metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[(μ-3-amino­pyrazine-2-carboxyl­ato-κ3N1,O:O′)di­aqua­(μ-oxalato-κ4O1,O2:O1′,O2′)lanthanum(III)] monohydrate]

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 July 2011; accepted 22 August 2011; online 27 August 2011)

The water-coordinated LaIII atom in the title compound, {[La(C5H4N3O2)(C2O4)(H2O)2]·H2O}n, is N,O-chelated by a 3-amino­pyrazine-2-carboxyl­ate ion; this ion links adjacent metal atoms to form a chain parallel to [010]. The oxalate ion serves as a bis-bidentate chelate that links adjacent metal atoms to form a chain parallel to [001]. The two bridging ions give rise to a layer motif parallel to (100) in which the LaIII atom exists in a distorted tricapped trigonal prismatic geometry. Extensive hydrogen bonding between the constituents stabilizes the structure.

Related literature

For a related structure, see: Leciejewicz et al. (2004[Leciejewicz, J., Ptasiewicz-Bak, H., Premkumar, T. & Govindarajan, S. (2004). J. Coord. Chem. 57, 97-103.]). For pyrazine­carb­oxy­lic acid decomposition with subsequent oxalate formation, which has been documented in other lanthanum systems, see: Li et al. (2006[Li, B., Gu, W., Zhang, L.-Z., Qu, J., Ma, Z.-P., Liu, X. & Liao, D.-Z. (2006). Inorg. Chem. 45, 10425-10427.]).

[Scheme 1]

Experimental

Crystal data
  • [La(C5H4N3O2)(C2O4)(H2O)2]·H2O

  • Mr = 419.09

  • Monoclinic, C 2/c

  • a = 18.2193 (5) Å

  • b = 10.5507 (3) Å

  • c = 13.1307 (5) Å

  • β = 105.292 (1)°

  • V = 2434.70 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.56 mm−1

  • T = 293 K

  • 0.14 × 0.12 × 0.08 mm

Data collection
  • Rigaku RAXIS-RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.636, Tmax = 0.764

  • 11571 measured reflections

  • 2780 independent reflections

  • 2408 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.064

  • S = 1.03

  • 2780 reflections

  • 213 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11⋯O6i 0.84 (1) 1.89 (1) 2.720 (3) 169 (3)
O1W—H12⋯N2ii 0.84 (1) 2.00 (1) 2.842 (3) 175 (3)
O2W—H21⋯O5iii 0.84 (1) 1.95 (1) 2.787 (3) 175 (4)
O2W—H22⋯O3W 0.84 (1) 2.16 (2) 2.908 (4) 148 (4)
O3W—H31⋯O2Wiv 0.84 (1) 2.19 (1) 3.017 (4) 165 (4)
O3W—H32⋯N3iii 0.84 (1) 2.33 (2) 3.152 (5) 165 (4)
N3—H1⋯O2 0.88 (1) 2.06 (3) 2.711 (3) 130 (3)
N3—H2⋯O3v 0.88 (1) 2.10 (1) 2.967 (3) 167 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [-x+2, y, -z+{\script{3\over 2}}]; (v) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The chelating ability of the 3-aminopyrazine-2-carboxylate anion is probably similar to that of the pyrazine-2-carboxylate anion, and the crystal structures of a number of lanthanum carboxylates have been reported. Hydrated lanthanum tris(pyrazine-2-carboxylate) adopts a chain motif (Leciejewicz et al., 2004). The additional amino substitution in the 3-aminopyrazine-2-carboxylate should be expected to consolidate the crystal structure of the title lanthanum derivative through extensive hydrogen bonding. The water-coordinated LaIII atom in La(H2O)2(C2O4)(C5H4N3O2).H2O (Scheme I, Fig. 1) is N,O-chelated by an 3-aminopyrazine-2-carboxylate ion; this ion links adjacent metal atoms to form a chain parallel to [010]. The presence of an oxalate ion is explained by the decomposition of 3-aminopyrazine-2-carboxylic acid; the oxalate ion serves as a bis-bidentate chelate that links adjacent metal atoms. The two bridging ions give rise to a layer motif parallel to [100] in which the LaIII atom exists in a nine-coordinate environment. The geometry is best described as a distorted tricapped trigonal prism. The upper prism triangle is made up of the atoms O1, O4 and O2w, and the lower prism triangle by the atoms O2, O5 and O1w.

The layers interact with the lattice water molecules to generate a three-dimensional hydrogen-bonded network (Table 1).

Related literature top

For a related structure, see: Leciejewicz et al. (2004). For pyrazinecarboxylic acid decomposition with subsequent oxalate formation, which has been documented in other lanthanum systems; see: Li et al. (2006).

Experimental top

Lanthanum nitrate hexahydrate (0.5 mmol) and 3-aminopyrazine-2-carboxylic acid (2 mmol) were dissolved in water (15 ml). The solution was sealed in a 25 ml Teflon-lined stainless steel bomb and held at 443 K for 3 d. The bomb was gradually cooled to room temperature, and colorless prismatic crystals were obtained.

Refinement top

Carbon- and nitrogen-bound H atoms were placed in calculated positions (C—H 0.93 Å, N—H 0.88 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C,N). The water H atoms were located in a difference Fourier map, and were refined with distance restraints of O—H 0.84 (1) Å and H···H 1.37 (1) Å; their temperature factors were tied by a factor of 1.5 times.

The final difference Fourier map had the largest peaks and holes in the vicinity of La1.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the layer structure of La(H2O)2(C2O4)(C5H4N3O2).H2O at the 50% probability level; H atoms are drawn as spheres of arbitrary radius.
Poly[[(µ-3-aminopyrazine-2-carboxylato- κ3N1,O:O')diaqua(µ-oxalato- κ4O1,O2:O1',O2')lanthanum(III)] monohydrate] top
Crystal data top
[La(C5H4N3O2)(C2O4)(H2O)2]·H2OF(000) = 1616
Mr = 419.09Dx = 2.287 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8439 reflections
a = 18.2193 (5) Åθ = 3.2–27.4°
b = 10.5507 (3) ŵ = 3.56 mm1
c = 13.1307 (5) ÅT = 293 K
β = 105.292 (1)°Prism, colourless
V = 2434.70 (13) Å30.14 × 0.12 × 0.08 mm
Z = 8
Data collection top
Rigaku RAXIS-RAPID IP
diffractometer
2780 independent reflections
Radiation source: fine-focus sealed tube2408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2223
Tmin = 0.636, Tmax = 0.764k = 1311
11571 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.9654P]
where P = (Fo2 + 2Fc2)/3
2780 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 1.19 e Å3
11 restraintsΔρmin = 0.90 e Å3
Crystal data top
[La(C5H4N3O2)(C2O4)(H2O)2]·H2OV = 2434.70 (13) Å3
Mr = 419.09Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.2193 (5) ŵ = 3.56 mm1
b = 10.5507 (3) ÅT = 293 K
c = 13.1307 (5) Å0.14 × 0.12 × 0.08 mm
β = 105.292 (1)°
Data collection top
Rigaku RAXIS-RAPID IP
diffractometer
2780 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2408 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.764Rint = 0.038
11571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02511 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.19 e Å3
2780 reflectionsΔρmin = 0.90 e Å3
213 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.753537 (8)0.505715 (13)0.708865 (11)0.01578 (8)
O10.70771 (10)0.72700 (18)0.73633 (16)0.0229 (4)
O30.82152 (11)0.4381 (2)0.56948 (15)0.0265 (5)
O40.70436 (11)0.60558 (18)0.52529 (15)0.0232 (4)
O50.70189 (11)0.59526 (17)0.35400 (15)0.0215 (4)
O60.81026 (11)0.41769 (18)0.39750 (15)0.0237 (4)
O1W0.67446 (12)0.33869 (19)0.59002 (18)0.0301 (5)
H110.6840 (18)0.2609 (12)0.590 (3)0.046 (11)*
H120.6393 (18)0.356 (3)0.536 (2)0.064 (13)*
O2W0.86289 (12)0.66714 (19)0.70250 (17)0.0273 (5)
H210.8424 (19)0.7373 (19)0.682 (3)0.053 (12)*
H220.8870 (19)0.643 (3)0.660 (2)0.052 (12)*
O20.62477 (11)0.88451 (18)0.70103 (17)0.0283 (5)
O3W0.99478 (18)0.6325 (3)0.6200 (3)0.0556 (7)
H311.0385 (11)0.644 (4)0.661 (2)0.075 (17)*
H320.999 (2)0.628 (4)0.5577 (12)0.073 (16)*
N10.59859 (12)0.5541 (2)0.67230 (18)0.0188 (5)
N20.44670 (13)0.6197 (2)0.5937 (2)0.0241 (5)
N30.47703 (15)0.8320 (3)0.6050 (3)0.0338 (7)
H10.5096 (15)0.893 (2)0.630 (3)0.033 (10)*
H20.4284 (8)0.851 (3)0.593 (3)0.043 (10)*
C10.54410 (17)0.4653 (3)0.6480 (2)0.0233 (6)
H1A0.55720.38010.65770.028*
C20.4688 (2)0.4990 (2)0.6088 (3)0.0256 (7)
H2A0.43210.43550.59240.031*
C30.50011 (15)0.7099 (3)0.6213 (2)0.0204 (6)
C40.57805 (15)0.6755 (2)0.6627 (2)0.0176 (5)
C50.64079 (15)0.7689 (3)0.7022 (2)0.0196 (6)
C60.72721 (15)0.5654 (2)0.4499 (2)0.0177 (5)
C70.79244 (16)0.4649 (3)0.4748 (2)0.0180 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01427 (11)0.02279 (11)0.00982 (11)0.00134 (6)0.00236 (7)0.00027 (5)
O10.0147 (10)0.0293 (10)0.0226 (11)0.0015 (9)0.0012 (8)0.0039 (8)
O30.0269 (11)0.0386 (12)0.0137 (10)0.0120 (10)0.0048 (8)0.0028 (9)
O40.0259 (10)0.0301 (10)0.0150 (10)0.0091 (9)0.0081 (8)0.0023 (8)
O50.0249 (10)0.0275 (10)0.0117 (10)0.0057 (8)0.0038 (8)0.0036 (8)
O60.0312 (11)0.0256 (10)0.0149 (10)0.0068 (9)0.0072 (8)0.0002 (8)
O1W0.0312 (12)0.0211 (10)0.0297 (13)0.0042 (10)0.0066 (10)0.0027 (9)
O2W0.0276 (11)0.0256 (11)0.0309 (13)0.0028 (10)0.0117 (10)0.0026 (9)
O20.0225 (10)0.0244 (10)0.0337 (13)0.0033 (9)0.0001 (9)0.0059 (9)
O3W0.0518 (18)0.071 (2)0.0455 (19)0.0010 (17)0.0152 (15)0.0004 (16)
N10.0172 (11)0.0232 (12)0.0160 (12)0.0003 (10)0.0045 (9)0.0008 (9)
N20.0165 (11)0.0327 (13)0.0223 (13)0.0017 (11)0.0038 (10)0.0022 (10)
N30.0189 (14)0.0286 (14)0.0486 (19)0.0028 (12)0.0005 (13)0.0035 (13)
C10.0224 (15)0.0234 (13)0.0242 (16)0.0008 (13)0.0064 (12)0.0004 (12)
C20.0213 (16)0.0301 (17)0.0256 (18)0.0086 (12)0.0067 (13)0.0006 (11)
C30.0184 (13)0.0275 (14)0.0150 (14)0.0026 (12)0.0038 (11)0.0032 (11)
C40.0163 (13)0.0233 (13)0.0129 (13)0.0031 (11)0.0032 (10)0.0025 (10)
C50.0195 (14)0.0264 (14)0.0133 (14)0.0007 (12)0.0049 (11)0.0008 (11)
C60.0180 (13)0.0189 (13)0.0163 (14)0.0004 (12)0.0044 (10)0.0012 (10)
C70.0163 (14)0.0225 (12)0.0144 (14)0.0003 (12)0.0029 (11)0.0002 (11)
Geometric parameters (Å, º) top
La1—O1W2.536 (2)O2W—H220.838 (10)
La1—O12.5371 (19)O2—C51.254 (3)
La1—O6i2.5507 (19)O2—La1iv2.5627 (19)
La1—O2ii2.5627 (19)O3W—H310.844 (10)
La1—O42.5659 (19)O3W—H320.843 (10)
La1—O32.5668 (19)N1—C41.331 (3)
La1—O5i2.5687 (18)N1—C11.341 (4)
La1—O2W2.639 (2)N2—C21.334 (3)
La1—N12.783 (2)N2—C31.341 (4)
O1—C51.263 (3)N3—C31.355 (4)
O3—C71.248 (3)N3—H10.880 (10)
O4—C61.246 (3)N3—H20.880 (10)
O5—C61.261 (3)C1—C21.379 (5)
O5—La1iii2.5687 (18)C1—H1A0.9300
O6—C71.248 (3)C2—H2A0.9300
O6—La1iii2.5507 (19)C3—C41.427 (4)
O1W—H110.838 (10)C4—C51.495 (4)
O1W—H120.841 (10)C6—C71.561 (4)
O2W—H210.842 (10)
O1W—La1—O1124.90 (6)C6—O5—La1iii121.85 (17)
O1W—La1—O6i146.79 (7)C7—O6—La1iii122.53 (17)
O1—La1—O6i68.57 (6)La1—O1W—H11126 (2)
O1W—La1—O2ii102.67 (6)La1—O1W—H12123 (2)
O1—La1—O2ii132.12 (6)H11—O1W—H12109.1 (17)
O6i—La1—O2ii68.29 (7)La1—O2W—H21108 (2)
O1W—La1—O472.92 (7)La1—O2W—H22111 (3)
O1—La1—O473.09 (6)H21—O2W—H22108.7 (17)
O6i—La1—O4137.21 (6)C5—O2—La1iv108.04 (16)
O2ii—La1—O4133.14 (6)H31—O3W—H32108.1 (17)
O1W—La1—O370.77 (7)C4—N1—C1118.5 (2)
O1—La1—O3126.58 (7)C4—N1—La1116.11 (17)
O6i—La1—O3129.22 (6)C1—N1—La1124.51 (19)
O2ii—La1—O370.67 (7)C2—N2—C3117.9 (2)
O4—La1—O363.83 (6)C3—N3—H1119 (2)
O1W—La1—O5i84.75 (7)C3—N3—H2120 (2)
O1—La1—O5i94.45 (6)H1—N3—H2117 (3)
O6i—La1—O5i62.92 (6)N1—C1—C2120.7 (3)
O2ii—La1—O5i83.81 (6)N1—C1—H1A119.7
O4—La1—O5i139.62 (6)C2—C1—H1A119.7
O3—La1—O5i138.92 (6)N2—C2—C1122.2 (3)
O1W—La1—O2W137.74 (7)N2—C2—H2A118.9
O1—La1—O2W71.95 (6)C1—C2—H2A118.9
O6i—La1—O2W73.16 (6)N2—C3—N3117.4 (2)
O2ii—La1—O2W76.60 (6)N2—C3—C4120.1 (2)
O4—La1—O2W77.57 (7)N3—C3—C4122.6 (3)
O3—La1—O2W69.30 (7)N1—C4—C3120.5 (2)
O5i—La1—O2W135.93 (6)N1—C4—C5115.5 (2)
O1W—La1—N168.62 (7)C3—C4—C5123.9 (2)
O1—La1—N159.92 (6)O2—C5—O1123.0 (2)
O6i—La1—N1104.01 (6)O2—C5—C4118.9 (2)
O2ii—La1—N1152.36 (7)O1—C5—C4118.1 (2)
O4—La1—N171.07 (6)O4—C6—O5126.7 (3)
O3—La1—N1125.89 (6)O4—C6—C7117.4 (2)
O5i—La1—N169.55 (6)O5—C6—C7115.9 (2)
O2W—La1—N1128.03 (7)O3—C7—O6125.9 (3)
C5—O1—La1126.49 (17)O3—C7—C6117.6 (2)
C7—O3—La1119.28 (17)O6—C7—C6116.5 (2)
C6—O4—La1120.00 (17)
O1W—La1—O1—C57.2 (2)O3—La1—N1—C169.9 (2)
O6i—La1—O1—C5138.1 (2)O5i—La1—N1—C166.4 (2)
O2ii—La1—O1—C5165.2 (2)O2W—La1—N1—C1160.6 (2)
O4—La1—O1—C561.3 (2)C4—N1—C1—C23.3 (4)
O3—La1—O1—C598.2 (2)La1—N1—C1—C2165.7 (2)
O5i—La1—O1—C579.5 (2)C3—N2—C2—C12.2 (5)
O2W—La1—O1—C5143.4 (2)N1—C1—C2—N20.3 (5)
N1—La1—O1—C516.2 (2)C2—N2—C3—N3179.7 (3)
O1W—La1—O3—C767.4 (2)C2—N2—C3—C41.6 (4)
O1—La1—O3—C752.4 (2)C1—N1—C4—C33.8 (4)
O6i—La1—O3—C7143.4 (2)La1—N1—C4—C3166.12 (19)
O2ii—La1—O3—C7179.0 (2)C1—N1—C4—C5173.5 (2)
O4—La1—O3—C712.6 (2)La1—N1—C4—C516.5 (3)
O5i—La1—O3—C7124.2 (2)N2—C3—C4—N11.4 (4)
O2W—La1—O3—C798.5 (2)N3—C3—C4—N1176.6 (3)
N1—La1—O3—C724.1 (2)N2—C3—C4—C5175.7 (3)
O1W—La1—O4—C666.9 (2)N3—C3—C4—C56.3 (4)
O1—La1—O4—C6157.1 (2)La1iv—O2—C5—O14.6 (3)
O6i—La1—O4—C6130.02 (19)La1iv—O2—C5—C4174.72 (19)
O2ii—La1—O4—C624.6 (2)La1—O1—C5—O2166.0 (2)
O3—La1—O4—C69.60 (19)La1—O1—C5—C414.7 (3)
O5i—La1—O4—C6126.34 (19)N1—C4—C5—O2176.0 (2)
O2W—La1—O4—C682.4 (2)C3—C4—C5—O21.2 (4)
N1—La1—O4—C6139.6 (2)N1—C4—C5—O13.3 (4)
O1W—La1—N1—C4143.34 (19)C3—C4—C5—O1179.4 (3)
O1—La1—N1—C416.16 (17)La1—O4—C6—O5171.5 (2)
O6i—La1—N1—C470.73 (18)La1—O4—C6—C76.8 (3)
O2ii—La1—N1—C4140.54 (18)La1iii—O5—C6—O4177.5 (2)
O4—La1—N1—C464.83 (18)La1iii—O5—C6—C70.8 (3)
O3—La1—N1—C499.37 (19)La1—O3—C7—O6164.8 (2)
O5i—La1—N1—C4124.31 (19)La1—O3—C7—C614.4 (3)
O2W—La1—N1—C48.7 (2)La1iii—O6—C7—O3174.9 (2)
O1W—La1—N1—C125.9 (2)La1iii—O6—C7—C65.8 (3)
O1—La1—N1—C1174.6 (2)O4—C6—C7—O35.2 (4)
O6i—La1—N1—C1120.0 (2)O5—C6—C7—O3176.4 (2)
O2ii—La1—N1—C150.2 (3)O4—C6—C7—O6174.1 (2)
O4—La1—N1—C1104.4 (2)O5—C6—C7—O64.3 (4)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x, y+1, z1/2; (iv) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O6v0.84 (1)1.89 (1)2.720 (3)169 (3)
O1W—H12···N2vi0.84 (1)2.00 (1)2.842 (3)175 (3)
O2W—H21···O5vii0.84 (1)1.95 (1)2.787 (3)175 (4)
O2W—H22···O3W0.84 (1)2.16 (2)2.908 (4)148 (4)
O3W—H31···O2Wviii0.84 (1)2.19 (1)3.017 (4)165 (4)
O3W—H32···N3vii0.84 (1)2.33 (2)3.152 (5)165 (4)
N3—H1···O20.88 (1)2.06 (3)2.711 (3)130 (3)
N3—H2···O3ix0.88 (1)2.10 (1)2.967 (3)167 (3)
Symmetry codes: (v) x+3/2, y+1/2, z+1; (vi) x+1, y+1, z+1; (vii) x+3/2, y+3/2, z+1; (viii) x+2, y, z+3/2; (ix) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[La(C5H4N3O2)(C2O4)(H2O)2]·H2O
Mr419.09
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.2193 (5), 10.5507 (3), 13.1307 (5)
β (°) 105.292 (1)
V3)2434.70 (13)
Z8
Radiation typeMo Kα
µ (mm1)3.56
Crystal size (mm)0.14 × 0.12 × 0.08
Data collection
DiffractometerRigaku RAXIS-RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.636, 0.764
No. of measured, independent and
observed [I > 2σ(I)] reflections
11571, 2780, 2408
Rint0.038
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.03
No. of reflections2780
No. of parameters213
No. of restraints11
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.19, 0.90

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O6i0.84 (1)1.89 (1)2.720 (3)169 (3)
O1W—H12···N2ii0.84 (1)2.00 (1)2.842 (3)175 (3)
O2W—H21···O5iii0.84 (1)1.95 (1)2.787 (3)175 (4)
O2W—H22···O3W0.84 (1)2.16 (2)2.908 (4)148 (4)
O3W—H31···O2Wiv0.84 (1)2.19 (1)3.017 (4)165 (4)
O3W—H32···N3iii0.84 (1)2.33 (2)3.152 (5)165 (4)
N3—H1···O20.88 (1)2.06 (3)2.711 (3)130 (3)
N3—H2···O3v0.88 (1)2.10 (1)2.967 (3)167 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y+3/2, z+1; (iv) x+2, y, z+3/2; (v) x1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (grant No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (grant No. 2010td03), the Key Project of the Education Bureau of Heilongjiang Province (grant No. 12511z023) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLeciejewicz, J., Ptasiewicz-Bak, H., Premkumar, T. & Govindarajan, S. (2004). J. Coord. Chem. 57, 97–103.  Google Scholar
First citationLi, B., Gu, W., Zhang, L.-Z., Qu, J., Ma, Z.-P., Liu, X. & Liao, D.-Z. (2006). Inorg. Chem. 45, 10425–10427.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds