organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-chloro-2′-fluoro-3-hy­dr­oxy-5-methyl­bi­phenyl-2-carboxyl­ate

aGomal University, Department of Chemistry, Dera Ismail Khan (KPK), Pakistan, bUniversität Rostock, Institut für Chemie, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany, and cLeibniz-Institut für Katalyse e.V., an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: muhammad_adeel2000@yahoo.com

(Received 18 July 2011; accepted 8 August 2011; online 17 August 2011)

In the title compound, C16H14ClFO3, the dihedral angle between the mean planes of the two benzene rings is 71.50 (5)°. Due to an intra­molecular O—H⋯O hydrogen bond between the hy­droxy group and the carbonyl O atom of the ethyl ester group, the ethyl ester group lies within the ring plane. The crystal structure is consolidated by inter­molecular C—H⋯O and C—H⋯F inter­actions.

Related literature

For a related structure, see: Adeel et al. (2009[Adeel, M., Ali, I., Langer, P. & Villinger, A. (2009). Acta Cryst. E65, o2176.]). For synthetic procedures and the pharmacological relevance of 3-chloro­salicylates, see: Wolf et al. (2009[Wolf, V., Adeel, M., Reim, S., Villinger, A., Fischer, C. & Langer, P. (2009). Eur. J. Org. Chem. 2, 5854-5867.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClFO3

  • Mr = 308.73

  • Triclinic, [P \overline 1]

  • a = 8.212 (4) Å

  • b = 9.780 (3) Å

  • c = 10.156 (3) Å

  • α = 71.18 (3)°

  • β = 76.41 (2)°

  • γ = 71.34 (2)°

  • V = 723.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 173 K

  • 0.31 × 0.18 × 0.08 mm

Data collection
  • Bruker APEXII KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.918, Tmax = 0.978

  • 12813 measured reflections

  • 3773 independent reflections

  • 2902 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.139

  • S = 1.07

  • 3773 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯O1i 0.98 2.59 3.473 (3) 150
C9—H9A⋯Fii 0.99 2.40 3.320 (3) 155
O1—H1⋯O2 0.82 (3) 1.77 (3) 2.521 (2) 153 (3)
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Functionalized chloroarenes are of considerable pharmacological relevance. 3-Chlorosalicylates and related compounds are employed as pharmacological agents (Wolf et al., 2009).

In the title compound (Fig. 1), the dihedral angle between the mean planes of the two benzene rings is 71.50 (5)°. The ethyllester group lies within the ring plane due to an intramolecular hydrogen bond between the hydroxyl group and the carbonyl O atom of the ehtyllester group, O1—H1···O2. The crystal structure is consolidated by weak C7—H7C···O1 and C9—H9A···F intermolecular interactions.

Related literature top

For a related structure, see: Adeel et al. (2009). For synthetic procedures and pharmacological relevance of 3-chlorosalicylates, see: Wolf et al. (2009).

Experimental top

Experimental: The title compound was prepared according to a previously published procedure (Wolf et al. 2009). To a CH2Cl2 (6 ml) solution of 1-(2-fluoro-phenyl)-3-trimethylsilanyloxy-but-2-en-1-one (720 mg, 2.8 mmol) and 4-chloro-1-ethoxy-1,3-bis-trimethylsilanyloxy-buta-1,3-diene (970 mg, 3.1 mmol) was added TiCl4 (0.34 ml, 3.1 mmol) at 195 K under argon atmosphere. The solution was allowed to warm to ambient temperature within 20 hrs. To the solution was added a saturated solution of NaHCO3 (15 mL). The organic and the aqueous layers were separated and the latter was extracted with diethyl ether (3 × 20 ml). The filtrate was concentrated in vacuo and the residue was purified by chromatography (silica gel, EtOAc / n-heptane = 1:4). The title compound was isolated as a colorless crystalline solid. Yield: 390 mg, 45%. Mp. = 352 K. Crystallization from a saturated dichloromethane/methanol (9:1) solution at ambient temperature gave colorless crystals.

Refinement top

The H atom bonded to O1 was located from a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 (methyl groups) or 0.95 Å (aryl CH) and with Uiso(H) = 1.5 times Ueq(C) (methyl groups) or with Uiso(H) = 1.2 times Ueq(C) (aryl CH). Torsion angles of all methyl groups were allowed to refine.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound drawn with thermal elliposids at the 50% probability level.
Ethyl 4-chloro-2'-fluoro-3-hydroxy-5-methylbiphenyl-2-carboxylate top
Crystal data top
C16H14ClFO3Z = 2
Mr = 308.73F(000) = 320
Triclinic, P1Dx = 1.417 Mg m3
Hall symbol: -P 1Melting point: 342 K
a = 8.212 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.780 (3) ÅCell parameters from 12813 reflections
c = 10.156 (3) Åθ = 0.9–1.0°
α = 71.18 (3)°µ = 0.28 mm1
β = 76.41 (2)°T = 173 K
γ = 71.34 (2)°Block, colourless
V = 723.5 (5) Å30.31 × 0.18 × 0.08 mm
Data collection top
Bruker APEXII KappaCCD
diffractometer
3773 independent reflections
Radiation source: fine-focus sealed tube2902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 29.0°, θmin = 4.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.918, Tmax = 0.978k = 1013
12813 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.1732P]
where P = (Fo2 + 2Fc2)/3
3773 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H14ClFO3γ = 71.34 (2)°
Mr = 308.73V = 723.5 (5) Å3
Triclinic, P1Z = 2
a = 8.212 (4) ÅMo Kα radiation
b = 9.780 (3) ŵ = 0.28 mm1
c = 10.156 (3) ÅT = 173 K
α = 71.18 (3)°0.31 × 0.18 × 0.08 mm
β = 76.41 (2)°
Data collection top
Bruker APEXII KappaCCD
diffractometer
3773 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2902 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.978Rint = 0.028
12813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.87 e Å3
3773 reflectionsΔρmin = 0.24 e Å3
195 parameters
Special details top

Experimental. Yield: 390 mg, 45%. Mp. = 352(???) K 1H NMR (250 MHz, CDCl3): δ = 0.75 (t,3H, J = 6.5 Hz, CH3) 2.34 (s, 3H, CH3), 3.96 (q, 2H, J = 7.0 Hz,OCH2),6.60 (s, 1H, ArH), 6.91–6.98 (m, 1H, ArH), 7.06–7.11 (m, 2H, ArH), 7.22 (m, 1H, ArH), 11.53 (s, 1 H, OH). 13C NMR (62 MHz, CDCl3): δ = 13.0 (CH3), 20.7 (CH3), 61.5 (OCH2), 111.0 (C), 114.4, 114.8 (CH), 122.3 (C), 123.7, 124.4, 129.0 (CH), 135.4, 142.9, 142.4, 157.7, 161.0 (C), 170.5 (C=O). IR (ATR, cm -1): \~ν = 3040 (w), 2979 (m), 1657 (m), 1604 (m), 1495 (m), 1440 (m), 1374 (s), 1260 (s), 1215 (s), 759 (s). GC—MS (EI, 70 eV): m/z (%): 310 (M+, 37Cl, 8), 308 (M+, 24), 262 (100), 234 (12), 199 (11), 170 (24). HRMS (EI, 70 eV): calcd for C116H14ClFO3 [M, 35Cl]: 308.06100; found 308.060555.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.02886 (6)0.86275 (5)0.43812 (5)0.03926 (16)
F0.3361 (2)0.44171 (16)0.01240 (13)0.0725 (5)
O10.18805 (15)0.68979 (15)0.35763 (15)0.0384 (3)
H10.225 (3)0.630 (3)0.341 (3)0.058*
O20.19906 (16)0.46568 (15)0.29190 (16)0.0422 (3)
O30.04108 (15)0.32871 (13)0.19277 (14)0.0341 (3)
C10.0830 (2)0.71258 (18)0.36909 (17)0.0280 (3)
C20.0136 (2)0.63762 (17)0.33593 (17)0.0265 (3)
C30.07182 (19)0.51135 (17)0.28378 (16)0.0247 (3)
C40.2551 (2)0.46328 (17)0.26719 (16)0.0253 (3)
C50.3454 (2)0.54158 (19)0.30155 (18)0.0307 (4)
H50.46870.50860.28990.037*
C60.2626 (2)0.66689 (19)0.35253 (19)0.0313 (4)
C70.3663 (3)0.7464 (3)0.3907 (3)0.0478 (5)
H7A0.33510.74120.49110.072*
H7B0.34100.85150.33550.072*
H7C0.49050.69830.37040.072*
C80.0406 (2)0.43450 (18)0.25693 (18)0.0284 (3)
C90.0649 (3)0.2461 (2)0.1702 (2)0.0431 (5)
H9A0.16260.31600.12070.052*
H9B0.11290.18620.26120.052*
C100.0523 (3)0.1462 (3)0.0828 (3)0.0612 (7)
H10A0.15560.08660.12760.092*
H10B0.08740.20720.01100.092*
H10C0.00920.07920.07440.092*
C110.3638 (2)0.32652 (18)0.22316 (18)0.0280 (3)
C120.4056 (3)0.3214 (2)0.0855 (2)0.0422 (4)
C130.5149 (3)0.1975 (3)0.0445 (2)0.0536 (6)
H130.54000.19750.05170.064*
C140.5866 (3)0.0741 (2)0.1454 (3)0.0487 (5)
H140.66250.01200.11880.058*
C150.5496 (2)0.0742 (2)0.2836 (2)0.0428 (5)
H150.59940.01180.35290.051*
C160.4392 (2)0.19994 (19)0.3228 (2)0.0350 (4)
H160.41470.19960.41910.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0353 (2)0.0323 (2)0.0569 (3)0.00351 (17)0.00615 (19)0.0267 (2)
F0.0975 (11)0.0589 (8)0.0352 (7)0.0110 (8)0.0107 (7)0.0092 (6)
O10.0198 (6)0.0397 (7)0.0629 (9)0.0002 (5)0.0055 (5)0.0315 (7)
O20.0243 (6)0.0488 (8)0.0664 (9)0.0072 (5)0.0058 (6)0.0358 (7)
O30.0293 (6)0.0323 (6)0.0484 (7)0.0034 (5)0.0091 (5)0.0233 (5)
C10.0259 (8)0.0253 (7)0.0348 (8)0.0036 (6)0.0039 (6)0.0141 (6)
C20.0217 (7)0.0263 (7)0.0319 (8)0.0022 (6)0.0055 (6)0.0115 (6)
C30.0217 (7)0.0241 (7)0.0295 (8)0.0038 (6)0.0048 (6)0.0102 (6)
C40.0232 (7)0.0240 (7)0.0260 (7)0.0028 (6)0.0027 (6)0.0072 (6)
C50.0198 (7)0.0328 (8)0.0405 (9)0.0054 (6)0.0026 (6)0.0142 (7)
C60.0266 (8)0.0323 (8)0.0392 (9)0.0094 (7)0.0041 (7)0.0140 (7)
C70.0310 (9)0.0527 (12)0.0750 (14)0.0154 (9)0.0031 (9)0.0364 (11)
C80.0269 (8)0.0276 (8)0.0335 (8)0.0031 (6)0.0085 (6)0.0130 (6)
C90.0378 (10)0.0391 (10)0.0661 (13)0.0065 (8)0.0155 (9)0.0304 (10)
C100.0624 (15)0.0610 (15)0.0806 (17)0.0138 (12)0.0091 (13)0.0497 (14)
C110.0201 (7)0.0268 (8)0.0371 (9)0.0038 (6)0.0011 (6)0.0130 (7)
C120.0457 (11)0.0361 (10)0.0382 (10)0.0026 (8)0.0002 (8)0.0139 (8)
C130.0567 (13)0.0537 (13)0.0479 (12)0.0089 (10)0.0120 (10)0.0298 (10)
C140.0357 (10)0.0320 (10)0.0755 (15)0.0042 (8)0.0070 (10)0.0262 (10)
C150.0321 (9)0.0269 (9)0.0646 (13)0.0034 (7)0.0078 (9)0.0098 (8)
C160.0255 (8)0.0288 (8)0.0503 (10)0.0058 (6)0.0062 (7)0.0109 (7)
Geometric parameters (Å, º) top
Cl—C11.7294 (17)C7—H7B0.9800
F—C121.334 (2)C7—H7C0.9800
O1—C21.348 (2)C9—C101.492 (3)
O1—H10.82 (3)C9—H9A0.9900
O2—C81.229 (2)C9—H9B0.9900
O3—C81.315 (2)C10—H10A0.9800
O3—C91.458 (2)C10—H10B0.9800
C1—C61.384 (2)C10—H10C0.9800
C1—C21.392 (2)C11—C121.372 (3)
C2—C31.411 (2)C11—C161.392 (3)
C3—C41.412 (2)C12—C131.379 (3)
C3—C81.479 (2)C13—C141.372 (3)
C4—C51.384 (2)C13—H130.9500
C4—C111.490 (2)C14—C151.365 (3)
C5—C61.394 (2)C14—H140.9500
C5—H50.9500C15—C161.388 (3)
C6—C71.501 (2)C15—H150.9500
C7—H7A0.9800C16—H160.9500
C2—O1—H1105.4 (18)O3—C9—H9A110.5
C8—O3—C9116.61 (14)C10—C9—H9A110.5
C6—C1—C2121.84 (15)O3—C9—H9B110.5
C6—C1—Cl120.26 (13)C10—C9—H9B110.5
C2—C1—Cl117.86 (12)H9A—C9—H9B108.7
O1—C2—C1117.25 (14)C9—C10—H10A109.5
O1—C2—C3122.85 (15)C9—C10—H10B109.5
C1—C2—C3119.89 (14)H10A—C10—H10B109.5
C2—C3—C4118.74 (14)C9—C10—H10C109.5
C2—C3—C8116.40 (14)H10A—C10—H10C109.5
C4—C3—C8124.79 (14)H10B—C10—H10C109.5
C5—C4—C3119.21 (14)C12—C11—C16116.99 (16)
C5—C4—C11115.36 (14)C12—C11—C4123.15 (16)
C3—C4—C11125.31 (14)C16—C11—C4119.67 (15)
C4—C5—C6122.64 (15)F—C12—C11118.25 (17)
C4—C5—H5118.7F—C12—C13118.85 (19)
C6—C5—H5118.7C11—C12—C13122.90 (19)
C1—C6—C5117.68 (15)C14—C13—C12118.7 (2)
C1—C6—C7121.70 (16)C14—C13—H13120.6
C5—C6—C7120.60 (16)C12—C13—H13120.6
C6—C7—H7A109.5C15—C14—C13120.53 (18)
C6—C7—H7B109.5C15—C14—H14119.7
H7A—C7—H7B109.5C13—C14—H14119.7
C6—C7—H7C109.5C14—C15—C16119.91 (19)
H7A—C7—H7C109.5C14—C15—H15120.0
H7B—C7—H7C109.5C16—C15—H15120.0
O2—C8—O3121.77 (15)C15—C16—C11120.95 (19)
O2—C8—C3123.07 (15)C15—C16—H16119.5
O3—C8—C3115.17 (14)C11—C16—H16119.5
O3—C9—C10106.34 (17)
C6—C1—C2—O1179.12 (16)C9—O3—C8—C3177.37 (15)
Cl—C1—C2—O11.3 (2)C2—C3—C8—O28.1 (2)
C6—C1—C2—C30.0 (3)C4—C3—C8—O2168.84 (16)
Cl—C1—C2—C3177.88 (12)C2—C3—C8—O3172.18 (14)
O1—C2—C3—C4178.74 (15)C4—C3—C8—O310.9 (2)
C1—C2—C3—C40.4 (2)C8—O3—C9—C10173.83 (17)
O1—C2—C3—C81.6 (2)C5—C4—C11—C12102.9 (2)
C1—C2—C3—C8177.49 (14)C3—C4—C11—C1281.1 (2)
C2—C3—C4—C50.4 (2)C5—C4—C11—C1672.0 (2)
C8—C3—C4—C5177.26 (15)C3—C4—C11—C16104.1 (2)
C2—C3—C4—C11175.50 (15)C16—C11—C12—F179.55 (18)
C8—C3—C4—C111.4 (3)C4—C11—C12—F4.6 (3)
C3—C4—C5—C60.1 (3)C16—C11—C12—C131.0 (3)
C11—C4—C5—C6176.19 (15)C4—C11—C12—C13175.94 (19)
C2—C1—C6—C50.3 (3)F—C12—C13—C14179.8 (2)
Cl—C1—C6—C5177.53 (13)C11—C12—C13—C140.7 (4)
C2—C1—C6—C7178.94 (18)C12—C13—C14—C150.3 (3)
Cl—C1—C6—C71.2 (3)C13—C14—C15—C160.2 (3)
C4—C5—C6—C10.2 (3)C14—C15—C16—C110.5 (3)
C4—C5—C6—C7178.92 (18)C12—C11—C16—C150.9 (3)
C9—O3—C8—O22.4 (3)C4—C11—C16—C15176.02 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···O1i0.982.593.473 (3)150
C9—H9A···Fii0.992.403.320 (3)155
O1—H1···O20.82 (3)1.77 (3)2.521 (2)153 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H14ClFO3
Mr308.73
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.212 (4), 9.780 (3), 10.156 (3)
α, β, γ (°)71.18 (3), 76.41 (2), 71.34 (2)
V3)723.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.31 × 0.18 × 0.08
Data collection
DiffractometerBruker APEXII KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.918, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
12813, 3773, 2902
Rint0.028
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.139, 1.07
No. of reflections3773
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.87, 0.24

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···O1i0.982.593.473 (3)150
C9—H9A···Fii0.992.403.320 (3)155
O1—H1···O20.82 (3)1.77 (3)2.521 (2)153 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

Financial support from the Higher Education Commission of Pakistan (HEC) under the resource grant programme is gratefully acknowledged.

References

First citationAdeel, M., Ali, I., Langer, P. & Villinger, A. (2009). Acta Cryst. E65, o2176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolf, V., Adeel, M., Reim, S., Villinger, A., Fischer, C. & Langer, P. (2009). Eur. J. Org. Chem. 2, 5854–5867.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds