organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Bromo­phen­yl)-4-methyl-N-(4-methyl­phen­ylsulfon­yl)benzene­sulfonamide

aX-ray Diffraction and Crystallography Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan, bMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore-54000, Pakistan, cDepartment of Chemistry, Goergetown University, 37th and Oth Street NW, Washington, DC 20057, USA, and dThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah, PO Box 80203, Saudi Arabia
*Correspondence e-mail: mnachemist@hotmail.com

(Received 8 August 2011; accepted 11 August 2011; online 17 August 2011)

In the title compound, C20H18BrNO4S2, the mean planes formed by the toluene substituents are inclined at a dihedral angle of 45.34 (8)°. The bromo­benzene group is disordered over two positions with an occupancy ratio of 0.74:0.26, resulting in two conformations of the ring; the two rings are oriented at a dihedral angle of 6.6 (6)° with each other. In the crystal structure, weak C—H⋯O inter­actions connect the mol­ecules in a zigzag manner along the a axis.

Related literature

For general background, see: Ames & Opalko (1984[Ames, D. E. & Opalko, A. (1984). Tetrahedron, 40, 1919-1925.]); Arshad et al. (2011[Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011). Asian J. Chem. 23, 2801-2805.]). For related structures, see: Zhao et al. (2007[Zhao, K.-J., Wu, X.-X., Wang, G. & Hu, M.-L. (2007). Acta Cryst. E63, o4472.]); Song (2008[Song, Z.-W. (2008). Acta Cryst. E64, o744.]); Hanson & Hitchcock (2004[Hanson, J. R. & Hitchcock, P. B. (2004). J. Chem. Res. pp. 614-616.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18BrNO4S2

  • Mr = 480.38

  • Monoclinic, P 21 /c

  • a = 10.5819 (15) Å

  • b = 13.1465 (19) Å

  • c = 14.235 (2) Å

  • β = 95.478 (2)°

  • V = 1971.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 100 K

  • 0.38 × 0.33 × 0.24 mm

Data collection
  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.472, Tmax = 0.605

  • 23193 measured reflections

  • 4792 independent reflections

  • 4320 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.085

  • S = 1.24

  • 4792 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.95 2.45 3.199 (3) 135
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

O-Bromoaryl sulfonamides have been used for intramolecular arylation via palladium catalysis (Ames & Opalko, 1984). Herein, we report the crystal structure of the title compound which was synthesised as a precursor of cyclic sultams (Arshad et al., 2011).

The N-atom of O-bromoaniline is directly attached to two p-toluene sulfonyl moieties. The interesting feature in the crystal structure is that bromobenzene group is disordered over two positions (C15—C20/Br1) and (C21—C26/Br2) with the occupancy of 0.74 and 0.26, respectively. The dihedral angle between the two disordered parts of the ring is 6.6 (6)°. The two toluene rings (C1—C7) & (C8—C14) are oriented at dihedral angle of 45.34 (89)°. The part (C15—C20/Br1) of bromobenzene ring formed dihedral angles of 24.0 (2)° and 38.77 (11)° with both of the toluene rings (C1—C7) & (C8—C14,) respectively, while the other part is oriented at dihedral angles of 19.6 (6)° and 34.8 (2)° with respect to the toluene rings. No classical hydrogen bonding has been observed in the molecule, only C—H···O type interactions connect the molecules in a zig-zag mode (Fig. 2 and Tab. 1).

Related literature top

For general background, see: Ames & Opalko (1984); Arshad et al. (2011). For related crystal structures, see: Zhao et al. (2007); Song (2008); Hanson & Hitchcock (2004).

Experimental top

A mixture of 2-bromoaniline (300 mg, 1.7 mmol) and triethylamine (529 mg, 5.2 mmol) was prepared in dichloromethane (20ml). Toluene sulfonylchloride (650 mg, 3.4 mmol) was added to the mixture and stirred for about two hours. The mixture was poured on ice and pH was adjusted about 2-3. The precipitate obtained was filtered, washed and dried. Suitable crystals were produced in methanol by slow evaporation.

Refinement top

The H-atoms were positioned at idealized geometry with C—H = 0.95 and 0.98 Å for aryl and methyl groups, respectively, and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic & Uiso(H) = 1.5 Ueq(C) for methyl groups. The bromobenzene ring was disordered over two positions with occupancy ratio 0.74: 0.26. The occupancy factors were established in earlier stages of refinement and were fixed in the final refinement cycles. The benzene ring of the smaller fraction of the bromobenzene fragment was constrained as a regular hexagon

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and X-SEED (Barbour, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP diagram of the title compound with thermal ellipsoids drawn at the 50% probability level; smaller fraction of the disordered bromobenzene ring has been plotted with dashed lines.
[Figure 2] Fig. 2. Unit cell packing for the title compound showing weak C—H···O interactions as dashed lines.
N-(2-Bromophenyl)-4-methyl-N- (4-methylphenylsulfonyl)benzenesulfonamide top
Crystal data top
C20H18BrNO4S2F(000) = 976
Mr = 480.38Dx = 1.679 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9904 reflections
a = 10.5819 (15) Åθ = 2.3–28.1°
b = 13.1465 (19) ŵ = 2.32 mm1
c = 14.235 (2) ÅT = 100 K
β = 95.478 (2)°Blocks, colorless
V = 1971.2 (5) Å30.38 × 0.33 × 0.24 mm
Z = 4
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
4792 independent reflections
Radiation source: fine-focus sealed tube4320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1413
Tmin = 0.472, Tmax = 0.605k = 1717
23193 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + (0.0125P)2 + 3.1006P]
where P = (Fo2 + 2Fc2)/3
4792 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C20H18BrNO4S2V = 1971.2 (5) Å3
Mr = 480.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5819 (15) ŵ = 2.32 mm1
b = 13.1465 (19) ÅT = 100 K
c = 14.235 (2) Å0.38 × 0.33 × 0.24 mm
β = 95.478 (2)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
4792 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4320 reflections with I > 2σ(I)
Tmin = 0.472, Tmax = 0.605Rint = 0.031
23193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.24Δρmax = 0.52 e Å3
4792 reflectionsΔρmin = 0.53 e Å3
301 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.25875 (4)0.31399 (3)0.20992 (2)0.02691 (9)0.74
Br20.06672 (10)0.62953 (9)0.15927 (9)0.0346 (3)0.26
S10.30298 (5)0.58728 (4)0.18802 (4)0.01811 (12)
S20.19193 (5)0.55064 (5)0.36828 (4)0.01938 (12)
O20.06261 (16)0.55206 (14)0.38987 (12)0.0240 (4)
O30.42299 (16)0.56000 (13)0.23665 (13)0.0239 (4)
O40.27382 (16)0.63481 (13)0.39241 (12)0.0236 (4)
O70.26821 (17)0.55219 (13)0.09413 (12)0.0237 (4)
N10.18608 (18)0.54032 (15)0.24974 (13)0.0180 (4)
C10.2899 (2)0.72024 (17)0.19019 (17)0.0185 (4)
C20.1987 (2)0.76797 (19)0.12845 (17)0.0214 (5)
H20.14010.72900.08850.026*
C30.1949 (2)0.87387 (19)0.12623 (18)0.0225 (5)
H30.13240.90740.08500.027*
C40.2817 (2)0.93112 (18)0.18389 (17)0.0206 (5)
C50.3712 (2)0.88108 (18)0.24575 (18)0.0219 (5)
H50.42990.91970.28580.026*
C60.3756 (2)0.77596 (19)0.24962 (17)0.0216 (5)
H60.43630.74240.29230.026*
C70.2787 (2)1.04533 (19)0.1779 (2)0.0261 (5)
H7A0.33301.06800.12980.039*
H7B0.31001.07430.23920.039*
H7C0.19141.06810.16070.039*
C80.2633 (2)0.43825 (19)0.41368 (17)0.0220 (5)
C90.3953 (2)0.4307 (2)0.42161 (17)0.0236 (5)
H90.44580.48720.40690.028*
C100.4515 (2)0.3396 (2)0.45122 (18)0.0264 (5)
H100.54150.33420.45730.032*
C110.3788 (3)0.2558 (2)0.47224 (19)0.0291 (6)
C120.2467 (3)0.2666 (2)0.4662 (2)0.0335 (6)
H120.19600.21070.48230.040*
C130.1884 (3)0.3570 (2)0.4371 (2)0.0295 (6)
H130.09860.36340.43330.035*
C140.4414 (3)0.1552 (2)0.4977 (2)0.0378 (7)
H14A0.38710.11550.53610.057*
H14B0.52380.16700.53350.057*
H14C0.45380.11750.43990.057*
C150.0847 (5)0.4829 (4)0.2018 (3)0.0202 (11)0.74
C160.1015 (5)0.3805 (4)0.1793 (4)0.0237 (10)0.74
C170.0016 (5)0.3249 (3)0.1337 (3)0.0275 (9)0.74
H170.01120.25450.12130.033*0.74
C180.1120 (5)0.3739 (5)0.1067 (3)0.0291 (10)0.74
H180.18050.33650.07550.035*0.74
C190.1272 (4)0.4763 (4)0.1243 (3)0.0275 (9)0.74
H190.20450.50950.10330.033*0.74
C200.0293 (5)0.5305 (4)0.1728 (3)0.0213 (9)0.74
H200.04040.60050.18620.026*0.74
C210.1025 (10)0.4648 (7)0.1985 (9)0.012 (4)*0.26
C220.1370 (9)0.3627 (8)0.1979 (8)0.025 (4)0.26
H220.21860.34220.22490.030*0.26
C230.0520 (12)0.2907 (6)0.1578 (7)0.038 (3)0.26
H230.07560.22100.15740.046*0.26
C240.0673 (11)0.3207 (8)0.1183 (6)0.043 (4)0.26
H240.12540.27150.09090.052*0.26
C250.1018 (8)0.4227 (9)0.1189 (7)0.028 (3)0.26
H250.18340.44320.09190.034*0.26
C260.0169 (10)0.4947 (6)0.1590 (8)0.024 (3)0.26
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03615 (19)0.01695 (15)0.02757 (18)0.00531 (14)0.00269 (14)0.00062 (13)
Br20.0257 (5)0.0338 (6)0.0445 (6)0.0085 (4)0.0044 (4)0.0156 (5)
S10.0176 (3)0.0155 (3)0.0215 (3)0.0006 (2)0.0035 (2)0.0015 (2)
S20.0177 (3)0.0218 (3)0.0185 (3)0.0002 (2)0.0010 (2)0.0017 (2)
O20.0198 (8)0.0302 (9)0.0221 (9)0.0010 (7)0.0028 (7)0.0013 (7)
O30.0193 (8)0.0196 (8)0.0327 (10)0.0025 (7)0.0020 (7)0.0044 (7)
O40.0249 (9)0.0241 (9)0.0215 (9)0.0024 (7)0.0003 (7)0.0010 (7)
O70.0282 (9)0.0207 (8)0.0232 (9)0.0016 (7)0.0069 (7)0.0007 (7)
N10.0181 (9)0.0184 (9)0.0175 (9)0.0026 (8)0.0016 (7)0.0001 (7)
C10.0197 (11)0.0141 (10)0.0220 (11)0.0007 (8)0.0037 (9)0.0023 (9)
C20.0208 (11)0.0214 (12)0.0216 (12)0.0004 (9)0.0008 (9)0.0015 (9)
C30.0208 (11)0.0221 (12)0.0247 (12)0.0034 (9)0.0026 (9)0.0065 (9)
C40.0199 (11)0.0166 (11)0.0267 (12)0.0008 (9)0.0094 (9)0.0033 (9)
C50.0201 (11)0.0199 (11)0.0256 (12)0.0042 (9)0.0022 (9)0.0005 (9)
C60.0199 (11)0.0213 (12)0.0233 (12)0.0000 (9)0.0001 (9)0.0046 (9)
C70.0249 (12)0.0175 (11)0.0367 (14)0.0030 (9)0.0072 (11)0.0042 (10)
C80.0204 (11)0.0246 (12)0.0207 (11)0.0016 (9)0.0002 (9)0.0067 (9)
C90.0211 (12)0.0281 (13)0.0212 (12)0.0026 (10)0.0007 (9)0.0044 (10)
C100.0217 (12)0.0341 (14)0.0231 (12)0.0026 (10)0.0009 (10)0.0049 (10)
C110.0308 (14)0.0323 (14)0.0249 (13)0.0049 (11)0.0058 (11)0.0100 (11)
C120.0281 (14)0.0325 (15)0.0412 (16)0.0007 (11)0.0094 (12)0.0171 (12)
C130.0215 (12)0.0332 (14)0.0340 (14)0.0008 (11)0.0047 (11)0.0121 (12)
C140.0371 (16)0.0335 (15)0.0436 (17)0.0088 (13)0.0087 (13)0.0165 (13)
C150.024 (2)0.0188 (18)0.019 (2)0.0033 (19)0.0044 (16)0.0018 (15)
C160.029 (2)0.023 (2)0.020 (2)0.0013 (18)0.0029 (18)0.0049 (17)
C170.040 (3)0.018 (2)0.025 (2)0.011 (2)0.006 (2)0.0035 (16)
C180.032 (3)0.033 (3)0.022 (2)0.017 (2)0.0014 (17)0.004 (2)
C190.024 (2)0.035 (2)0.0238 (19)0.0046 (18)0.0000 (14)0.0022 (19)
C200.0201 (19)0.026 (3)0.018 (2)0.0012 (17)0.0031 (14)0.0011 (18)
C220.050 (10)0.012 (6)0.013 (6)0.003 (6)0.004 (6)0.002 (5)
C230.066 (10)0.021 (6)0.029 (7)0.010 (6)0.017 (6)0.001 (5)
C240.065 (13)0.042 (10)0.023 (7)0.033 (10)0.010 (8)0.002 (6)
C250.030 (7)0.029 (9)0.025 (6)0.021 (7)0.003 (5)0.006 (7)
C260.027 (6)0.028 (8)0.017 (6)0.006 (6)0.005 (5)0.002 (5)
Geometric parameters (Å, º) top
Br1—C161.893 (5)C10—C111.393 (4)
Br2—C261.849 (8)C10—H100.9500
S1—O71.4284 (18)C11—C121.399 (4)
S1—O31.4328 (18)C11—C141.509 (4)
S1—N11.700 (2)C12—C131.384 (4)
S1—C11.754 (2)C12—H120.9500
S2—O41.4271 (18)C13—H130.9500
S2—O21.4310 (18)C14—H14A0.9800
S2—N11.688 (2)C14—H14B0.9800
S2—C81.755 (2)C14—H14C0.9800
N1—C151.431 (4)C15—C201.386 (7)
N1—C211.475 (8)C15—C161.399 (8)
C1—C61.389 (3)C16—C171.394 (7)
C1—C21.391 (3)C17—C181.385 (7)
C2—C31.393 (3)C17—H170.9500
C2—H20.9500C18—C191.382 (7)
C3—C41.393 (4)C18—H180.9500
C3—H30.9500C19—C201.385 (6)
C4—C51.395 (3)C19—H190.9500
C4—C71.504 (3)C20—H200.9500
C5—C61.384 (3)C21—C221.3900
C5—H50.9500C21—C261.3900
C6—H60.9500C22—C231.3900
C7—H7A0.9800C22—H220.9500
C7—H7B0.9800C23—C241.3900
C7—H7C0.9800C23—H230.9500
C8—C131.390 (4)C24—C251.3900
C8—C91.393 (3)C24—H240.9500
C9—C101.385 (4)C25—C261.3900
C9—H90.9500C25—H250.9500
O7—S1—O3120.57 (11)C10—C11—C12118.4 (2)
O7—S1—N1103.36 (10)C10—C11—C14120.4 (2)
O3—S1—N1108.33 (10)C12—C11—C14121.1 (3)
O7—S1—C1108.94 (11)C13—C12—C11121.3 (3)
O3—S1—C1107.99 (11)C13—C12—H12119.4
N1—S1—C1106.86 (10)C11—C12—H12119.4
O4—S2—O2120.62 (11)C12—C13—C8118.9 (2)
O4—S2—N1105.45 (10)C12—C13—H13120.5
O2—S2—N1105.73 (10)C8—C13—H13120.5
O4—S2—C8109.51 (11)C11—C14—H14A109.5
O2—S2—C8108.59 (11)C11—C14—H14B109.5
N1—S2—C8105.90 (11)H14A—C14—H14B109.5
C15—N1—C2112.1 (5)C11—C14—H14C109.5
C15—N1—S2118.3 (2)H14A—C14—H14C109.5
C21—N1—S2120.7 (6)H14B—C14—H14C109.5
C15—N1—S1119.6 (2)C20—C15—C16119.5 (4)
C21—N1—S1114.9 (6)C20—C15—N1119.7 (5)
S2—N1—S1121.89 (12)C16—C15—N1120.7 (5)
C6—C1—C2121.3 (2)C17—C16—C15120.2 (5)
C6—C1—S1119.23 (18)C17—C16—Br1118.4 (4)
C2—C1—S1119.32 (18)C15—C16—Br1121.4 (4)
C1—C2—C3118.8 (2)C18—C17—C16119.0 (4)
C1—C2—H2120.6C18—C17—H17120.5
C3—C2—H2120.6C16—C17—H17120.5
C4—C3—C2120.7 (2)C19—C18—C17121.0 (4)
C4—C3—H3119.7C19—C18—H18119.5
C2—C3—H3119.7C17—C18—H18119.5
C3—C4—C5119.1 (2)C18—C19—C20119.8 (4)
C3—C4—C7119.8 (2)C18—C19—H19120.1
C5—C4—C7121.0 (2)C20—C19—H19120.1
C6—C5—C4121.0 (2)C19—C20—C15120.3 (4)
C6—C5—H5119.5C19—C20—H20119.9
C4—C5—H5119.5C15—C20—H20119.9
C5—C6—C1119.0 (2)C22—C21—C26120.0
C5—C6—H6120.5C22—C21—N1120.5 (7)
C1—C6—H6120.5C26—C21—N1119.2 (7)
C4—C7—H7A109.5C23—C22—C21120.0
C4—C7—H7B109.5C23—C22—H22120.0
H7A—C7—H7B109.5C21—C22—H22120.0
C4—C7—H7C109.5C22—C23—C24120.0
H7A—C7—H7C109.5C22—C23—H23120.0
H7B—C7—H7C109.5C24—C23—H23120.0
C13—C8—C9121.0 (2)C23—C24—C25120.0
C13—C8—S2120.03 (19)C23—C24—H24120.0
C9—C8—S2118.86 (19)C25—C24—H24120.0
C10—C9—C8119.0 (2)C26—C25—C24120.0
C10—C9—H9120.5C26—C25—H25120.0
C8—C9—H9120.5C24—C25—H25120.0
C9—C10—C11121.2 (2)C25—C26—C21120.0
C9—C10—H10119.4C25—C26—Br2118.7 (6)
C11—C10—H10119.4C21—C26—Br2121.3 (6)
O4—S2—N1—C15162.2 (3)C8—C9—C10—C110.6 (4)
O2—S2—N1—C1533.4 (4)C9—C10—C11—C122.3 (4)
C8—S2—N1—C1581.8 (3)C9—C10—C11—C14175.6 (3)
O4—S2—N1—C21175.9 (5)C10—C11—C12—C132.1 (4)
O2—S2—N1—C2147.0 (5)C14—C11—C12—C13175.9 (3)
C8—S2—N1—C2168.1 (5)C11—C12—C13—C80.0 (4)
O4—S2—N1—S123.07 (16)C9—C8—C13—C121.8 (4)
O2—S2—N1—S1151.89 (13)S2—C8—C13—C12175.3 (2)
C8—S2—N1—S192.98 (15)C21—N1—C15—C20167 (4)
O7—S1—N1—C151.2 (4)S2—N1—C15—C2088.1 (4)
O3—S1—N1—C15130.2 (3)S1—N1—C15—C2097.1 (4)
C1—S1—N1—C15113.7 (3)C21—N1—C15—C1610 (3)
O7—S1—N1—C2111.4 (5)S2—N1—C15—C1695.3 (4)
O3—S1—N1—C21117.6 (5)S1—N1—C15—C1679.5 (4)
C1—S1—N1—C21126.2 (5)C20—C15—C16—C174.2 (6)
O7—S1—N1—S2173.46 (13)N1—C15—C16—C17179.2 (5)
O3—S1—N1—S244.46 (16)C20—C15—C16—Br1175.9 (4)
C1—S1—N1—S271.67 (16)N1—C15—C16—Br10.7 (6)
O7—S1—C1—C6145.08 (19)C15—C16—C17—C183.3 (7)
O3—S1—C1—C612.5 (2)Br1—C16—C17—C18176.8 (4)
N1—S1—C1—C6103.9 (2)C16—C17—C18—C190.1 (7)
O7—S1—C1—C231.2 (2)C17—C18—C19—C202.3 (8)
O3—S1—C1—C2163.77 (19)C18—C19—C20—C151.4 (7)
N1—S1—C1—C279.9 (2)C16—C15—C20—C191.8 (6)
C6—C1—C2—C30.5 (4)N1—C15—C20—C19178.5 (4)
S1—C1—C2—C3175.65 (19)C15—N1—C21—C22159 (4)
C1—C2—C3—C40.8 (4)S2—N1—C21—C2277.5 (7)
C2—C3—C4—C51.4 (4)S1—N1—C21—C2284.8 (7)
C2—C3—C4—C7177.8 (2)C15—N1—C21—C2614 (3)
C3—C4—C5—C60.8 (4)S2—N1—C21—C2695.9 (7)
C7—C4—C5—C6178.5 (2)S1—N1—C21—C26101.7 (6)
C4—C5—C6—C10.5 (4)C26—C21—C22—C230.0
C2—C1—C6—C51.2 (4)N1—C21—C22—C23173.4 (11)
S1—C1—C6—C5174.99 (19)C21—C22—C23—C240.0
O4—S2—C8—C13151.7 (2)C22—C23—C24—C250.0
O2—S2—C8—C1318.1 (3)C23—C24—C25—C260.0
N1—S2—C8—C1395.1 (2)C24—C25—C26—C210.0
O4—S2—C8—C931.2 (2)C24—C25—C26—Br2179.5 (8)
O2—S2—C8—C9164.8 (2)C22—C21—C26—C250.0
N1—S2—C8—C982.1 (2)N1—C21—C26—C25173.5 (11)
C13—C8—C9—C101.6 (4)C22—C21—C26—Br2179.5 (8)
S2—C8—C9—C10175.6 (2)N1—C21—C26—Br26.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.952.453.199 (3)135
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H18BrNO4S2
Mr480.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.5819 (15), 13.1465 (19), 14.235 (2)
β (°) 95.478 (2)
V3)1971.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.38 × 0.33 × 0.24
Data collection
DiffractometerBruker KAPPA APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.472, 0.605
No. of measured, independent and
observed [I > 2σ(I)] reflections
23193, 4792, 4320
Rint0.031
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.085, 1.24
No. of reflections4792
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.53

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and X-SEED (Barbour, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.952.453.199 (3)135.3
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

MNA acknowledges the Higher Education Commission of Pakistan for granting a scholarship under its indigenous and IRSIP schemes.

References

First citationAmes, D. E. & Opalko, A. (1984). Tetrahedron, 40, 1919–1925.  Google Scholar
First citationArshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011). Asian J. Chem. 23, 2801–2805.  CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHanson, J. R. & Hitchcock, P. B. (2004). J. Chem. Res. pp. 614–616.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Z.-W. (2008). Acta Cryst. E64, o744.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, K.-J., Wu, X.-X., Wang, G. & Hu, M.-L. (2007). Acta Cryst. E63, o4472.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds