metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4,5-Di­aza­fluoren-9-one-κ2N,N′)bis­­(1H-imidazole-κN3)bis­­(thio­cyanato-κN)cobalt(II)

aCollege of Chemistry and Chemical Engineering, Huaihua University, Huaihua 418008, People's Republic of China, and bWuling Electric Power Group Corporation, Changsha 410000, People's Republic of China
*Correspondence e-mail: xiulingfeng2001@sina.com

(Received 6 July 2011; accepted 19 July 2011; online 2 August 2011)

In the title complex, [Co(NCS)2(C3H4N2)2(C11H6N2O)], the CoII atom has a distorted octa­hedral coordination with the N atoms of the 4,5-diaza­fluoren-9-one ligand and two N atoms from imidazole ligands in the equatorial positions and the axial sites occupied by two N atoms of the thio­cyanate ligand. Inter­molecular N—H⋯O hydrogen bonding forms a one-dimensional motif parallel to the cell ab diagonal.

Related literature

For related structures, see: Notash et al. (2011[Notash, B., Safari, N. & Amani, V. (2011). Acta Cryst. E67, m418.]); Xu et al. (2009[Xu, Z.-G., Liu, H.-Y., Zhan, Q.-G., Chen, J. & Xu, M.-J. (2009). Acta Cryst. E65, m1166.]). For general background to metal complexes with diazafluoren-9-one ligands, see: Biju & Rajasekharan (2008[Biju, A. R. & Rajasekharan, M. V. (2008). Polyhedron, 27, 2065-2068.]); Zhang & Li (2009[Zhang, L. M. & Li, B. A. ( 2009). Inorg. Chim. Acta, 362, 4857-4861.]). For a related structure, see: Yang et al. (2004[Yang, H.-J., Kou, H.-Z., Gao, F., Cui, A.-L. & Wang, R.-J. (2004). Acta Cryst. E60, m611-m613.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NCS)2(C3H4N2)2(C11H6N2O)]

  • Mr = 493.43

  • Triclinic, [P \overline 1]

  • a = 9.2239 (9) Å

  • b = 10.920 (1) Å

  • c = 11.9441 (12) Å

  • α = 71.578 (1)°

  • β = 70.582 (1)°

  • γ = 73.931 (2)°

  • V = 1056.48 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 298 K

  • 0.35 × 0.33 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.712, Tmax = 0.746

  • 5357 measured reflections

  • 3633 independent reflections

  • 2208 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.192

  • S = 1.06

  • 3633 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O1i 0.86 2.47 2.980 (10) 119
Symmetry code: (i) x-1, y+1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title complex, Co(C11H6NO2)(C3H4N2)2(SCN)2 contains a CoII centre with a distorted octahedral coordination where the equatorial plane contains the N atoms of 4,5-diazafluoren-9-

one and two N atoms from imidazole ligands and the axial positions are occupied by two N atoms of thiocyanato ligands. Intermolecular N—H···O hydrogen bonding forms a one-dimensional motif parallel to the cell ab diagonal.

Related literature top

For related structures, see: Notash et al. (2011); Xu et al. (2009). For general background to metal complexes with diazafluoren-9-one ligands, see: Biju & Rajasekharan (2008); Zhang & Li (2009). For a related structure, see: Yang et al. (2004).

Experimental top

A mixture of Co(NO3)2. 6H2O (0.5 mmol), 4,5-diazafluoren-9-one (0.5 mmol), imidazole (0.5 mmol) and KSCN (0.5 mmol) in 15 mL distilled water was heated at 413 K in a Teflon-lined stainless steel autoclave for three days. The reaction system was then slowly cooled to room temperature. Red crystals of the title compound suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation of the aqueous solution over a period of one month (yield 49% based on Co).

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86Å with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of of the title compound, showing the atomic numbering scheme and 50% probability displacement ellipsoids.
(4,5-Diazafluoren-9-one-κ2N,N')bis(1H-imidazole- κN3)bis(thiocyanato-κN)cobalt(II) top
Crystal data top
[Co(NCS)2(C3H4N2)2(C11H6N2O)]Z = 2
Mr = 493.43F(000) = 502
Triclinic, P1Dx = 1.551 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2239 (9) ÅCell parameters from 1602 reflections
b = 10.920 (1) Åθ = 2.4–22.9°
c = 11.9441 (12) ŵ = 1.04 mm1
α = 71.578 (1)°T = 298 K
β = 70.582 (1)°Block, red
γ = 73.931 (2)°0.35 × 0.33 × 0.30 mm
V = 1056.48 (18) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3633 independent reflections
Radiation source: fine-focus sealed tube2208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.712, Tmax = 0.746k = 1210
5357 measured reflectionsl = 1411
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0844P)2 + 0.3689P]
where P = (Fo2 + 2Fc2)/3
3633 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Co(NCS)2(C3H4N2)2(C11H6N2O)]γ = 73.931 (2)°
Mr = 493.43V = 1056.48 (18) Å3
Triclinic, P1Z = 2
a = 9.2239 (9) ÅMo Kα radiation
b = 10.920 (1) ŵ = 1.04 mm1
c = 11.9441 (12) ÅT = 298 K
α = 71.578 (1)°0.35 × 0.33 × 0.30 mm
β = 70.582 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3633 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2208 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.746Rint = 0.041
5357 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.06Δρmax = 1.10 e Å3
3633 reflectionsΔρmin = 0.50 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.20940 (9)0.77893 (7)0.26794 (7)0.0446 (3)
N10.3058 (5)0.5787 (4)0.3693 (4)0.0460 (12)
N20.4108 (6)0.7047 (5)0.1105 (4)0.0478 (12)
N30.0422 (6)0.8171 (5)0.4280 (5)0.0497 (12)
N40.1818 (7)0.8644 (6)0.5558 (6)0.0788 (18)
H40.28150.88440.58550.095*
N50.1501 (6)0.9610 (5)0.1485 (4)0.0491 (12)
N60.0312 (10)1.1390 (7)0.0524 (7)0.127 (3)
H60.04511.19750.03060.152*
N70.3778 (6)0.8478 (5)0.2960 (5)0.0529 (13)
N80.0626 (6)0.6936 (5)0.2310 (4)0.0545 (13)
O10.7400 (6)0.2887 (5)0.1886 (5)0.0799 (15)
S10.5575 (2)1.00788 (17)0.30595 (16)0.0623 (5)
S20.0800 (3)0.5262 (2)0.19374 (19)0.0811 (6)
C10.6403 (7)0.3839 (6)0.2030 (6)0.0544 (16)
C20.4267 (7)0.5249 (5)0.2920 (5)0.0438 (14)
C30.5196 (7)0.4031 (6)0.3187 (6)0.0504 (15)
C40.4827 (8)0.3284 (6)0.4362 (6)0.0604 (18)
H4A0.53950.24410.45890.072*
C50.3613 (8)0.3810 (6)0.5177 (6)0.0618 (17)
H50.33580.33330.59890.074*
C60.2745 (8)0.5030 (6)0.4839 (6)0.0596 (17)
H6A0.19010.53490.54290.071*
C70.4808 (6)0.5879 (5)0.1624 (5)0.0428 (13)
C80.6092 (7)0.5069 (6)0.1082 (6)0.0524 (15)
C90.6755 (8)0.5511 (7)0.0145 (6)0.0619 (18)
H90.76410.50150.05640.074*
C100.6061 (9)0.6712 (7)0.0729 (6)0.0664 (19)
H100.64830.70430.15610.080*
C110.4755 (8)0.7435 (6)0.0107 (6)0.0569 (17)
H110.42940.82310.05430.068*
C120.1081 (8)0.8433 (7)0.4456 (6)0.0650 (18)
H120.15800.84700.38830.078*
C130.0723 (11)0.8488 (8)0.6116 (7)0.080 (2)
H130.08900.85600.69060.096*
C140.0648 (9)0.8211 (7)0.5327 (6)0.0653 (18)
H140.16190.80660.54720.078*
C150.0177 (10)1.0259 (8)0.1344 (8)0.101 (3)
H150.07660.99750.17630.121*
C160.1769 (11)1.1482 (8)0.0101 (7)0.081 (2)
H160.22111.21590.05010.097*
C170.2483 (9)1.0393 (7)0.0720 (7)0.073 (2)
H170.35571.01920.06330.088*
C180.4548 (7)0.9133 (6)0.2987 (5)0.0457 (14)
C190.0036 (7)0.6238 (6)0.2169 (5)0.0453 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0439 (5)0.0449 (5)0.0449 (5)0.0073 (4)0.0116 (4)0.0120 (4)
N10.050 (3)0.044 (3)0.041 (3)0.006 (2)0.012 (2)0.009 (2)
N20.051 (3)0.047 (3)0.044 (3)0.017 (2)0.010 (2)0.007 (2)
N30.051 (3)0.047 (3)0.053 (3)0.008 (2)0.011 (2)0.020 (2)
N40.061 (4)0.077 (4)0.083 (5)0.012 (3)0.015 (4)0.035 (4)
N50.047 (3)0.049 (3)0.049 (3)0.004 (3)0.015 (2)0.012 (2)
N60.091 (6)0.097 (6)0.112 (7)0.028 (5)0.023 (5)0.036 (5)
N70.050 (3)0.054 (3)0.058 (3)0.010 (3)0.019 (3)0.013 (3)
N80.055 (3)0.060 (3)0.052 (3)0.015 (3)0.013 (3)0.017 (3)
O10.060 (3)0.063 (3)0.109 (4)0.007 (3)0.014 (3)0.037 (3)
S10.0569 (11)0.0710 (11)0.0654 (12)0.0240 (9)0.0175 (9)0.0143 (9)
S20.0812 (14)0.1021 (15)0.0758 (13)0.0518 (12)0.0018 (11)0.0342 (12)
C10.044 (4)0.053 (4)0.070 (5)0.007 (3)0.013 (3)0.026 (4)
C20.044 (3)0.043 (3)0.045 (4)0.010 (3)0.010 (3)0.012 (3)
C30.051 (4)0.045 (3)0.056 (4)0.006 (3)0.018 (3)0.014 (3)
C40.065 (5)0.045 (4)0.065 (5)0.005 (3)0.025 (4)0.000 (3)
C50.070 (5)0.052 (4)0.054 (4)0.013 (4)0.013 (4)0.002 (3)
C60.065 (4)0.060 (4)0.045 (4)0.013 (3)0.006 (3)0.009 (3)
C70.043 (3)0.047 (3)0.043 (3)0.011 (3)0.010 (3)0.017 (3)
C80.043 (4)0.058 (4)0.057 (4)0.014 (3)0.007 (3)0.020 (3)
C90.056 (4)0.073 (5)0.058 (4)0.022 (4)0.005 (3)0.032 (4)
C100.072 (5)0.077 (5)0.053 (4)0.037 (4)0.002 (4)0.015 (4)
C110.066 (5)0.058 (4)0.048 (4)0.026 (3)0.012 (3)0.008 (3)
C120.051 (4)0.077 (5)0.066 (5)0.009 (4)0.010 (4)0.027 (4)
C130.096 (6)0.083 (5)0.057 (5)0.014 (5)0.003 (5)0.033 (4)
C140.067 (5)0.070 (4)0.063 (5)0.006 (4)0.020 (4)0.026 (4)
C150.060 (5)0.099 (6)0.090 (6)0.007 (5)0.013 (5)0.021 (5)
C160.089 (6)0.069 (5)0.077 (6)0.022 (5)0.031 (5)0.008 (4)
C170.067 (5)0.064 (5)0.081 (5)0.021 (4)0.027 (4)0.007 (4)
C180.043 (4)0.051 (4)0.034 (3)0.003 (3)0.011 (3)0.008 (3)
C190.051 (4)0.055 (4)0.025 (3)0.013 (3)0.006 (3)0.005 (3)
Geometric parameters (Å, º) top
Co1—N72.060 (5)C1—C81.487 (9)
Co1—N82.062 (5)C1—C31.492 (8)
Co1—N32.096 (5)C2—C31.374 (8)
Co1—N52.100 (5)C2—C71.457 (8)
Co1—N12.237 (4)C3—C41.365 (8)
Co1—N22.335 (5)C4—C51.344 (9)
N1—C21.318 (7)C4—H4A0.9300
N1—C61.339 (7)C5—C61.365 (9)
N2—C71.319 (7)C5—H50.9300
N2—C111.345 (7)C6—H6A0.9300
N3—C121.293 (8)C7—C81.370 (8)
N3—C141.350 (8)C8—C91.369 (8)
N4—C121.325 (8)C9—C101.367 (10)
N4—C131.332 (9)C9—H90.9300
N4—H40.8600C10—C111.370 (9)
N5—C151.267 (8)C10—H100.9300
N5—C171.331 (8)C11—H110.9300
N6—C161.289 (10)C12—H120.9300
N6—C151.319 (9)C13—C141.325 (10)
N6—H60.8600C13—H130.9300
N7—C181.152 (7)C14—H140.9300
N8—C191.130 (7)C15—H150.9300
O1—C11.197 (7)C16—C171.315 (9)
S1—C181.619 (7)C16—H160.9300
S2—C191.610 (6)C17—H170.9300
N7—Co1—N8173.1 (2)C5—C4—C3117.5 (6)
N7—Co1—N393.6 (2)C5—C4—H4A121.2
N8—Co1—N392.08 (19)C3—C4—H4A121.2
N7—Co1—N590.24 (19)C4—C5—C6121.4 (7)
N8—Co1—N592.91 (19)C4—C5—H5119.3
N3—Co1—N597.45 (19)C6—C5—H5119.3
N7—Co1—N187.91 (18)N1—C6—C5122.8 (6)
N8—Co1—N188.00 (19)N1—C6—H6A118.6
N3—Co1—N191.82 (18)C5—C6—H6A118.6
N5—Co1—N1170.65 (18)N2—C7—C8127.8 (6)
N7—Co1—N285.39 (18)N2—C7—C2122.7 (5)
N8—Co1—N288.39 (18)C8—C7—C2109.4 (5)
N3—Co1—N2170.70 (18)C9—C8—C7117.2 (6)
N5—Co1—N291.80 (18)C9—C8—C1134.9 (6)
N1—Co1—N278.92 (17)C7—C8—C1107.9 (5)
C2—N1—C6114.3 (5)C10—C9—C8117.2 (6)
C2—N1—Co1108.3 (4)C10—C9—H9121.4
C6—N1—Co1137.4 (4)C8—C9—H9121.4
C7—N2—C11113.5 (5)C9—C10—C11121.1 (7)
C7—N2—Co1105.9 (4)C9—C10—H10119.4
C11—N2—Co1140.5 (4)C11—C10—H10119.4
C12—N3—C14105.3 (6)N2—C11—C10123.1 (6)
C12—N3—Co1125.9 (4)N2—C11—H11118.5
C14—N3—Co1128.8 (4)C10—C11—H11118.5
C12—N4—C13107.0 (6)N3—C12—N4111.4 (6)
C12—N4—H4126.5N3—C12—H12124.3
C13—N4—H4126.5N4—C12—H12124.3
C15—N5—C17103.3 (6)C14—C13—N4106.7 (7)
C15—N5—Co1130.3 (5)C14—C13—H13126.6
C17—N5—Co1126.3 (4)N4—C13—H13126.6
C16—N6—C15109.3 (7)C13—C14—N3109.6 (7)
C16—N6—H6125.3C13—C14—H14125.2
C15—N6—H6125.3N3—C14—H14125.2
C18—N7—Co1164.4 (5)N5—C15—N6111.0 (8)
C19—N8—Co1165.8 (5)N5—C15—H15124.5
O1—C1—C8127.0 (6)N6—C15—H15124.5
O1—C1—C3127.4 (6)N6—C16—C17103.7 (7)
C8—C1—C3105.6 (5)N6—C16—H16128.2
N1—C2—C3126.5 (6)C17—C16—H16128.2
N1—C2—C7124.0 (5)C16—C17—N5112.6 (7)
C3—C2—C7109.5 (5)C16—C17—H17123.7
C4—C3—C2117.5 (6)N5—C17—H17123.7
C4—C3—C1135.0 (6)N7—C18—S1177.9 (6)
C2—C3—C1107.5 (6)N8—C19—S2178.7 (5)
N7—Co1—N1—C283.4 (4)C7—C2—C3—C10.1 (6)
N8—Co1—N1—C291.1 (4)O1—C1—C3—C40.2 (12)
N3—Co1—N1—C2176.9 (4)C8—C1—C3—C4178.7 (7)
N2—Co1—N1—C22.3 (4)O1—C1—C3—C2178.1 (6)
N7—Co1—N1—C695.8 (6)C8—C1—C3—C20.8 (6)
N8—Co1—N1—C689.7 (6)C2—C3—C4—C52.0 (9)
N3—Co1—N1—C62.3 (6)C1—C3—C4—C5179.7 (6)
N2—Co1—N1—C6178.5 (6)C3—C4—C5—C62.1 (10)
N7—Co1—N2—C786.0 (4)C2—N1—C6—C50.4 (9)
N8—Co1—N2—C791.1 (4)Co1—N1—C6—C5178.7 (4)
N5—Co1—N2—C7176.1 (4)C4—C5—C6—N11.4 (11)
N1—Co1—N2—C72.8 (3)C11—N2—C7—C81.4 (8)
N7—Co1—N2—C1192.8 (6)Co1—N2—C7—C8177.7 (5)
N8—Co1—N2—C1190.2 (6)C11—N2—C7—C2177.9 (5)
N5—Co1—N2—C112.7 (6)Co1—N2—C7—C23.0 (6)
N1—Co1—N2—C11178.5 (6)N1—C2—C7—N21.1 (9)
N7—Co1—N3—C12151.9 (5)C3—C2—C7—N2178.3 (5)
N8—Co1—N3—C1232.0 (6)N1—C2—C7—C8179.5 (5)
N5—Co1—N3—C1261.2 (6)C3—C2—C7—C81.1 (7)
N1—Co1—N3—C12120.1 (5)N2—C7—C8—C90.6 (9)
N7—Co1—N3—C1427.4 (6)C2—C7—C8—C9180.0 (5)
N8—Co1—N3—C14148.7 (5)N2—C7—C8—C1177.8 (5)
N5—Co1—N3—C14118.1 (5)C2—C7—C8—C11.6 (6)
N1—Co1—N3—C1460.6 (5)O1—C1—C8—C90.6 (12)
N7—Co1—N5—C15141.3 (7)C3—C1—C8—C9179.5 (7)
N8—Co1—N5—C1544.9 (7)O1—C1—C8—C7177.4 (6)
N3—Co1—N5—C1547.6 (7)C3—C1—C8—C71.5 (6)
N2—Co1—N5—C15133.3 (7)C7—C8—C9—C101.3 (9)
N7—Co1—N5—C1735.0 (6)C1—C8—C9—C10176.6 (6)
N8—Co1—N5—C17138.8 (6)C8—C9—C10—C110.2 (10)
N3—Co1—N5—C17128.7 (6)C7—N2—C11—C102.9 (8)
N2—Co1—N5—C1750.4 (6)Co1—N2—C11—C10175.8 (4)
N3—Co1—N7—C1884.9 (19)C9—C10—C11—N22.5 (10)
N5—Co1—N7—C1812.5 (19)C14—N3—C12—N40.3 (8)
N1—Co1—N7—C18176.6 (19)Co1—N3—C12—N4179.2 (4)
N2—Co1—N7—C18104.3 (19)C13—N4—C12—N30.9 (9)
N3—Co1—N8—C19110 (2)C12—N4—C13—C141.1 (9)
N5—Co1—N8—C19153 (2)N4—C13—C14—N31.0 (9)
N1—Co1—N8—C1918 (2)C12—N3—C14—C130.5 (8)
N2—Co1—N8—C1961 (2)Co1—N3—C14—C13179.9 (5)
C6—N1—C2—C30.4 (8)C17—N5—C15—N60.5 (10)
Co1—N1—C2—C3179.0 (5)Co1—N5—C15—N6177.5 (6)
C6—N1—C2—C7178.9 (5)C16—N6—C15—N50.9 (12)
Co1—N1—C2—C71.7 (6)C15—N6—C16—C171.9 (11)
N1—C2—C3—C41.2 (9)N6—C16—C17—N52.3 (10)
C7—C2—C3—C4178.2 (5)C15—N5—C17—C161.8 (9)
N1—C2—C3—C1179.5 (5)Co1—N5—C17—C16178.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O1i0.862.472.980 (10)119
Symmetry code: (i) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(NCS)2(C3H4N2)2(C11H6N2O)]
Mr493.43
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.2239 (9), 10.920 (1), 11.9441 (12)
α, β, γ (°)71.578 (1), 70.582 (1), 73.931 (2)
V3)1056.48 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.35 × 0.33 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.712, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
5357, 3633, 2208
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.192, 1.06
No. of reflections3633
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.50

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O1i0.862.472.980 (10)119
Symmetry code: (i) x1, y+1, z.
 

Acknowledgements

The authors appreciate the help of Professor Dr Hongyou Guo and the financial support of the Science Foundation of Huaihua University (grant No. HHUQ.2009–10.).

References

First citationBiju, A. R. & Rajasekharan, M. V. (2008). Polyhedron, 27, 2065–2068.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNotash, B., Safari, N. & Amani, V. (2011). Acta Cryst. E67, m418.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z.-G., Liu, H.-Y., Zhan, Q.-G., Chen, J. & Xu, M.-J. (2009). Acta Cryst. E65, m1166.  CSD CrossRef IUCr Journals Google Scholar
First citationYang, H.-J., Kou, H.-Z., Gao, F., Cui, A.-L. & Wang, R.-J. (2004). Acta Cryst. E60, m611–m613.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L. M. & Li, B. A. ( 2009). Inorg. Chim. Acta, 362, 4857–4861.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds