metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(3-amino­pyrazine-2-carboxyl­ato-κ2N1,O)di­aqua­erbium(III) tetra­hydrate

aKey Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 July 2011; accepted 22 August 2011; online 27 August 2011)

The water-coordinated ErIII atom in the title compound, [Er(C5H4N3O2)3(H2O)2]·4H2O, is N,O-chelated by three 3-amino­pyrazine-2-carboxyl­ate ions and has a square-anti­prismatic geometry. The mononuclear mol­ecule inter­acts with the solvent water mol­ecules to generate a three-dimensional hydrogen-bonded network.

Related literature

For a related structure, see: Leciejewicz et al. (2004[Leciejewicz, J., Ptasiewicz-Bak, H., Premkumar, T. & Govindarajan, S. (2004). J. Coord. Chem. 57, 97-103.]).

[Scheme 1]

Experimental

Crystal data
  • [Er(C5H4N3O2)3(H2O)2]·4H2O

  • Mr = 689.69

  • Monoclinic, P 21 /n

  • a = 9.1915 (9) Å

  • b = 19.7152 (14) Å

  • c = 13.5637 (11) Å

  • β = 105.276 (3)°

  • V = 2371.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.62 mm−1

  • T = 291 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.465, Tmax = 0.613

  • 18438 measured reflections

  • 4165 independent reflections

  • 3758 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.064

  • S = 1.05

  • 4165 reflections

  • 370 parameters

  • 42 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.81 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11⋯O3W 0.82 (1) 1.90 (2) 2.671 (5) 157 (5)
O1W—H12⋯O6Wi 0.82 (1) 1.85 (1) 2.677 (4) 177 (4)
O2W—H21⋯O4ii 0.82 (1) 1.89 (1) 2.705 (3) 172 (4)
O2W—H22⋯O5Wi 0.82 (1) 1.88 (1) 2.694 (4) 169 (4)
O3W—H32⋯O5W 0.82 (1) 2.11 (6) 2.827 (5) 145 (9)
O4W—H41⋯O2 0.82 (1) 1.98 (2) 2.777 (4) 166 (5)
O4W—H42⋯O6iii 0.82 (1) 1.99 (2) 2.765 (4) 160 (5)
O5W—H51⋯O5iii 0.82 (1) 2.16 (1) 2.970 (4) 172 (5)
O5W—H52⋯N8iv 0.82 (1) 2.04 (1) 2.847 (5) 165 (4)
O6W—H61⋯O4W 0.82 (1) 2.02 (2) 2.824 (4) 168 (4)
O6W—H62⋯N2v 0.82 (1) 2.11 (2) 2.886 (4) 159 (5)
N3—H3B⋯O2 0.88 2.06 2.718 (5) 131
N6—H6A⋯O1vi 0.88 2.38 3.184 (4) 152
N6—H6B⋯O4 0.88 2.06 2.709 (4) 130
N9—H9A⋯O3vii 0.88 2.30 3.142 (4) 161
N9—H9B⋯O6 0.88 2.07 2.705 (5) 129
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+2; (v) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x+1, -y+1, -z+1; (vii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC & Rigaku Corporation, 2002[Rigaku/MSC & Rigaku Corporation (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The chelating ability of the 3-aminopyrazine-2-carboxylate anion is probably similar to that of the pyrazine-2-carboxylate anion, and the crystal structures of a number of lanthanum carboxylates have been reported. Hydrated lanthanum tris(pyrazine-2-carboxylate) adopts a chain motif (Leciejewicz et al., 2004). The additional amino substitution in the 3-aminopyrazine-2-carboxylate should be expected to consolidate the crystal structure of the title erbium derivative through extensive hydrogen bonding. The water-coordinated ErIII atom in Er(H2O)2(C5H4N3O2)3.4H2O (Scheme I, Fig. 1) is N,O-chelated by three 3-aminopyrazine-2-carboxylate ions and has a square-antiprismatic coordination geometry. The two planes O3-O5-N7-N4 and O1-N1-O2W-O1W (r.m.s. deviation from planarity 0.147 and 0.159 Å, respectively) are nearly parallel to each other, the dihedral angle between them being only 2.4 (1) ° (Fig. 2).

The mononuclear molecule interacts with the lattice water molecules to generate a three-dimensional hydrogen-bonded network (Table 1).

Related literature top

For a related structure, see: Leciejewicz et al. (2004).

Experimental top

Erbium nitrate hexahydrate (1 mmol) was added to a hot aqueous solution of 3-aminopyrazine-2-carboxylic acid (3 mmol). The solution was allowed to evaporate slowly at room temperature, and colorless prismatic crystals were isolated after five days.

Refinement top

Carbon- and nitrogen-bound H-atoms were placed in calculated positions (C–H 0.93 Å, N–H 0.8 Å) were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C,N). The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O—H 0.82±0.01 Å and H···H 1.373±0.01 Å; their temperature factors were tied to those of the O atoms by a factor of 1.5 times.

The anisotropic temperature factors of the four lattice water molecules were restrained to be nearly isotropic (by using a 'tight' ISOR 0.01 restraint in SHELXL-97); this command had the effect of merely reducing the strong anisotropy of O3w only marginally.

The hydrogen positions H31 and H32 of O3w are questionable because this oxygen is obviously disordered showing principal mean square atomic displacements U of 0.261, 0.076, and 0.041 Å with the largest component directed to H31.

The final difference Fourier map had two peaks of 1.7, 1.8 eÅ-3 in the vicinity of Er1 that are trans to each other are attributed to absorption effects.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC & Rigaku Corporation, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Er(H2O)2(C5H4N3O2)3.4H2O at the 50% probability level; hydrogen toms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Square-antiprismatic coordination figure of Er in the title compound.
Tris(3-aminopyrazine-2-carboxylato-κ2N1,O)diaquaerbium(III) tetrahydrate top
Crystal data top
[Er(C5H4N3O2)3(H2O)2]·4H2OF(000) = 1364
Mr = 689.69Dx = 1.932 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 17031 reflections
a = 9.1915 (9) Åθ = 3.1–27.4°
b = 19.7152 (14) ŵ = 3.62 mm1
c = 13.5637 (11) ÅT = 291 K
β = 105.276 (3)°Prism, colorless
V = 2371.1 (3) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4165 independent reflections
Radiation source: fine-focus sealed tube3758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scanθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.465, Tmax = 0.613k = 2323
18438 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0371P)2 + 1.0656P]
where P = (Fo2 + 2Fc2)/3
4165 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 1.81 e Å3
42 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Er(C5H4N3O2)3(H2O)2]·4H2OV = 2371.1 (3) Å3
Mr = 689.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1915 (9) ŵ = 3.62 mm1
b = 19.7152 (14) ÅT = 291 K
c = 13.5637 (11) Å0.25 × 0.20 × 0.15 mm
β = 105.276 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4165 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3758 reflections with I > 2σ(I)
Tmin = 0.465, Tmax = 0.613Rint = 0.040
18438 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02642 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.81 e Å3
4165 reflectionsΔρmin = 0.46 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.642510 (16)0.659798 (7)0.765119 (11)0.02540 (8)
O10.8299 (3)0.60156 (12)0.72083 (19)0.0371 (6)
O21.0305 (3)0.59246 (15)0.6586 (2)0.0541 (8)
O30.5298 (3)0.67906 (12)0.59543 (18)0.0356 (6)
O40.3591 (4)0.65762 (11)0.4484 (2)0.0436 (7)
O50.5324 (3)0.76501 (12)0.76143 (19)0.0351 (6)
O60.4034 (4)0.84026 (12)0.8270 (3)0.0607 (10)
O1W0.7027 (3)0.57364 (13)0.88614 (19)0.0384 (6)
H110.776 (3)0.550 (2)0.888 (3)0.058*
H120.689 (4)0.574 (2)0.9438 (15)0.058*
O2W0.7686 (3)0.71168 (12)0.9192 (2)0.0402 (6)
H210.796 (4)0.7516 (8)0.922 (3)0.060*
H220.834 (4)0.6904 (16)0.961 (3)0.060*
O3W0.8829 (6)0.4707 (3)0.8682 (5)0.126 (2)
H310.949 (8)0.492 (4)0.909 (6)0.189*
H320.917 (9)0.433 (2)0.860 (7)0.189*
O4W1.0911 (4)0.46790 (16)0.7564 (2)0.0605 (8)
H411.082 (7)0.5021 (13)0.721 (3)0.091*
H421.077 (7)0.4345 (14)0.720 (3)0.091*
O5W1.0060 (4)0.34165 (13)0.9322 (3)0.0468 (7)
H510.996 (5)0.317 (2)0.882 (2)0.070*
H520.948 (5)0.329 (2)0.965 (3)0.070*
O6W1.3302 (4)0.42757 (15)0.9235 (2)0.0507 (7)
H611.257 (4)0.443 (2)0.881 (3)0.076*
H621.348 (5)0.3897 (12)0.906 (3)0.076*
N10.8318 (3)0.73453 (14)0.7137 (2)0.0303 (7)
N21.0252 (4)0.80723 (17)0.6265 (3)0.0449 (8)
N31.1379 (5)0.7086 (2)0.5957 (3)0.0651 (11)
H3A1.19790.73270.56840.078*
H3B1.14630.66410.59850.078*
N40.4864 (3)0.56156 (14)0.6733 (2)0.0318 (7)
N50.3145 (4)0.45871 (16)0.5564 (3)0.0486 (9)
N60.2459 (5)0.53012 (18)0.4193 (3)0.0630 (12)
H6A0.19370.49640.38460.076*
H6B0.24760.56980.38980.076*
N70.4190 (4)0.66166 (13)0.8414 (2)0.0335 (7)
N80.1896 (4)0.67860 (19)0.9389 (3)0.0453 (8)
N90.2151 (4)0.79374 (18)0.9351 (3)0.0540 (9)
H9A0.14540.79680.96860.065*
H9B0.25640.83070.91810.065*
C10.8279 (4)0.80226 (18)0.7093 (3)0.0363 (8)
H10.76070.82620.73680.044*
C20.9235 (5)0.83638 (19)0.6642 (3)0.0446 (11)
H20.91550.88340.66010.054*
C31.0340 (4)0.7394 (2)0.6325 (3)0.0408 (9)
C40.9350 (4)0.70231 (18)0.6775 (3)0.0304 (8)
C50.9342 (4)0.62603 (18)0.6853 (3)0.0343 (8)
C60.4753 (5)0.50025 (18)0.7126 (3)0.0426 (10)
H60.52590.49110.78010.051*
C70.3889 (5)0.45048 (19)0.6531 (3)0.0492 (11)
H70.38270.40850.68310.059*
C80.3228 (4)0.52110 (18)0.5168 (3)0.0376 (9)
C90.4114 (4)0.57249 (16)0.5762 (3)0.0278 (7)
C100.4334 (4)0.64121 (16)0.5359 (3)0.0289 (8)
C110.3538 (5)0.6086 (2)0.8741 (3)0.0448 (10)
H11A0.38730.56490.86620.054*
C120.2380 (5)0.6179 (2)0.9193 (3)0.0485 (10)
H12A0.19100.57980.93710.058*
C130.2584 (4)0.7329 (2)0.9100 (3)0.0373 (9)
C140.3703 (4)0.72401 (18)0.8572 (3)0.0317 (8)
C150.4411 (4)0.78162 (17)0.8129 (3)0.0353 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.03025 (11)0.02031 (10)0.02724 (11)0.00154 (5)0.01038 (7)0.00073 (6)
O10.0411 (15)0.0264 (13)0.0501 (15)0.0003 (11)0.0230 (12)0.0004 (11)
O20.0544 (19)0.0451 (16)0.075 (2)0.0148 (14)0.0381 (16)0.0058 (15)
O30.0485 (16)0.0273 (12)0.0298 (13)0.0096 (11)0.0084 (12)0.0006 (11)
O40.0597 (19)0.0303 (14)0.0338 (15)0.0010 (11)0.0001 (14)0.0052 (11)
O50.0392 (14)0.0290 (12)0.0426 (14)0.0041 (10)0.0204 (12)0.0038 (11)
O60.090 (3)0.0277 (15)0.083 (3)0.0159 (14)0.054 (2)0.0077 (13)
O1W0.0508 (17)0.0329 (14)0.0324 (13)0.0075 (12)0.0125 (12)0.0027 (12)
O2W0.0534 (17)0.0269 (13)0.0368 (14)0.0042 (12)0.0055 (12)0.0026 (12)
O3W0.161 (5)0.089 (3)0.167 (5)0.076 (3)0.112 (4)0.060 (3)
O4W0.073 (2)0.0457 (17)0.0593 (19)0.0137 (17)0.0118 (16)0.0056 (15)
O5W0.0510 (19)0.0420 (17)0.0481 (18)0.0026 (12)0.0139 (14)0.0021 (12)
O6W0.062 (2)0.0480 (17)0.0440 (16)0.0136 (14)0.0177 (14)0.0002 (13)
N10.0354 (17)0.0245 (15)0.0313 (15)0.0040 (12)0.0093 (13)0.0007 (12)
N20.045 (2)0.046 (2)0.0457 (19)0.0139 (16)0.0156 (16)0.0032 (16)
N30.063 (3)0.059 (2)0.093 (3)0.004 (2)0.056 (2)0.013 (2)
N40.0395 (17)0.0255 (14)0.0312 (16)0.0006 (12)0.0104 (13)0.0018 (12)
N50.062 (2)0.0291 (16)0.046 (2)0.0116 (15)0.0006 (17)0.0005 (15)
N60.089 (3)0.0351 (19)0.046 (2)0.0175 (19)0.016 (2)0.0035 (17)
N70.0396 (18)0.0274 (16)0.0365 (17)0.0002 (12)0.0152 (14)0.0021 (12)
N80.043 (2)0.052 (2)0.046 (2)0.0038 (17)0.0209 (16)0.0047 (17)
N90.064 (2)0.047 (2)0.065 (2)0.0225 (18)0.0408 (19)0.0104 (18)
C10.044 (2)0.0271 (18)0.0381 (19)0.0052 (16)0.0121 (17)0.0041 (17)
C20.055 (3)0.032 (2)0.046 (2)0.0138 (17)0.011 (2)0.0011 (17)
C30.036 (2)0.047 (2)0.039 (2)0.0071 (17)0.0077 (17)0.0029 (18)
C40.0292 (18)0.0337 (18)0.0287 (17)0.0017 (15)0.0080 (14)0.0017 (15)
C50.039 (2)0.0290 (19)0.036 (2)0.0013 (16)0.0126 (17)0.0017 (16)
C60.061 (3)0.0252 (18)0.036 (2)0.0073 (17)0.0026 (18)0.0031 (16)
C70.068 (3)0.0248 (19)0.047 (2)0.0118 (18)0.002 (2)0.0062 (18)
C80.044 (2)0.0288 (18)0.0362 (19)0.0022 (16)0.0033 (16)0.0009 (16)
C90.0305 (18)0.0230 (16)0.0304 (18)0.0019 (13)0.0091 (14)0.0012 (14)
C100.036 (2)0.0215 (16)0.0329 (19)0.0043 (15)0.0144 (16)0.0015 (15)
C110.055 (3)0.033 (2)0.054 (2)0.0084 (18)0.028 (2)0.0024 (19)
C120.049 (3)0.048 (2)0.055 (3)0.008 (2)0.025 (2)0.001 (2)
C130.038 (2)0.043 (2)0.0329 (19)0.0078 (17)0.0114 (16)0.0031 (17)
C140.0317 (19)0.0324 (18)0.0307 (18)0.0058 (15)0.0078 (15)0.0023 (15)
C150.037 (2)0.0300 (19)0.039 (2)0.0052 (16)0.0106 (17)0.0042 (16)
Geometric parameters (Å, º) top
Er1—O12.278 (2)N3—H3A0.8800
Er1—O32.293 (2)N3—H3B0.8800
Er1—O52.303 (2)N4—C91.334 (4)
Er1—O1W2.325 (2)N4—C61.336 (4)
Er1—O2W2.341 (2)N5—C71.319 (5)
Er1—N12.515 (3)N5—C81.353 (5)
Er1—N72.532 (3)N6—C81.337 (5)
Er1—N42.534 (3)N6—H6A0.8800
O1—C51.275 (4)N6—H6B0.8800
O2—C51.234 (5)N7—C111.339 (5)
O3—C101.272 (4)N7—C141.344 (4)
O4—C101.246 (4)N8—C121.327 (6)
O5—C151.268 (4)N8—C131.353 (5)
O6—C151.236 (4)N9—C131.336 (5)
O1W—H110.82 (1)N9—H9A0.8800
O1W—H120.82 (1)N9—H9B0.8800
O2W—H210.82 (1)C1—C21.372 (6)
O2W—H220.82 (1)C1—H10.9300
O3W—H310.82 (1)C2—H20.9300
O3W—H320.82 (1)C3—C41.423 (5)
O4W—H410.82 (1)C4—C51.508 (5)
O4W—H420.82 (1)C6—C71.381 (5)
O5W—H510.82 (1)C6—H60.9300
O5W—H520.82 (1)C7—H70.9300
O6W—H610.82 (1)C8—C91.411 (5)
O6W—H620.82 (1)C9—C101.495 (5)
N1—C11.337 (5)C11—C121.374 (6)
N1—C41.338 (5)C11—H11A0.9300
N2—C21.311 (6)C12—H12A0.9300
N2—C31.341 (5)C13—C141.411 (5)
N3—C31.335 (5)C14—C151.510 (5)
O1—Er1—O389.52 (9)H6A—N6—H6B120.0
O1—Er1—O5143.77 (9)C11—N7—C14117.8 (3)
O3—Er1—O575.48 (9)C11—N7—Er1127.3 (3)
O1—Er1—O1W76.25 (9)C14—N7—Er1114.7 (2)
O3—Er1—O1W142.19 (9)C12—N8—C13116.6 (4)
O5—Er1—O1W134.01 (9)C13—N9—H9A120.0
O1—Er1—O2W102.99 (10)C13—N9—H9B120.0
O3—Er1—O2W144.11 (8)H9A—N9—H9B120.0
O5—Er1—O2W74.76 (9)N1—C1—C2119.8 (4)
O1W—Er1—O2W73.69 (9)N1—C1—H1120.1
O1—Er1—N166.16 (9)C2—C1—H1120.1
O3—Er1—N177.71 (9)N2—C2—C1124.4 (4)
O5—Er1—N178.37 (9)N2—C2—H2117.8
O1W—Er1—N1124.79 (10)C1—C2—H2117.8
O2W—Er1—N177.04 (10)N3—C3—N2117.9 (4)
O1—Er1—N7150.00 (9)N3—C3—C4121.9 (4)
O3—Er1—N7101.96 (10)N2—C3—C4120.2 (4)
O5—Er1—N766.21 (8)N1—C4—C3120.6 (3)
O1W—Er1—N777.86 (10)N1—C4—C5115.5 (3)
O2W—Er1—N783.85 (10)C3—C4—C5123.9 (3)
N1—Er1—N7143.12 (9)O2—C5—O1125.2 (3)
O1—Er1—N481.64 (9)O2—C5—C4119.8 (3)
O3—Er1—N465.52 (9)O1—C5—C4115.0 (3)
O5—Er1—N4119.29 (9)N4—C6—C7120.2 (3)
O1W—Er1—N477.71 (9)N4—C6—H6119.9
O2W—Er1—N4148.85 (9)C7—C6—H6119.9
N1—Er1—N4130.93 (9)N5—C7—C6124.1 (3)
N7—Er1—N478.27 (9)N5—C7—H7117.9
C5—O1—Er1127.2 (2)C6—C7—H7117.9
C10—O3—Er1126.5 (2)N6—C8—N5116.3 (3)
C15—O5—Er1124.9 (2)N6—C8—C9122.9 (3)
Er1—O1W—H11119 (3)N5—C8—C9120.7 (3)
Er1—O1W—H12127 (3)N4—C9—C8121.2 (3)
H11—O1W—H12108 (4)N4—C9—C10115.0 (3)
Er1—O2W—H21122 (3)C8—C9—C10123.7 (3)
Er1—O2W—H22120 (3)O4—C10—O3124.6 (3)
H21—O2W—H22107 (5)O4—C10—C9119.4 (3)
H31—O3W—H32108 (4)O3—C10—C9116.0 (3)
H41—O4W—H42110 (4)N7—C11—C12120.6 (4)
H51—O5W—H52109 (4)N7—C11—H11A119.7
H61—O6W—H62109 (4)C12—C11—H11A119.7
C1—N1—C4118.1 (3)N8—C12—C11123.4 (4)
C1—N1—Er1125.8 (2)N8—C12—H12A118.3
C4—N1—Er1115.7 (2)C11—C12—H12A118.3
C2—N2—C3116.8 (3)N9—C13—N8116.3 (4)
C3—N3—H3A120.0N9—C13—C14123.1 (4)
C3—N3—H3B120.0N8—C13—C14120.6 (3)
H3A—N3—H3B120.0N7—C14—C13120.8 (3)
C9—N4—C6117.8 (3)N7—C14—C15115.4 (3)
C9—N4—Er1116.1 (2)C13—C14—C15123.8 (3)
C6—N4—Er1126.1 (2)O6—C15—O5125.5 (4)
C7—N5—C8116.0 (3)O6—C15—C14118.3 (4)
C8—N6—H6A120.0O5—C15—C14116.2 (3)
C8—N6—H6B120.0
O3—Er1—O1—C571.6 (3)N4—Er1—N7—C14141.2 (3)
O5—Er1—O1—C57.5 (4)C4—N1—C1—C23.0 (5)
O1W—Er1—O1—C5143.7 (3)Er1—N1—C1—C2169.2 (3)
O2W—Er1—O1—C574.4 (3)C3—N2—C2—C10.5 (6)
N1—Er1—O1—C55.1 (3)N1—C1—C2—N22.3 (6)
N7—Er1—O1—C5174.8 (3)C2—N2—C3—N3179.3 (4)
N4—Er1—O1—C5137.0 (3)C2—N2—C3—C40.5 (5)
O1—Er1—O3—C1089.3 (3)C1—N1—C4—C32.1 (5)
O5—Er1—O3—C10124.0 (3)Er1—N1—C4—C3171.0 (3)
O1W—Er1—O3—C1022.8 (4)C1—N1—C4—C5179.6 (3)
O2W—Er1—O3—C10158.8 (3)Er1—N1—C4—C57.4 (3)
N1—Er1—O3—C10155.0 (3)N3—C3—C4—N1179.9 (4)
N7—Er1—O3—C1062.7 (3)N2—C3—C4—N10.3 (5)
N4—Er1—O3—C108.3 (3)N3—C3—C4—C51.7 (6)
O1—Er1—O5—C15165.9 (3)N2—C3—C4—C5178.5 (3)
O3—Er1—O5—C15125.7 (3)Er1—O1—C5—O2177.1 (3)
O1W—Er1—O5—C1526.5 (3)Er1—O1—C5—C43.2 (4)
O2W—Er1—O5—C1574.6 (3)N1—C4—C5—O2176.3 (4)
N1—Er1—O5—C15154.1 (3)C3—C4—C5—O25.5 (5)
N7—Er1—O5—C1515.4 (3)N1—C4—C5—O13.4 (4)
N4—Er1—O5—C1575.2 (3)C3—C4—C5—O1174.8 (3)
O1—Er1—N1—C1178.8 (3)C9—N4—C6—C70.3 (6)
O3—Er1—N1—C183.8 (3)Er1—N4—C6—C7178.3 (3)
O5—Er1—N1—C16.4 (3)C8—N5—C7—C62.0 (7)
O1W—Er1—N1—C1129.7 (3)N4—C6—C7—N50.7 (7)
O2W—Er1—N1—C170.5 (3)C7—N5—C8—N6179.1 (4)
N7—Er1—N1—C19.8 (4)C7—N5—C8—C92.3 (6)
N4—Er1—N1—C1125.2 (3)C6—N4—C9—C80.1 (5)
O1—Er1—N1—C46.4 (2)Er1—N4—C9—C8178.9 (3)
O3—Er1—N1—C488.6 (2)C6—N4—C9—C10177.7 (3)
O5—Er1—N1—C4166.1 (2)Er1—N4—C9—C101.0 (4)
O1W—Er1—N1—C457.8 (3)N6—C8—C9—N4180.0 (4)
O2W—Er1—N1—C4117.1 (2)N5—C8—C9—N41.5 (6)
N7—Er1—N1—C4177.8 (2)N6—C8—C9—C102.3 (6)
N4—Er1—N1—C447.2 (3)N5—C8—C9—C10176.2 (4)
O1—Er1—N4—C997.5 (3)Er1—O3—C10—O4169.5 (3)
O3—Er1—N4—C94.2 (2)Er1—O3—C10—C910.8 (4)
O5—Er1—N4—C951.0 (3)N4—C9—C10—O4174.8 (3)
O1W—Er1—N4—C9175.1 (3)C8—C9—C10—O47.4 (5)
O2W—Er1—N4—C9161.2 (2)N4—C9—C10—O35.5 (5)
N1—Er1—N4—C949.4 (3)C8—C9—C10—O3172.3 (3)
N7—Er1—N4—C9104.9 (3)C14—N7—C11—C122.0 (6)
O1—Er1—N4—C681.2 (3)Er1—N7—C11—C12176.3 (3)
O3—Er1—N4—C6174.5 (3)C13—N8—C12—C111.4 (6)
O5—Er1—N4—C6130.4 (3)N7—C11—C12—N84.1 (7)
O1W—Er1—N4—C63.5 (3)C12—N8—C13—N9176.4 (4)
O2W—Er1—N4—C620.1 (4)C12—N8—C13—C143.1 (6)
N1—Er1—N4—C6129.2 (3)C11—N7—C14—C132.4 (5)
N7—Er1—N4—C676.4 (3)Er1—N7—C14—C13172.6 (3)
O1—Er1—N7—C114.6 (5)C11—N7—C14—C15176.4 (3)
O3—Er1—N7—C11105.9 (3)Er1—N7—C14—C158.6 (4)
O5—Er1—N7—C11174.0 (4)N9—C13—C14—N7174.3 (4)
O1W—Er1—N7—C1135.4 (3)N8—C13—C14—N75.1 (5)
O2W—Er1—N7—C11110.0 (3)N9—C13—C14—C157.0 (6)
N1—Er1—N7—C11168.7 (3)N8—C13—C14—C15173.6 (3)
N4—Er1—N7—C1144.4 (3)Er1—O5—C15—O6165.5 (3)
O1—Er1—N7—C14169.9 (2)Er1—O5—C15—C1416.6 (4)
O3—Er1—N7—C1479.6 (3)N7—C14—C15—O6178.3 (4)
O5—Er1—N7—C1411.6 (2)C13—C14—C15—O62.9 (6)
O1W—Er1—N7—C14139.1 (3)N7—C14—C15—O53.6 (5)
O2W—Er1—N7—C1464.5 (3)C13—C14—C15—O5175.2 (3)
N1—Er1—N7—C145.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O3W0.82 (1)1.90 (2)2.671 (5)157 (5)
O1W—H12···O6Wi0.82 (1)1.85 (1)2.677 (4)177 (4)
O2W—H21···O4ii0.82 (1)1.89 (1)2.705 (3)172 (4)
O2W—H22···O5Wi0.82 (1)1.88 (1)2.694 (4)169 (4)
O3W—H32···O5W0.82 (1)2.11 (6)2.827 (5)145 (9)
O4W—H41···O20.82 (1)1.98 (2)2.777 (4)166 (5)
O4W—H42···O6iii0.82 (1)1.99 (2)2.765 (4)160 (5)
O5W—H51···O5iii0.82 (1)2.16 (1)2.970 (4)172 (5)
O5W—H52···N8iv0.82 (1)2.04 (1)2.847 (5)165 (4)
O6W—H61···O4W0.82 (1)2.02 (2)2.824 (4)168 (4)
O6W—H62···N2v0.82 (1)2.11 (2)2.886 (4)159 (5)
N3—H3B···O20.882.062.718 (5)131
N6—H6A···O1vi0.882.383.184 (4)152
N6—H6B···O40.882.062.709 (4)130
N9—H9A···O3vii0.882.303.142 (4)161
N9—H9B···O60.882.072.705 (5)129
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+1, y+1, z+2; (v) x+5/2, y1/2, z+3/2; (vi) x+1, y+1, z+1; (vii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Er(C5H4N3O2)3(H2O)2]·4H2O
Mr689.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)9.1915 (9), 19.7152 (14), 13.5637 (11)
β (°) 105.276 (3)
V3)2371.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.62
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.465, 0.613
No. of measured, independent and
observed [I > 2σ(I)] reflections
18438, 4165, 3758
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.05
No. of reflections4165
No. of parameters370
No. of restraints42
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.81, 0.46

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC & Rigaku Corporation, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O3W0.82 (1)1.90 (2)2.671 (5)157 (5)
O1W—H12···O6Wi0.82 (1)1.85 (1)2.677 (4)177 (4)
O2W—H21···O4ii0.82 (1)1.89 (1)2.705 (3)172 (4)
O2W—H22···O5Wi0.82 (1)1.88 (1)2.694 (4)169 (4)
O3W—H32···O5W0.82 (1)2.11 (6)2.827 (5)145 (9)
O4W—H41···O20.82 (1)1.98 (2)2.777 (4)166 (5)
O4W—H42···O6iii0.82 (1)1.99 (2)2.765 (4)160 (5)
O5W—H51···O5iii0.82 (1)2.16 (1)2.970 (4)172 (5)
O5W—H52···N8iv0.82 (1)2.04 (1)2.847 (5)165 (4)
O6W—H61···O4W0.82 (1)2.02 (2)2.824 (4)168 (4)
O6W—H62···N2v0.82 (1)2.11 (2)2.886 (4)159 (5)
N3—H3B···O20.882.062.718 (5)131
N6—H6A···O1vi0.882.383.184 (4)152
N6—H6B···O40.882.062.709 (4)130
N9—H9A···O3vii0.882.303.142 (4)161
N9—H9B···O60.882.072.705 (5)129
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+1, y+1, z+2; (v) x+5/2, y1/2, z+3/2; (vi) x+1, y+1, z+1; (vii) x1/2, y+3/2, z+1/2.
 

Acknowledgements

This work is supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (grant No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (grant No. 2010td03), the Key Project of the Education Bureau of Heilongjiang Province (grant No. 12511z023) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLeciejewicz, J., Ptasiewicz-Bak, H., Premkumar, T. & Govindarajan, S. (2004). J. Coord. Chem. 57, 97–103.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC & Rigaku Corporation (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds