metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[3-meth­­oxy­methyl-4-phenyl-5-(2-pyrid­yl)-4H-1,2,4-triazole-κ2N1,N5]copper(II)

aSchool of Chemistry and Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: wangzx0908@yahoo.com.cn

(Received 17 July 2011; accepted 14 August 2011; online 27 August 2011)

In the title complex, [CuCl2(C15H14N4O)], the CuII atom possesses a highly distorted square-planar geometry with N—Cu—N and Cl—Cu—Cl angles of 79.86 (8) and 98.65 (3)°, respectively, while the Cl—Cu—N angles fall into two distinct groups with values of 95.26 (6), 98.75 (6), 150.56 (6) and 152.04 (6)°. The pyridyl ring is twisted by 9.4 (2)° with respect to the triazole ring, which is oriented at approximately right angles [84.66 (8)°] with respect to the phenyl ring.

Related literature

For general background on the coordination chemistry of 1,2,4-triazoles, see: Klingele & Brooker (2003[Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119-132.]); Rubio et al. (2011[Rubio, M., Hernández, R., Nogales, A., Roig, A. & López, D. (2011). Eur. Polym. J. 47, 52-60.]). For the biological activity of triazoles, see: Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]). For a related structure, see: Ren et al. (2006[Ren, X. M., Ni, Z. P., Noro, S., Akutagawa, T., Nishihara, S., Nakamura, T., Sui, Y. X. & Song, Y. (2006). Cryst. Growth Des. 6, 2530-2537.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C15H14N4O)]

  • Mr = 400.74

  • Orthorhombic, P b c a

  • a = 16.6512 (11) Å

  • b = 11.2056 (7) Å

  • c = 17.9966 (11) Å

  • V = 3357.9 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 296 K

  • 0.15 × 0.13 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.792, Tmax = 0.829

  • 22829 measured reflections

  • 3043 independent reflections

  • 2288 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.068

  • S = 1.00

  • 3043 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of 1,2,4-triazoles as ligands has been widely studied (Klingele & Brooker 2003; Rubio et al., 2011). Some 1,2,4-triazole compounds show biological activities (Isloor et al., 2009). We report here the crystal structure analysis of the title compound.

In the title complex (Fig. 1), copper(II) atom is coordinated by two N atoms of a 3-(methoxymethyl)-4-phenyl-5-(2-pyridyl)-4H-1,2,4-triazole and two chloride anion atoms, and exhibits a highly distorted square-planar geometry (Ren et al., 2006) with N1–Cu1–N4 and Cl1–Cu1–Cl2 angles 79.86 (8) and 98.65 (3)°, respectively, while the Cl–Cu–N angles fall in two distinct categories with values 95.26 (6), 98.75 (6), 150.56 (6) and 152.04 (6)°. The pyridyl ring (N4/C3–C7) is twisted by 9.4 (2)° with respect to the triazole ring. The phenyl ring is oriented at approximately right angles (84.66 (8)°) with respect to the triazole ring.

Related literature top

For general background on the coordination chemistry of 1,2,4-triazoles, see: Klingele & Brooker (2003); Rubio et al. (2011). For the biological activity of triazoles, see: Isloor et al. (2009). For a related structure, see: Ren et al. (2006).

Experimental top

To a warm solution of 3-methoxymethyl-4-phenyl-5-(2-pyridyl)-4H-1,2,4-triazole (0.532 g, 2 mmol) in ethanol (20 ml), CuCl2.2H2O (0.340 g, 2 mmol) was added. The filtrate was left to stand at room temperature for several days. The title compound crystallized as a green product which was collected and a single crystal suitable for X-ray diffraction was selected.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the parent atoms with C—H = 0.93, 0.96 and 0.97 Å, for aryl, methyl and methylene type H-atoms, respectively, with Uĩso~(H) = 1.2 or 1.5 times U~eq~(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic labels; displacement ellipsoids are shown at 30% probability level.
Dichlorido[3-methoxymethyl-4-phenyl-5-(2-pyridyl)-4H-1,2,4- triazole-κ2N1,N5]copper(II) top
Crystal data top
[CuCl2(C15H14N4O)]F(000) = 1624
Mr = 400.74Dx = 1.585 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9999 reflections
a = 16.6512 (11) Åθ = 2.5–23.3°
b = 11.2056 (7) ŵ = 1.63 mm1
c = 17.9966 (11) ÅT = 296 K
V = 3357.9 (4) Å3Plate, green
Z = 80.15 × 0.13 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3043 independent reflections
Radiation source: fine-focus sealed tube2288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 25.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1919
Tmin = 0.792, Tmax = 0.829k = 1313
22829 measured reflectionsl = 2120
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0297P)2 + 1.3987P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.003
3043 reflectionsΔρmax = 0.27 e Å3
210 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00051 (11)
Crystal data top
[CuCl2(C15H14N4O)]V = 3357.9 (4) Å3
Mr = 400.74Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.6512 (11) ŵ = 1.63 mm1
b = 11.2056 (7) ÅT = 296 K
c = 17.9966 (11) Å0.15 × 0.13 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3043 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2288 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.829Rint = 0.052
22829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
3043 reflectionsΔρmin = 0.30 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.050004 (18)0.14725 (3)0.291744 (16)0.03113 (11)
Cl10.00195 (5)0.07124 (6)0.39349 (4)0.0465 (2)
Cl20.04038 (5)0.33855 (6)0.32076 (4)0.0497 (2)
N10.11465 (12)0.00815 (17)0.25962 (11)0.0307 (5)
N20.15782 (13)0.08048 (19)0.29457 (12)0.0363 (5)
N30.17649 (12)0.09025 (18)0.17273 (11)0.0320 (5)
N40.05062 (13)0.17404 (17)0.17923 (12)0.0315 (5)
C10.19497 (15)0.1381 (2)0.24098 (15)0.0360 (6)
O10.22057 (13)0.34971 (18)0.22443 (12)0.0537 (6)
C20.12619 (14)0.0011 (2)0.18771 (13)0.0288 (6)
C30.08684 (14)0.0871 (2)0.13891 (14)0.0298 (6)
C40.08315 (17)0.0841 (2)0.06246 (14)0.0409 (7)
H40.10810.02330.03590.049*
C50.04137 (18)0.1740 (3)0.02592 (16)0.0471 (8)
H50.03720.17340.02560.057*
C60.00641 (18)0.2635 (3)0.06654 (16)0.0433 (7)
H60.02090.32510.04290.052*
C70.01245 (16)0.2607 (2)0.14301 (15)0.0390 (7)
H70.01110.32180.17030.047*
C80.21233 (15)0.1229 (2)0.10221 (14)0.0336 (6)
C90.27888 (17)0.0607 (3)0.07879 (16)0.0484 (8)
H90.29970.00110.10740.058*
C100.31432 (19)0.0914 (3)0.01219 (18)0.0623 (9)
H100.35960.05060.00430.075*
C110.2831 (2)0.1813 (4)0.02921 (19)0.0651 (10)
H110.30710.20130.07420.078*
C120.2167 (2)0.2431 (3)0.00585 (18)0.0623 (10)
H120.19610.30450.03500.075*
C130.17992 (18)0.2144 (3)0.06103 (16)0.0473 (7)
H130.13490.25580.07750.057*
C140.25175 (18)0.2404 (3)0.25097 (17)0.0472 (7)
H14A0.30140.22280.22500.057*
H14B0.26430.24860.30340.057*
C150.1611 (2)0.3976 (3)0.2710 (2)0.0763 (11)
H15A0.18330.41120.31950.114*
H15B0.14240.47180.25070.114*
H15C0.11710.34260.27460.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03540 (19)0.03221 (18)0.02578 (18)0.00298 (15)0.00322 (14)0.00052 (13)
Cl10.0637 (5)0.0446 (4)0.0313 (4)0.0037 (4)0.0134 (3)0.0013 (3)
Cl20.0754 (5)0.0342 (4)0.0396 (4)0.0099 (4)0.0052 (4)0.0038 (3)
N10.0329 (12)0.0315 (12)0.0276 (12)0.0032 (10)0.0021 (9)0.0020 (9)
N20.0372 (12)0.0378 (13)0.0340 (12)0.0046 (10)0.0014 (10)0.0035 (10)
N30.0321 (12)0.0328 (12)0.0309 (12)0.0015 (10)0.0033 (10)0.0003 (10)
N40.0355 (12)0.0314 (12)0.0275 (11)0.0026 (10)0.0021 (10)0.0027 (9)
C10.0340 (14)0.0364 (15)0.0377 (16)0.0016 (13)0.0009 (12)0.0006 (13)
O10.0589 (13)0.0432 (12)0.0591 (14)0.0147 (11)0.0039 (11)0.0017 (11)
C20.0276 (14)0.0302 (14)0.0286 (14)0.0020 (11)0.0017 (11)0.0014 (11)
C30.0305 (14)0.0300 (14)0.0290 (14)0.0034 (11)0.0018 (11)0.0002 (11)
C40.0520 (17)0.0395 (16)0.0310 (16)0.0062 (14)0.0013 (13)0.0033 (13)
C50.063 (2)0.0525 (19)0.0256 (15)0.0009 (16)0.0030 (14)0.0052 (13)
C60.0492 (18)0.0427 (17)0.0381 (17)0.0049 (14)0.0037 (14)0.0105 (13)
C70.0412 (16)0.0374 (16)0.0382 (16)0.0048 (13)0.0040 (13)0.0040 (13)
C80.0330 (14)0.0370 (15)0.0309 (15)0.0083 (12)0.0041 (12)0.0035 (12)
C90.0444 (17)0.0537 (19)0.0469 (18)0.0072 (15)0.0098 (14)0.0069 (15)
C100.049 (2)0.089 (3)0.049 (2)0.0019 (19)0.0160 (16)0.0052 (19)
C110.061 (2)0.094 (3)0.040 (2)0.017 (2)0.0122 (17)0.0105 (19)
C120.076 (3)0.067 (2)0.044 (2)0.005 (2)0.0070 (18)0.0258 (17)
C130.0486 (18)0.0480 (18)0.0452 (19)0.0026 (15)0.0009 (14)0.0070 (15)
C140.0394 (17)0.0500 (19)0.0521 (19)0.0116 (15)0.0024 (14)0.0048 (15)
C150.065 (2)0.062 (2)0.102 (3)0.000 (2)0.017 (2)0.007 (2)
Geometric parameters (Å, º) top
Cu1—N11.981 (2)C5—H50.9300
Cu1—N42.047 (2)C6—C71.380 (4)
Cu1—Cl12.1969 (7)C6—H60.9300
Cu1—Cl22.2121 (7)C7—H70.9300
N1—C21.311 (3)C8—C91.375 (4)
N1—N21.378 (3)C8—C131.376 (4)
N2—C11.315 (3)C9—C101.380 (4)
N3—C21.350 (3)C9—H90.9300
N3—C11.375 (3)C10—C111.356 (5)
N3—C81.449 (3)C10—H100.9300
N4—C71.331 (3)C11—C121.371 (5)
N4—C31.356 (3)C11—H110.9300
C1—C141.496 (4)C12—C131.388 (4)
O1—C151.403 (4)C12—H120.9300
O1—C141.414 (3)C13—H130.9300
C2—C31.459 (3)C14—H14A0.9700
C3—C41.377 (3)C14—H14B0.9700
C4—C51.390 (4)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.371 (4)C15—H15C0.9600
N1—Cu1—N479.86 (8)C7—C6—H6120.5
N1—Cu1—Cl198.75 (6)N4—C7—C6122.7 (3)
N4—Cu1—Cl1152.04 (6)N4—C7—H7118.7
N1—Cu1—Cl2150.56 (6)C6—C7—H7118.7
N4—Cu1—Cl295.26 (6)C9—C8—C13121.9 (3)
Cl1—Cu1—Cl298.65 (3)C9—C8—N3118.2 (2)
C2—N1—N2109.3 (2)C13—C8—N3119.9 (2)
C2—N1—Cu1114.52 (16)C8—C9—C10119.0 (3)
N2—N1—Cu1135.85 (16)C8—C9—H9120.5
C1—N2—N1105.3 (2)C10—C9—H9120.5
C2—N3—C1104.8 (2)C11—C10—C9119.9 (3)
C2—N3—C8128.4 (2)C11—C10—H10120.0
C1—N3—C8126.3 (2)C9—C10—H10120.0
C7—N4—C3118.3 (2)C10—C11—C12121.1 (3)
C7—N4—Cu1126.09 (18)C10—C11—H11119.5
C3—N4—Cu1115.22 (16)C12—C11—H11119.5
N2—C1—N3111.0 (2)C11—C12—C13120.3 (3)
N2—C1—C14125.8 (2)C11—C12—H12119.9
N3—C1—C14123.2 (2)C13—C12—H12119.9
C15—O1—C14112.8 (3)C8—C13—C12117.8 (3)
N1—C2—N3109.5 (2)C8—C13—H13121.1
N1—C2—C3119.3 (2)C12—C13—H13121.1
N3—C2—C3131.2 (2)O1—C14—C1113.0 (2)
N4—C3—C4122.1 (2)O1—C14—H14A109.0
N4—C3—C2110.6 (2)C1—C14—H14A109.0
C4—C3—C2127.2 (2)O1—C14—H14B109.0
C3—C4—C5118.5 (3)C1—C14—H14B109.0
C3—C4—H4120.7H14A—C14—H14B107.8
C5—C4—H4120.7O1—C15—H15A109.5
C6—C5—C4119.4 (3)O1—C15—H15B109.5
C6—C5—H5120.3H15A—C15—H15B109.5
C4—C5—H5120.3O1—C15—H15C109.5
C5—C6—C7118.9 (3)H15A—C15—H15C109.5
C5—C6—H6120.5H15B—C15—H15C109.5

Experimental details

Crystal data
Chemical formula[CuCl2(C15H14N4O)]
Mr400.74
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)16.6512 (11), 11.2056 (7), 17.9966 (11)
V3)3357.9 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.15 × 0.13 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.792, 0.829
No. of measured, independent and
observed [I > 2σ(I)] reflections
22829, 3043, 2288
Rint0.052
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.068, 1.00
No. of reflections3043
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We are grateful to Jingye Pharmochemical Pilot Plant for financial assistance though project 8507040052.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119–132.  Web of Science CrossRef CAS Google Scholar
First citationRen, X. M., Ni, Z. P., Noro, S., Akutagawa, T., Nishihara, S., Nakamura, T., Sui, Y. X. & Song, Y. (2006). Cryst. Growth Des. 6, 2530–2537.  Google Scholar
First citationRubio, M., Hernández, R., Nogales, A., Roig, A. & López, D. (2011). Eur. Polym. J. 47, 52–60.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds