organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3,5-Di­bromo-2-hy­dr­oxy­benzyl­­idene)-4-nitro­benzohydrazide methanol monosolvate

aHebei Key Laboratory of Bioinorganic Chemistry, College of Sciences, Agricultural University of Hebei, Baoding 071001, People's Republic of China
*Correspondence e-mail: majingjun71@yahoo.cn

(Received 23 July 2011; accepted 2 August 2011; online 11 August 2011)

The title compound, C14H9Br2N3O4·CH4O, was obtained as the product of the reaction of 3,5-dibromo­salicyl­aldehyde with 4-nitro­benzohydrazide in methanol. The benzohydrazide mol­ecule is nearly planar, with a maximum deviation of 0.126 (2) Å. The mean planes of the two benzene rings make a dihedral angle of 9.3 (3)°. Intra­molecular O—H⋯N and O—H⋯Br inter­actions are observed in the benzohydrazide mol­ecule. In the crystal, pairs of adjacent benzohydrazide mol­ecules are linked by two methanol mol­ecules through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds, forming a dimer.

Related literature

For the biological activity of benzohydrazide compounds, see: El-Sayed et al. (2011[El-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A. & ElTahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416-3424.]); Horiuchi et al. (2009[Horiuchi, T., Nagata, M., KitagawaB, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850-7860.]). For coordination compounds involving benzohydrazides, see: El-Dissouky et al. (2010[El-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330-345.]); Zhang et al. (2010[Zhang, S.-P., Wei, Y. & Shao, S.-C. (2010). Acta Cryst. E66, m1635.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Suleiman Gwaram et al. (2010[Suleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.]); Dai & Mao (2010[Dai, C.-H. & Mao, F.-L. (2010). Acta Cryst. E66, o2942.]); Ban (2010[Ban, H.-Y. (2010). Acta Cryst. E66, o3240.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Br2N3O4·CH4O

  • Mr = 475.10

  • Monoclinic, P 21 /c

  • a = 7.576 (2) Å

  • b = 13.602 (2) Å

  • c = 17.230 (3) Å

  • β = 106.816 (3)°

  • V = 1699.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.80 mm−1

  • T = 298 K

  • 0.30 × 0.27 × 0.27 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.327, Tmax = 0.357

  • 10168 measured reflections

  • 3685 independent reflections

  • 2011 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.103

  • S = 1.00

  • 3685 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.94 2.642 (5) 143
N2—H2⋯O5i 0.90 1.91 2.800 (5) 169
O5—H5⋯O2ii 0.82 2.24 2.991 (6) 153
O5—H5⋯Br2 0.82 3.09 3.708 (4) 134
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzohydrazide compounds are well known for their biological activities (El-Sayed et al., 2011; Horiuchi et al., 2009). In addition, benzohydrazide compounds have also been used as versatile ligands in coordination chemistry (El-Dissouky et al., 2010). As a contribution to a structural study on hydrazone compounds, we present here the crystal structure of the title compound.

The compound contains a benzohydrazide molecule and a methanol molecule, as shown in Fig. 1. The bond distances and angles are within normal ranges (Allen et al., 1987) and are agree well with the corresponding bond distances and angles reported in closely related compounds (Suleiman Gwaram et al., 2010; Dai & Mao, 2010; Ban, 2010). The benzohydrazide molecule is nearly planar, with a maximum deviation of 0.126 (2) Å. The mean planes of the two benzene rings make a dihedral angle of 9.3 (3)°.

In the crystal structure of the title compound, the adjacent two benzohydrazide molecules are linked by two methanol molecules through intermolecular O—H···O and N—H···O hydrogen bonds, to form a dimer (Table 1, Fig. 2).

Related literature top

For the biological activity of benzohydrazide compounds, see: El-Sayed et al. (2011); Horiuchi et al. (2009). For coordination compounds involving benzohydrazides, see: El-Dissouky et al. (2010); Zhang et al. (2010). For standard bond lengths, see: Allen et al. (1987). For similar compounds, see: Suleiman Gwaram et al. (2010); Dai & Mao (2010); Ban (2010).

Experimental top

To a methanol solution (20 ml) of 3,5-dibromosalicylaldehyde (0.1 mmol, 28.0 mg) and 4-nitrobenzohydrazide (0.1 mmol, 18.1 mg), a few drops of acetic acid were added. The mixture was refluxed for 1 h and then cooled to room temperature. The white crystalline solid was collected by filtration, washed with cold methanol and dried in air. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution of the product in air.

Refinement top

H2 atoms bonded to N2 was located in a difference map and refined with distance restraint to 0.90 (1) Å. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and C15).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not related to the hydrogen bonding are omitted for clarity.
N'-(3,5-Dibromo-2-hydroxybenzylidene)-4-nitrobenzohydrazide methanol monosolvate top
Crystal data top
C14H9Br2N3O4·CH4OF(000) = 936
Mr = 475.10Dx = 1.857 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.576 (2) ÅCell parameters from 1293 reflections
b = 13.602 (2) Åθ = 2.5–24.5°
c = 17.230 (3) ŵ = 4.80 mm1
β = 106.816 (3)°T = 298 K
V = 1699.6 (6) Å3Block, yellow
Z = 40.30 × 0.27 × 0.27 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3685 independent reflections
Radiation source: fine-focus sealed tube2011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.327, Tmax = 0.357k = 1517
10168 measured reflectionsl = 2213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
3685 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C14H9Br2N3O4·CH4OV = 1699.6 (6) Å3
Mr = 475.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.576 (2) ŵ = 4.80 mm1
b = 13.602 (2) ÅT = 298 K
c = 17.230 (3) Å0.30 × 0.27 × 0.27 mm
β = 106.816 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3685 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2011 reflections with I > 2σ(I)
Tmin = 0.327, Tmax = 0.357Rint = 0.075
10168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.00Δρmax = 0.53 e Å3
3685 reflectionsΔρmin = 0.52 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.83099 (8)1.22176 (4)0.84550 (4)0.0533 (2)
Br20.79926 (8)0.82702 (4)0.94026 (3)0.0492 (2)
O10.5709 (5)1.1483 (2)0.6907 (2)0.0470 (10)
H10.52001.12650.64540.056*
O20.2149 (5)1.1321 (3)0.4660 (2)0.0584 (11)
O30.3295 (6)0.8090 (4)0.1561 (3)0.0822 (16)
O40.3194 (7)0.9500 (4)0.1026 (3)0.0953 (17)
N10.3873 (5)1.0128 (3)0.5892 (2)0.0384 (11)
N20.2818 (5)0.9780 (3)0.5145 (2)0.0404 (11)
H20.30460.91460.50480.048*
N30.2750 (6)0.8932 (5)0.1592 (3)0.0576 (15)
C10.5601 (6)0.9761 (3)0.7247 (3)0.0320 (12)
C20.6184 (6)1.0736 (4)0.7435 (3)0.0321 (12)
C30.7351 (6)1.0935 (4)0.8209 (3)0.0355 (13)
C40.7889 (6)1.0222 (4)0.8791 (3)0.0383 (13)
H40.86621.03740.93030.046*
C50.7259 (6)0.9266 (4)0.8603 (3)0.0355 (12)
C60.6146 (6)0.9041 (3)0.7845 (3)0.0347 (12)
H60.57470.83970.77270.042*
C70.4506 (7)0.9483 (4)0.6443 (3)0.0388 (13)
H70.42560.88210.63230.047*
C80.1984 (7)1.0439 (4)0.4568 (3)0.0365 (13)
C90.0789 (6)0.9994 (4)0.3795 (3)0.0326 (12)
C100.0309 (7)1.0598 (4)0.3111 (3)0.0397 (13)
H100.07681.12350.31410.048*
C110.0849 (7)1.0247 (4)0.2391 (3)0.0429 (14)
H110.11751.06450.19320.052*
C120.1505 (7)0.9317 (4)0.2361 (3)0.0417 (14)
C130.1068 (7)0.8708 (4)0.3030 (3)0.0498 (15)
H130.15350.80720.29930.060*
C140.0068 (7)0.9054 (4)0.3751 (3)0.0419 (14)
H140.03520.86560.42090.050*
O50.4000 (5)0.7107 (3)0.9877 (2)0.0612 (11)
H50.51280.70970.99880.073*
C150.3336 (8)0.8036 (4)0.9540 (4)0.0627 (18)
H15A0.37400.81540.90690.094*
H15B0.38070.85420.99340.094*
H15C0.20130.80390.93890.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0592 (4)0.0348 (4)0.0627 (4)0.0076 (3)0.0125 (3)0.0113 (3)
Br20.0522 (4)0.0489 (4)0.0435 (4)0.0081 (3)0.0087 (3)0.0129 (3)
O10.064 (2)0.031 (2)0.038 (2)0.0028 (18)0.0037 (19)0.0001 (17)
O20.086 (3)0.027 (2)0.050 (3)0.004 (2)0.001 (2)0.0070 (19)
O30.072 (3)0.088 (4)0.073 (3)0.020 (3)0.000 (3)0.039 (3)
O40.111 (4)0.104 (4)0.042 (3)0.017 (3)0.023 (3)0.004 (3)
N10.035 (2)0.043 (3)0.034 (3)0.001 (2)0.006 (2)0.008 (2)
N20.051 (3)0.033 (3)0.033 (3)0.004 (2)0.006 (2)0.007 (2)
N30.042 (3)0.086 (5)0.037 (3)0.010 (3)0.001 (3)0.022 (3)
C10.032 (3)0.028 (3)0.034 (3)0.001 (2)0.007 (2)0.001 (2)
C20.032 (3)0.034 (3)0.029 (3)0.008 (2)0.008 (2)0.005 (2)
C30.033 (3)0.032 (3)0.042 (3)0.002 (2)0.013 (3)0.007 (2)
C40.032 (3)0.044 (4)0.032 (3)0.003 (2)0.001 (2)0.010 (3)
C50.035 (3)0.033 (3)0.037 (3)0.003 (2)0.008 (3)0.005 (2)
C60.040 (3)0.026 (3)0.037 (3)0.001 (2)0.011 (3)0.002 (2)
C70.045 (3)0.035 (3)0.035 (3)0.001 (3)0.010 (3)0.005 (3)
C80.036 (3)0.039 (4)0.034 (3)0.002 (3)0.009 (3)0.003 (3)
C90.035 (3)0.029 (3)0.035 (3)0.007 (2)0.013 (3)0.000 (2)
C100.044 (3)0.035 (3)0.039 (3)0.008 (3)0.010 (3)0.002 (3)
C110.045 (3)0.053 (4)0.031 (3)0.015 (3)0.011 (3)0.009 (3)
C120.029 (3)0.057 (4)0.037 (3)0.000 (3)0.006 (3)0.012 (3)
C130.058 (4)0.043 (4)0.043 (4)0.006 (3)0.006 (3)0.004 (3)
C140.045 (3)0.037 (3)0.038 (3)0.004 (3)0.004 (3)0.003 (3)
O50.050 (2)0.056 (3)0.070 (3)0.007 (2)0.004 (2)0.014 (2)
C150.058 (4)0.048 (4)0.079 (5)0.002 (3)0.015 (4)0.007 (3)
Geometric parameters (Å, º) top
Br1—C31.890 (5)C5—C61.368 (6)
Br2—C51.898 (5)C6—H60.9300
O1—C21.341 (5)C7—H70.9300
O1—H10.8200C8—C91.505 (6)
O2—C81.212 (5)C9—C141.383 (6)
O3—N31.214 (6)C9—C101.396 (6)
O4—N31.213 (6)C10—C111.381 (7)
N1—C71.280 (6)C10—H100.9300
N1—N21.389 (5)C11—C121.355 (7)
N2—C81.352 (6)C11—H110.9300
N2—H20.9035C12—C131.379 (7)
N3—C121.483 (6)C13—C141.374 (7)
C1—C61.395 (6)C13—H130.9300
C1—C21.406 (6)C14—H140.9300
C1—C71.444 (6)O5—C151.420 (6)
C2—C31.398 (6)O5—H50.8200
C3—C41.369 (6)C15—H15A0.9600
C4—C51.390 (6)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C2—O1—H1109.4O2—C8—N2123.5 (5)
C7—N1—N2116.4 (4)O2—C8—C9121.8 (5)
C8—N2—N1118.5 (4)N2—C8—C9114.7 (5)
C8—N2—H2124.8C14—C9—C10119.7 (5)
N1—N2—H2114.0C14—C9—C8123.2 (5)
O4—N3—O3123.7 (5)C10—C9—C8117.0 (5)
O4—N3—C12116.8 (6)C11—C10—C9119.8 (5)
O3—N3—C12119.5 (6)C11—C10—H10120.1
C6—C1—C2119.1 (4)C9—C10—H10120.1
C6—C1—C7119.3 (5)C12—C11—C10119.2 (5)
C2—C1—C7121.5 (4)C12—C11—H11120.4
O1—C2—C3118.2 (4)C10—C11—H11120.4
O1—C2—C1123.6 (4)C11—C12—C13122.2 (5)
C3—C2—C1118.2 (4)C11—C12—N3119.6 (5)
C4—C3—C2122.2 (5)C13—C12—N3118.2 (5)
C4—C3—Br1118.4 (4)C14—C13—C12119.1 (5)
C2—C3—Br1119.3 (4)C14—C13—H13120.5
C3—C4—C5118.9 (4)C12—C13—H13120.5
C3—C4—H4120.6C13—C14—C9120.0 (5)
C5—C4—H4120.6C13—C14—H14120.0
C6—C5—C4120.5 (4)C9—C14—H14120.0
C6—C5—Br2120.2 (4)C15—O5—H5109.4
C4—C5—Br2119.3 (4)O5—C15—H15A109.5
C5—C6—C1121.1 (5)O5—C15—H15B109.5
C5—C6—H6119.4H15A—C15—H15B109.5
C1—C6—H6119.4O5—C15—H15C109.5
N1—C7—C1121.3 (5)H15A—C15—H15C109.5
N1—C7—H7119.4H15B—C15—H15C109.5
C1—C7—H7119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.942.642 (5)143
N2—H2···O5i0.901.912.800 (5)169
O5—H5···O2ii0.822.242.991 (6)153
O5—H5···Br20.823.093.708 (4)134
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H9Br2N3O4·CH4O
Mr475.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.576 (2), 13.602 (2), 17.230 (3)
β (°) 106.816 (3)
V3)1699.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)4.80
Crystal size (mm)0.30 × 0.27 × 0.27
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.327, 0.357
No. of measured, independent and
observed [I > 2σ(I)] reflections
10168, 3685, 2011
Rint0.075
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.103, 1.00
No. of reflections3685
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.52

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.942.642 (5)142.6
N2—H2···O5i0.901.912.800 (5)169.1
O5—H5···O2ii0.822.242.991 (6)152.5
O5—H5···Br20.823.093.708 (4)134.3
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

This project was sponsored by the Natural Development Foundation of Hebei Province (B2011204051), the Development Foundation of the Department of Education of Hebei Province (2010137) and the Research Development Foundation of the Agricultural University of Hebei.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBan, H.-Y. (2010). Acta Cryst. E66, o3240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, C.-H. & Mao, F.-L. (2010). Acta Cryst. E66, o2942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330–345.  Web of Science CrossRef CAS Google Scholar
First citationEl-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A. & ElTahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416–3424.  Web of Science CAS PubMed Google Scholar
First citationHoriuchi, T., Nagata, M., KitagawaB, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850–7860.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-P., Wei, Y. & Shao, S.-C. (2010). Acta Cryst. E66, m1635.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds