organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3,4-Dimeth­­oxy­phen­yl)-4-(2-meth­­oxy­anilino)furan-2(5H)-one

aKey Laboratory of Hunan Forest Product and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, People's Republic of China, and bKey Laboratory of Plant Resources Conservation and Utilization of Hunan Province, Jishou University, Jishou 416000, People's Republic of China
*Correspondence e-mail: tianchunlian1970@163.com

(Received 28 July 2011; accepted 2 August 2011; online 11 August 2011)

In the title compound, C19H19NO5, the furan­one unit makes a dihedral angle of 30.93 (6)° with the benzene ring and a dihedral angle of 9.51 (6)° with the aniline ring. In the crystal, inter­molecular C—H⋯O hydrogen bonds and C—H⋯π contacts link the mol­ecules into sheets. A weak intramolecular hydrogen bond is also observed.

Related literature

For the biological activity of furan-2(5H)-one derivatives, see: Xiao, He et al. (2011[Xiao, Z.-P., He, X.-B., Peng, Z.-Y., Xiong, T.-J., Peng, J. & Chen, L.-H. (2011). Bioorg. Med. Chem. 19, 1571-1579.]). For related structures, see: Xiao et al. (2010[Xiao, Z.-P., Zhu, J., Jiang, W., Li, G.-X. & Wang, X.-D. (2010). Z. Kristallogr. New Cryst. Struct. 225, 797-798.]); Xiao, Peng et al. (2011[Xiao, Z.-P., Peng, Z.-Y., Liu, Z.-X., Chen, L.-H. & Zhu, H.-L. (2011). J. Chem. Crystallogr. 41, 649-653.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19NO5

  • Mr = 341.35

  • Orthorhombic, P 21 21 21

  • a = 7.4932 (5) Å

  • b = 11.5862 (7) Å

  • c = 18.5744 (12) Å

  • V = 1612.59 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.980

  • 10601 measured reflections

  • 3940 independent reflections

  • 3732 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.121

  • S = 1.09

  • 3940 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.43 3.006 (2) 121
C17—H17B⋯O1i 0.96 2.58 3.428 (2) 147
C17—H17CCgii 0.96 2.94 3.847 (2) 158
C19—H19CCgiii 0.96 2.77 3.695 (2) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Furan-2(5H)-one is a part of many natural and synthetic compounds, which possess useful biological activities (Xiao, He et al., 2011). Herein, we reported the crystal structure of the title compound which is a derivatives of furan-2(5H)-one.

In the title molecule (Fig. 1), the bond distance C7—C10 (1.358 (2) Å) is indicative of a double bond which is consistent with the corresponding bond distances in the analogues of the title compound reported recently (Xiao et al., 2010; Xiao, Peng et al., 2011). The bond distance C10—N1 (1.359 (2) Å) is shorter than the standard C—N single bond (1.48 Å), but longer than a CN double bond (1.28 Å). This clearly indicated that a p orbital of N1 is conjugated with the π molecular orbital of C7C10 double bond. Moreover, 3,4-dimethoxybenzene moiety and aniline ring form dihedral angles of 30.93 (6) ° and 9.51 (6) ° with the central furan-2(5H)-one ring, respectively.

The molecules of the title compound are connected by intermolecular C17—H17B···O1 hydrogen bonds and C—H···π interactions to generate two-dimensional sheets of molecules (Tab. 1 & Fig. 2).

Related literature top

For the biological activity of furan-2(5H)-one derivatives, see: Xiao, He et al. (2011). For related structures, see: Xiao et al. (2010); Xiao, Peng et al. (2011).

Experimental top

To a mixture of 2-methoxyaniline (147 mg, 1.2 mmol) and p-toluene sulphonic acid (6.8 mg, 0.04 mmol) waqs added 3-(3,4-dimethoxyphenyl)-4-hydroxyfuran-2(5H)-one (236 mg, 1 mmol) which was prepared according to the procedure described earlier (Xiao, He et al., 2011). The mixture was heated to 370 K for 20 min. and toluene (12 ml) was then added and refluxed for 8 h. After toluene was removed under reduced pressure, the residue was purified by column chromatography on silica gel, eluting with EtOAc/petroleum ether (1:1). The crystals of the title compound were grown from EtOAc/petroleum ether (1:1) at room temperature by slow evaporation.

Refinement top

The H atom bonded to N1 was located from a difference Fourier map and was allowed to refine. The rest of the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.9 , 0.97 and 0.96 Å for aromatic, methylene and methyl type H atoms, respectively, with Uiso(H) = 1.5 times Ueq(C) for methyl H-atoms and 1.2 times Ueq(C) for the rest of the H-atoms. An absolute structure was not established in this analysis.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis, showing intermolecular C—H···O hydrogen bonds and C—H···π contacts. For the sake of clarity, the H atoms not involved in the hydrogen bonds have been omitted.
3-(3,4-Dimethoxyphenyl)-4-(2-methoxyanilino)furan-2(5H)-one top
Crystal data top
C19H19NO5F(000) = 720
Mr = 341.35Dx = 1.406 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3629 reflections
a = 7.4932 (5) Åθ = 2.4–27.8°
b = 11.5862 (7) ŵ = 0.10 mm1
c = 18.5744 (12) ÅT = 298 K
V = 1612.59 (18) Å3Block, colorless
Z = 40.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3940 independent reflections
Radiation source: fine-focus sealed tube3732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.970, Tmax = 0.980k = 1415
10601 measured reflectionsl = 1924
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.1364P]
where P = (Fo2 + 2Fc2)/3
3940 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C19H19NO5V = 1612.59 (18) Å3
Mr = 341.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4932 (5) ŵ = 0.10 mm1
b = 11.5862 (7) ÅT = 298 K
c = 18.5744 (12) Å0.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3940 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3732 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.046
10601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.24 e Å3
3940 reflectionsΔρmin = 0.34 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1004 (2)0.78788 (13)0.96299 (8)0.0298 (3)
C20.1438 (2)0.90439 (13)0.96587 (9)0.0357 (3)
H20.15800.94530.92320.043*
C30.1665 (2)0.96090 (14)1.03105 (10)0.0386 (4)
H30.19681.03871.03140.046*
C40.1447 (2)0.90327 (15)1.09529 (9)0.0380 (4)
C50.0948 (2)0.78615 (14)1.09393 (9)0.0354 (3)
C60.0722 (2)0.73015 (13)1.02868 (8)0.0325 (3)
H60.03790.65301.02830.039*
C70.0929 (2)0.72736 (13)0.89352 (8)0.0306 (3)
C80.0519 (2)0.78617 (14)0.82608 (9)0.0375 (4)
C90.1286 (3)0.60193 (14)0.79642 (8)0.0410 (4)
H9A0.24470.58070.77740.049*
H9B0.04290.54280.78330.049*
C100.1364 (2)0.61684 (14)0.87662 (8)0.0313 (3)
C110.2423 (2)0.41733 (13)0.91057 (9)0.0327 (3)
C120.3074 (2)0.35932 (13)0.97200 (9)0.0337 (3)
C130.3749 (2)0.24856 (14)0.96556 (10)0.0423 (4)
H130.42090.21101.00570.051*
C140.3739 (3)0.19349 (15)0.89930 (12)0.0478 (4)
H140.42090.11950.89510.057*
C150.3044 (3)0.24702 (15)0.84022 (11)0.0452 (4)
H150.30220.20870.79620.054*
C160.2368 (2)0.35889 (15)0.84532 (9)0.0401 (4)
H160.18800.39440.80500.048*
C170.3697 (3)0.37008 (17)1.09825 (10)0.0503 (5)
H17A0.29800.30531.11250.075*
H17B0.37060.42641.13620.075*
H17C0.48950.34471.08900.075*
C180.0450 (3)0.61586 (16)1.16219 (10)0.0514 (5)
H18A0.06720.59701.14020.077*
H18B0.04470.59051.21140.077*
H18C0.13980.57801.13660.077*
C190.2239 (3)1.06783 (16)1.16409 (12)0.0539 (5)
H19A0.33311.07601.13750.081*
H19B0.24311.09081.21310.081*
H19C0.13361.11581.14290.081*
H10.210 (3)0.5550 (18)0.9629 (12)0.046 (6)*
N10.1861 (2)0.53176 (12)0.92278 (7)0.0360 (3)
O10.0054 (2)0.88447 (10)0.81447 (7)0.0520 (4)
O20.0742 (2)0.71219 (10)0.76969 (6)0.0484 (3)
O30.29681 (17)0.42052 (10)1.03438 (6)0.0398 (3)
O40.0713 (2)0.73683 (11)1.15974 (7)0.0529 (4)
O50.1675 (2)0.95037 (11)1.16213 (7)0.0532 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0314 (7)0.0298 (7)0.0282 (7)0.0035 (5)0.0000 (5)0.0007 (6)
C20.0432 (8)0.0308 (7)0.0331 (7)0.0034 (6)0.0009 (7)0.0070 (6)
C30.0450 (9)0.0253 (7)0.0456 (9)0.0010 (6)0.0016 (8)0.0022 (6)
C40.0433 (9)0.0358 (8)0.0349 (8)0.0017 (7)0.0039 (7)0.0054 (7)
C50.0440 (9)0.0337 (7)0.0284 (7)0.0004 (7)0.0007 (6)0.0006 (6)
C60.0395 (8)0.0287 (7)0.0292 (7)0.0005 (6)0.0007 (6)0.0010 (6)
C70.0365 (8)0.0314 (7)0.0240 (7)0.0013 (6)0.0001 (5)0.0044 (5)
C80.0483 (9)0.0369 (8)0.0272 (7)0.0023 (7)0.0013 (6)0.0050 (6)
C90.0625 (10)0.0341 (8)0.0264 (7)0.0028 (8)0.0008 (7)0.0022 (6)
C100.0357 (7)0.0334 (7)0.0248 (7)0.0007 (6)0.0003 (5)0.0020 (6)
C110.0332 (7)0.0292 (7)0.0359 (8)0.0002 (6)0.0017 (6)0.0016 (6)
C120.0348 (7)0.0299 (7)0.0365 (8)0.0035 (6)0.0008 (6)0.0037 (6)
C130.0447 (9)0.0294 (8)0.0528 (10)0.0015 (7)0.0034 (8)0.0102 (7)
C140.0501 (10)0.0269 (7)0.0664 (12)0.0017 (7)0.0047 (9)0.0025 (8)
C150.0519 (10)0.0340 (8)0.0496 (10)0.0034 (8)0.0080 (8)0.0089 (8)
C160.0472 (9)0.0360 (8)0.0369 (9)0.0010 (7)0.0001 (7)0.0015 (7)
C170.0676 (12)0.0442 (10)0.0392 (9)0.0006 (9)0.0172 (9)0.0095 (7)
C180.0718 (13)0.0466 (10)0.0357 (9)0.0087 (9)0.0026 (9)0.0116 (8)
C190.0584 (12)0.0448 (10)0.0586 (12)0.0023 (9)0.0102 (10)0.0203 (9)
N10.0534 (9)0.0302 (6)0.0245 (6)0.0080 (6)0.0046 (6)0.0010 (5)
O10.0830 (10)0.0373 (6)0.0358 (7)0.0139 (7)0.0052 (6)0.0104 (5)
O20.0808 (10)0.0388 (6)0.0256 (5)0.0069 (6)0.0025 (6)0.0060 (5)
O30.0528 (7)0.0350 (6)0.0315 (6)0.0025 (5)0.0074 (5)0.0055 (4)
O40.0895 (10)0.0430 (7)0.0262 (6)0.0069 (7)0.0014 (6)0.0004 (5)
O50.0796 (10)0.0422 (7)0.0378 (7)0.0057 (6)0.0079 (7)0.0112 (5)
Geometric parameters (Å, º) top
C1—C21.390 (2)C11—C121.411 (2)
C1—C61.407 (2)C12—O31.3607 (19)
C1—C71.470 (2)C12—C131.384 (2)
C2—C31.387 (2)C13—C141.386 (3)
C2—H20.9300C13—H130.9300
C3—C41.377 (2)C14—C151.364 (3)
C3—H30.9300C14—H140.9300
C4—O51.367 (2)C15—C161.395 (2)
C4—C51.408 (2)C15—H150.9300
C5—O41.361 (2)C16—H160.9300
C5—C61.385 (2)C17—O31.431 (2)
C6—H60.9300C17—H17A0.9600
C7—C101.358 (2)C17—H17B0.9600
C7—C81.459 (2)C17—H17C0.9600
C8—O11.210 (2)C18—O41.416 (2)
C8—O21.364 (2)C18—H18A0.9600
C9—O21.4299 (19)C18—H18B0.9600
C9—C101.501 (2)C18—H18C0.9600
C9—H9A0.9700C19—O51.425 (2)
C9—H9B0.9700C19—H19A0.9600
C10—N11.359 (2)C19—H19B0.9600
C11—C161.389 (2)C19—H19C0.9600
C11—N11.4093 (19)N1—H10.81 (2)
C2—C1—C6117.60 (13)C13—C12—C11119.85 (15)
C2—C1—C7120.42 (13)C12—C13—C14120.10 (16)
C6—C1—C7121.92 (13)C12—C13—H13120.0
C3—C2—C1121.40 (14)C14—C13—H13120.0
C3—C2—H2119.3C15—C14—C13120.47 (16)
C1—C2—H2119.3C15—C14—H14119.8
C4—C3—C2120.86 (14)C13—C14—H14119.8
C4—C3—H3119.6C14—C15—C16120.44 (17)
C2—C3—H3119.6C14—C15—H15119.8
O5—C4—C3125.35 (15)C16—C15—H15119.8
O5—C4—C5115.74 (15)C11—C16—C15120.10 (16)
C3—C4—C5118.91 (14)C11—C16—H16119.9
O4—C5—C6125.00 (14)C15—C16—H16119.9
O4—C5—C4115.02 (14)O3—C17—H17A109.5
C6—C5—C4119.98 (14)O3—C17—H17B109.5
C5—C6—C1121.18 (14)H17A—C17—H17B109.5
C5—C6—H6119.4O3—C17—H17C109.5
C1—C6—H6119.4H17A—C17—H17C109.5
C10—C7—C8107.00 (13)H17B—C17—H17C109.5
C10—C7—C1130.07 (13)O4—C18—H18A109.5
C8—C7—C1122.63 (14)O4—C18—H18B109.5
O1—C8—O2119.34 (14)H18A—C18—H18B109.5
O1—C8—C7130.77 (16)O4—C18—H18C109.5
O2—C8—C7109.89 (13)H18A—C18—H18C109.5
O2—C9—C10104.64 (13)H18B—C18—H18C109.5
O2—C9—H9A110.8O5—C19—H19A109.5
C10—C9—H9A110.8O5—C19—H19B109.5
O2—C9—H9B110.8H19A—C19—H19B109.5
C10—C9—H9B110.8O5—C19—H19C109.5
H9A—C9—H9B108.9H19A—C19—H19C109.5
C7—C10—N1127.16 (14)H19B—C19—H19C109.5
C7—C10—C9109.19 (13)C10—N1—C11131.53 (14)
N1—C10—C9123.60 (15)C10—N1—H1113.5 (15)
C16—C11—N1126.17 (15)C11—N1—H1113.1 (15)
C16—C11—C12118.92 (14)C8—O2—C9109.26 (12)
N1—C11—C12114.91 (14)C12—O3—C17118.09 (13)
O3—C12—C13125.31 (14)C5—O4—C18117.54 (14)
O3—C12—C11114.83 (13)C4—O5—C19116.20 (15)
C6—C1—C2—C32.8 (2)O2—C9—C10—N1178.82 (16)
C7—C1—C2—C3174.47 (14)C16—C11—C12—O3175.81 (14)
C1—C2—C3—C40.7 (2)N1—C11—C12—O33.5 (2)
C2—C3—C4—O5178.57 (16)C16—C11—C12—C134.0 (2)
C2—C3—C4—C51.4 (2)N1—C11—C12—C13176.63 (15)
O5—C4—C5—O41.8 (2)O3—C12—C13—C14178.05 (16)
C3—C4—C5—O4178.21 (16)C11—C12—C13—C141.8 (3)
O5—C4—C5—C6178.62 (15)C12—C13—C14—C150.9 (3)
C3—C4—C5—C61.4 (2)C13—C14—C15—C161.3 (3)
O4—C5—C6—C1179.67 (16)N1—C11—C16—C15177.11 (17)
C4—C5—C6—C10.8 (2)C12—C11—C16—C153.6 (2)
C2—C1—C6—C52.8 (2)C14—C15—C16—C111.0 (3)
C7—C1—C6—C5174.39 (15)C7—C10—N1—C11176.24 (17)
C2—C1—C7—C10145.33 (17)C9—C10—N1—C111.2 (3)
C6—C1—C7—C1031.8 (3)C16—C11—N1—C109.3 (3)
C2—C1—C7—C827.5 (2)C12—C11—N1—C10171.42 (17)
C6—C1—C7—C8155.39 (16)O1—C8—O2—C9179.88 (18)
C10—C7—C8—O1179.3 (2)C7—C8—O2—C90.6 (2)
C1—C7—C8—O16.4 (3)C10—C9—O2—C80.2 (2)
C10—C7—C8—O21.2 (2)C13—C12—O3—C173.7 (2)
C1—C7—C8—O2173.04 (15)C11—C12—O3—C17176.45 (15)
C8—C7—C10—N1179.05 (16)C6—C5—O4—C188.8 (3)
C1—C7—C10—N15.4 (3)C4—C5—O4—C18171.59 (17)
C8—C7—C10—C91.34 (19)C3—C4—O5—C192.1 (3)
C1—C7—C10—C9172.34 (16)C5—C4—O5—C19177.94 (16)
O2—C9—C10—C71.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.433.006 (2)121
C17—H17B···O1i0.962.583.428 (2)147
C17—H17C···Cgii0.962.943.847 (2)158
C19—H19C···Cgiii0.962.773.695 (2)162
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+1/2, y+1/2, z+2; (iii) x1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC19H19NO5
Mr341.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.4932 (5), 11.5862 (7), 18.5744 (12)
V3)1612.59 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
10601, 3940, 3732
Rint0.046
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.121, 1.09
No. of reflections3940
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.34

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.433.006 (2)120.5
C17—H17B···O1i0.962.583.428 (2)147.1
C17—H17C···Cgii0.962.943.847 (2)158
C19—H19C···Cgiii0.962.773.695 (2)162
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+1/2, y+1/2, z+2; (iii) x1/2, y+3/2, z+2.
 

Acknowledgements

This work was financed by a project supported by the Science and Technology Planning Project of Hunan Province, China (Nos. 2010TP4007–1 and 2010TC2002) and by an aid program for the Science and Technology Innovative Research Team (Chemicals of Forestry Resources and Development of Forest Products) in Higher Educational Institutions of Hunan Province.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-P., He, X.-B., Peng, Z.-Y., Xiong, T.-J., Peng, J. & Chen, L.-H. (2011). Bioorg. Med. Chem. 19, 1571–1579.  CrossRef CAS Google Scholar
First citationXiao, Z.-P., Peng, Z.-Y., Liu, Z.-X., Chen, L.-H. & Zhu, H.-L. (2011). J. Chem. Crystallogr. 41, 649–653.  CrossRef CAS Google Scholar
First citationXiao, Z.-P., Zhu, J., Jiang, W., Li, G.-X. & Wang, X.-D. (2010). Z. Kristallogr. New Cryst. Struct. 225, 797–798.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds