C6—C7—C8109.41 (11)C16—C17—C18120.94 (13)
C9—C7—C8109.60 (10)C16—C17—H17119.5
C6—C7—H7109.5C18—C17—H17119.5
C9—C7—H7109.5C17—C18—C13119.95 (13)
C8—C7—H7109.5C17—C18—H18120.0
C1—C8—C7110.82 (10)C13—C18—H18120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.842.102.9400 (14)176
N1—H1C···O1ii0.930 (15)2.295 (15)3.2048 (16)166.0 (13)
N1—H1B···O1iii0.930 (16)2.357 (16)3.2472 (16)160.1 (14)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H25NO
Mr271.39
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)120
a, b, c (Å)16.4467 (7), 22.1873 (9), 8.1033 (4)
V3)2957.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.984, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
30937, 2602, 1716
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.068, 0.85
No. of reflections2602
No. of parameters190
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.842.102.9400 (14)175.8
N1—H1C···O1ii0.930 (15)2.295 (15)3.2048 (16)166.0 (13)
N1—H1B···O1iii0.930 (16)2.357 (16)3.2472 (16)160.1 (14)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y, z+1.
 

Acknowledgements

Financial support of this work by the Tomas Bata Foundation, the Czech Ministry of Education (project No. MSM 7088352101) and the Inter­nal Funding Agency of Tomas Bata University in Zlin (project No. IGA/6/FT/11/D) is gratefully acknowledged.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRouchal, M., Nečas, M. & Vícha, R. (2009). Acta Cryst. E65, o1018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRouchal, M., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o1736.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchyf, C. J. van der & Geldenhuys, W. J. (2009). Neurotherapeutics, 6, 175–186.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds