organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl-2-pyridone

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 7 August 2011; accepted 17 August 2011; online 27 August 2011)

The crystal structure of the title compound, C6H7NO, is stabilized by inter­molecular N—H⋯O hydrogen bonds, resulting in inversion dimers. The structure is further consolidated by weak C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Boris-Marko et al. (2008[Boris-Marko, K., Popović, Z., Pavlović, G. & Rajić-Linarić, M. (2008). J. Mol. Struct. 882, 47-55.]); Vovk et al. (2003[Vovk, T. V., Kovalchukova, O. V., Zaitsev, B. E., Strashnova, S. B., Belskii, V. K. & Stash, A. L. (2003). Koord. Khim. 29, 312-314.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7NO

  • Mr = 109.13

  • Monoclinic, C 2/c

  • a = 12.965 (3) Å

  • b = 9.7154 (19) Å

  • c = 10.908 (2) Å

  • β = 118.96 (3)°

  • V = 1202.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.23 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.977, Tmax = 0.984

  • 5961 measured reflections

  • 1369 independent reflections

  • 670 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.163

  • S = 0.99

  • 1369 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 1.94 2.800 (2) 173
C3—H3A⋯O1ii 0.93 2.46 3.334 (3) 157
C5—H5A⋯O1iii 0.93 2.33 3.260 (3) 178
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x, -y+2, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact. GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is characterized by an enol-keto tautomerism due to the labile hydrogen atom of OH-group in α-position to the basic pyridine N atom which can easily migrate to N atom (Boris-Marko et al., 2008) resulting in a zwitterionic molecule (Fig. 1).

The O1 and C6 atoms located on the pyridine ring are conplanar with the ring, deviating by 0.0.15 (3) and 0.35 (4) Å, respectively, from the ring plane, The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds and further consolidated by C—H···O interactions (Fig.e 2 and Tab. 1).

Related literature top

For related structures, see: Boris-Marko et al. (2008); Vovk et al. (2003).

Experimental top

To a solution of the title compounde (0.2 g) in acetone (2 ml) and ethanol (10 ml) was added was prepared by stirred at room temperature and then placed in a dark place. Colourless single crystals suitable for X-ray diffraction study were obtained by slow evaporation of the solution over a period of 8 d.

Refinement top

Positional parameters of all H atoms were calculated geometrically and refined using a riding model, with N–H = 0.086 Å and C—H = 0.93 and 0,96 Å for aryl and methyl type H-atoms, respectively, and Uiso(H) = 1.2 Ueq (N/C-aryl) or 1.5 Ueq (C-methyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title compound showing H-bonding interactions.
5-Methyl-2-pyridone top
Crystal data top
C6H7NOF(000) = 464
Mr = 109.13Dx = 1.206 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1369 reflections
a = 12.965 (3) Åθ = 3.6–27.5°
b = 9.7154 (19) ŵ = 0.08 mm1
c = 10.908 (2) ÅT = 293 K
β = 118.96 (3)°Prism, colourless
V = 1202.3 (4) Å30.30 × 0.23 × 0.20 mm
Z = 8
Data collection top
Rigaku SCXmini
diffractometer
1369 independent reflections
Radiation source: fine-focus sealed tube670 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.6°
CCD_Profile_fitting scansh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.977, Tmax = 0.984l = 1414
5961 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0734P)2]
where P = (Fo2 + 2Fc2)/3
1369 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C6H7NOV = 1202.3 (4) Å3
Mr = 109.13Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.965 (3) ŵ = 0.08 mm1
b = 9.7154 (19) ÅT = 293 K
c = 10.908 (2) Å0.30 × 0.23 × 0.20 mm
β = 118.96 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1369 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
670 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.984Rint = 0.049
5961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 0.99Δρmax = 0.12 e Å3
1369 reflectionsΔρmin = 0.17 e Å3
73 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.28530 (13)0.79540 (16)0.17990 (16)0.0616 (5)
H1A0.31480.75210.13530.074*
O10.11700 (11)0.82537 (15)0.02634 (14)0.0730 (5)
C10.17371 (17)0.8437 (2)0.1049 (2)0.0600 (6)
C20.13100 (19)0.9133 (2)0.1852 (2)0.0718 (7)
H2A0.05490.94880.14100.086*
C50.35432 (18)0.8107 (2)0.3216 (2)0.0672 (6)
H5A0.43000.77400.36550.081*
C40.3147 (2)0.8781 (2)0.3988 (2)0.0665 (6)
C30.1989 (2)0.9291 (2)0.3250 (2)0.0750 (7)
H3A0.16790.97550.37430.090*
C60.3897 (2)0.8989 (2)0.5532 (3)0.0978 (9)
H6A0.46520.85660.58400.147*
H6B0.35200.85780.60130.147*
H6C0.40000.99560.57340.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0493 (10)0.0718 (12)0.0626 (11)0.0060 (8)0.0263 (9)0.0035 (8)
O10.0544 (9)0.1007 (12)0.0615 (11)0.0047 (7)0.0262 (8)0.0016 (8)
C10.0469 (12)0.0662 (13)0.0683 (15)0.0002 (9)0.0290 (12)0.0079 (11)
C20.0635 (13)0.0820 (16)0.0773 (17)0.0145 (11)0.0401 (14)0.0034 (12)
C50.0574 (13)0.0666 (14)0.0704 (15)0.0003 (10)0.0252 (12)0.0006 (11)
C40.0713 (15)0.0644 (14)0.0624 (15)0.0024 (11)0.0312 (13)0.0048 (11)
C30.0834 (17)0.0739 (15)0.0807 (18)0.0098 (12)0.0500 (15)0.0020 (12)
C60.109 (2)0.102 (2)0.0722 (18)0.0037 (14)0.0354 (17)0.0110 (13)
Geometric parameters (Å, º) top
N1—C11.355 (2)C5—H5A0.9300
N1—C51.368 (2)C4—C31.406 (3)
N1—H1A0.8600C4—C61.496 (3)
O1—C11.266 (2)C3—H3A0.9300
C1—C21.414 (3)C6—H6A0.9600
C2—C31.351 (3)C6—H6B0.9600
C2—H2A0.9300C6—H6C0.9600
C5—C41.350 (3)
C1—N1—C5124.56 (18)C5—C4—C3115.9 (2)
C1—N1—H1A117.7C5—C4—C6122.1 (2)
C5—N1—H1A117.7C3—C4—C6122.0 (2)
O1—C1—N1119.97 (19)C2—C3—C4122.6 (2)
O1—C1—C2125.48 (19)C2—C3—H3A118.7
N1—C1—C2114.55 (19)C4—C3—H3A118.7
C3—C2—C1121.1 (2)C4—C6—H6A109.5
C3—C2—H2A119.4C4—C6—H6B109.5
C1—C2—H2A119.4H6A—C6—H6B109.5
C4—C5—N1121.30 (19)C4—C6—H6C109.5
C4—C5—H5A119.3H6A—C6—H6C109.5
N1—C5—H5A119.3H6B—C6—H6C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.942.800 (2)173
C3—H3A···O1ii0.932.463.334 (3)157
C5—H5A···O1iii0.932.333.260 (3)178
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+2, z+1/2; (iii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H7NO
Mr109.13
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.965 (3), 9.7154 (19), 10.908 (2)
β (°) 118.96 (3)
V3)1202.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.23 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.977, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
5961, 1369, 670
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.163, 0.99
No. of reflections1369
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.17

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.942.800 (2)173
C3—H3A···O1ii0.932.463.334 (3)157
C5—H5A···O1iii0.932.333.260 (3)178
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+2, z+1/2; (iii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project 20671019)

References

First citationBoris-Marko, K., Popović, Z., Pavlović, G. & Rajić-Linarić, M. (2008). J. Mol. Struct. 882, 47–55.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact. GbR, Bonn, Germany.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVovk, T. V., Kovalchukova, O. V., Zaitsev, B. E., Strashnova, S. B., Belskii, V. K. & Stash, A. L. (2003). Koord. Khim. 29, 312–314.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds