metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(2-amino­ethyl­amino)­ethanol]copper(II) dinitrate

aDepartment of Chemistry, Payame Noor University, Hamedan, Iran, and bDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Università di Messina 98166 Messina, Italy
*Correspondence e-mail: r_azadbakht@yahoo.com

(Received 24 July 2011; accepted 29 July 2011; online 6 August 2011)

In the title compound, [Cu(C4H12N2O)2](NO3)2, the central CuII atom has a distorted octa­hedral coordination geometry and is surrounded by four N atoms and two O atoms from the two inversion-related 2-(2-amino­ethyl­amino)­ethanol ligands. In the crystal, mol­ecules are held together by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds, leading to the formation of a three-dimensional network.

Related literature

For crystal structures of related complexes, see: Qu et al. (2004[Qu, Y., You, Z.-L., Liu, Z.-D., Zhu, H.-L. & Tan, M.-Y. (2004). Acta Cryst. E60, m1187-m1188.]); Uçar & Bulut (2005[Uçar, I. & Bulut, A. (2005). Acta Cryst. E61, m2730-m2732.]); Chastain & Dominick (1973[Chastain, R. V. Jr & Dominick, T. L. (1973). Inorg. Chem. 12, 1973-2621]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H12N2O)2](NO3)2

  • Mr = 395.87

  • Tetragonal, I 41 /a c d

  • a = 14.6640 (1) Å

  • c = 29.8298 (7) Å

  • V = 6414.39 (16) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 296 K

  • 0.45 × 0.36 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.532, Tmax = 0.741

  • 224935 measured reflections

  • 4172 independent reflections

  • 3346 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.121

  • S = 1.04

  • 4172 reflections

  • 109 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.90 2.14 2.9963 (17) 159
O1—H1⋯O4ii 0.93 2.28 3.1256 (16) 152
N2—H2B⋯O4iii 0.90 2.58 3.3356 (18) 141
N1—H2⋯O4iv 0.92 (2) 2.49 (2) 3.2449 (18) 139.8 (18)
Symmetry codes: (i) [y+{\script{1\over 4}}, -x+{\script{5\over 4}}, z-{\script{1\over 4}}]; (ii) [-y+{\script{3\over 4}}, x-{\script{1\over 4}}, -z+{\script{1\over 4}}]; (iii) [y+{\script{3\over 4}}, x-{\script{1\over 4}}, z-{\script{1\over 4}}]; (iv) [y+{\script{1\over 4}}, -x+{\script{3\over 4}}, -z+{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal alkanolamines complexes are among the most investigated compounds in coordination chemistry. As an extension of the work, we report here the crystal structure of the title compound, (I), a CuII complex incorporating the ligand N-(2-hydroxyethyl)ethylenediamine. The structure of bis [N-(2-hydroxyethyl)ethylenediamine] copper(II) nitrate consists of discrete [Cu(L)2]2+cations and nitrate anions. The closest distance between Cu and O of NO3 is 5.85 Å. The ORTEP diagram of the cation with the atom numbering scheme is shown in Fig. 1. The Ligand (L) coordinates in a tridentate manner via two nitrogen atoms and one oxygen atom, as shown in Fig. 1, providing a distorted octahedral arrangement about copper. The two O atoms coordinate to the CuII atom in trans positions, while the four N atoms occupy the equatorial positions. The three trans angles at the CuII atom are about 172° and the other angles subtended at the CuII atom are close to 90°, varying from 81.26 (15) to 95.15 (15)°. The two O atoms coordinate to the CuII atom in trans positions. The secondary-amine N-atoms and primary-amine N-atoms coordinate to the CuII atom in trans positions. In the crystal structure, the molecules are held together by intermolecular O—-H—O and N—-H—-O hydrogen bonds, leading to the formation of a three-dimensional network (Fig. 2 and Table 2).

Related literature top

For crystal structures of related complexes, see: Qu et al. (2004); Uçar & Bulut (2005); Chastain & Dominick (1973).

Experimental top

Copper(II) nitrate dihydrate (0.5 mol) in 50 ml of methanol was slowly mixed with N-(2-hydroxyethyl)ethylenediamine (1 mol) in 50 ml of methanol. The reaction was refluxed for a further 2 h. The solution volume was then reduced to 10 ml by roto-evaporation. Vapour diffusion of ether into this solution afforded pink crystals.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.93 Å, C—-H=0.97 Å, N—H = 0.93and 0.90 Å for NH and NH2, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for OH and CH3 H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed along the a axis. Hydrogen bonds are indicated by dashed lines.
Bis[2-(2-aminoethylamino)ethanol]copper(II) dinitrate top
Crystal data top
[Cu(C4H12N2O)2](NO3)2Dx = 1.640 Mg m3
Mr = 395.87Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/acdCell parameters from 9080 reflections
Hall symbol: -I 4bd 2cθ = 3.1–36.4°
a = 14.6640 (1) ŵ = 1.41 mm1
c = 29.8298 (7) ÅT = 296 K
V = 6414.39 (16) Å3Regular, pink
Z = 160.45 × 0.36 × 0.23 mm
F(000) = 3312
Data collection top
Bruker APEXII CCD
diffractometer
4172 independent reflections
Radiation source: fine-focus sealed tube3346 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 37.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2424
Tmin = 0.532, Tmax = 0.741k = 2424
224935 measured reflectionsl = 5050
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0796P)2 + 2.0215P]
where P = (Fo2 + 2Fc2)/3
4172 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Cu(C4H12N2O)2](NO3)2Z = 16
Mr = 395.87Mo Kα radiation
Tetragonal, I41/acdµ = 1.41 mm1
a = 14.6640 (1) ÅT = 296 K
c = 29.8298 (7) Å0.45 × 0.36 × 0.23 mm
V = 6414.39 (16) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4172 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3346 reflections with I > 2σ(I)
Tmin = 0.532, Tmax = 0.741Rint = 0.047
224935 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.67 e Å3
4172 reflectionsΔρmin = 0.72 e Å3
109 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.75000.309239 (12)0.00000.02305 (7)
O10.61649 (7)0.29396 (8)0.02849 (4)0.0422 (2)
H10.56400.32090.01700.051*
O20.77057 (12)0.25081 (15)0.19377 (6)0.0770 (5)
O30.71878 (11)0.38235 (9)0.21338 (6)0.0619 (4)
O40.62849 (9)0.26916 (9)0.20917 (4)0.0566 (3)
N10.71690 (7)0.21768 (7)0.05303 (3)0.02816 (17)
N20.79384 (7)0.40760 (7)0.04633 (4)0.03194 (19)
H2A0.75560.45560.04600.038*
H2B0.84990.42750.03880.038*
N30.70700 (9)0.29975 (8)0.20544 (4)0.0358 (2)
C10.66926 (10)0.27016 (10)0.08834 (4)0.0377 (3)
H1A0.67790.24010.11700.045*
H1B0.60440.27100.08190.045*
C20.79595 (10)0.36737 (10)0.09140 (5)0.0388 (3)
H2C0.83560.40290.11070.047*
H2D0.73520.36780.10420.047*
C30.61890 (9)0.23541 (11)0.06844 (5)0.0411 (3)
H3A0.62310.27310.09510.049*
H3B0.56290.20040.07020.049*
C40.80093 (10)0.17140 (11)0.06673 (6)0.0441 (3)
H4A0.81400.12250.04580.053*
H4B0.79210.14440.09610.053*
H20.6816 (15)0.1700 (17)0.0429 (7)0.054 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01921 (9)0.02340 (9)0.02654 (10)0.0000.00019 (5)0.000
O10.0266 (4)0.0506 (5)0.0494 (6)0.0057 (4)0.0040 (4)0.0110 (5)
O20.0687 (9)0.0947 (13)0.0675 (9)0.0433 (9)0.0148 (7)0.0199 (9)
O30.0572 (7)0.0336 (5)0.0948 (11)0.0136 (5)0.0136 (7)0.0028 (6)
O40.0502 (6)0.0520 (7)0.0675 (7)0.0214 (5)0.0097 (5)0.0097 (6)
N10.0238 (3)0.0278 (4)0.0328 (4)0.0029 (3)0.0010 (3)0.0025 (3)
N20.0318 (4)0.0264 (4)0.0376 (5)0.0005 (3)0.0019 (4)0.0050 (3)
N30.0378 (5)0.0323 (5)0.0374 (5)0.0004 (4)0.0086 (4)0.0040 (4)
C10.0393 (6)0.0418 (7)0.0321 (5)0.0039 (5)0.0098 (4)0.0012 (5)
C20.0428 (6)0.0409 (6)0.0326 (5)0.0011 (5)0.0032 (5)0.0098 (5)
C30.0274 (5)0.0523 (8)0.0435 (6)0.0019 (5)0.0058 (4)0.0132 (6)
C40.0338 (6)0.0386 (7)0.0598 (9)0.0033 (5)0.0007 (6)0.0213 (6)
Geometric parameters (Å, º) top
Cu—N22.0984 (10)N2—H2A0.9000
Cu—N2i2.0984 (10)N2—H2B0.9000
Cu—N1i2.1308 (10)C1—C2i1.517 (2)
Cu—N12.1308 (10)C1—H1A0.9700
Cu—O12.1460 (10)C1—H1B0.9700
Cu—O1i2.1460 (10)C2—C1i1.517 (2)
O1—C31.4693 (17)C2—H2C0.9700
O1—H10.9300C2—H2D0.9700
O2—N31.2269 (19)C3—C4i1.505 (2)
O3—N31.2462 (16)C3—H3A0.9700
O4—N31.2406 (17)C3—H3B0.9700
N1—C41.4649 (17)C4—C3i1.505 (2)
N1—C11.4798 (17)C4—H4A0.9700
N1—H20.92 (2)C4—H4B0.9700
N2—C21.4684 (18)
N2—Cu—N2i93.16 (6)H2A—N2—H2B108.2
N2—Cu—N1i82.79 (4)O2—N3—O4121.27 (17)
N2i—Cu—N1i172.64 (4)O2—N3—O3121.15 (17)
N2—Cu—N1172.64 (4)O4—N3—O3117.58 (15)
N2i—Cu—N182.79 (4)N1—C1—C2i111.89 (10)
N1i—Cu—N1101.88 (6)N1—C1—H1A109.2
N2—Cu—O195.19 (5)C2i—C1—H1A109.2
N2i—Cu—O193.04 (4)N1—C1—H1B109.2
N1i—Cu—O181.26 (4)C2i—C1—H1B109.2
N1—Cu—O191.17 (4)H1A—C1—H1B107.9
N2—Cu—O1i93.04 (4)N2—C2—C1i109.24 (10)
N2i—Cu—O1i95.19 (5)N2—C2—H2C109.8
N1i—Cu—O1i91.17 (4)C1i—C2—H2C109.8
N1—Cu—O1i81.26 (4)N2—C2—H2D109.8
O1—Cu—O1i168.02 (6)C1i—C2—H2D109.8
C3—O1—Cu111.12 (7)H2C—C2—H2D108.3
C3—O1—H1124.4O1—C3—C4i110.83 (11)
Cu—O1—H1124.4O1—C3—H3A109.5
C4—N1—C1116.07 (12)C4i—C3—H3A109.5
C4—N1—Cu107.91 (8)O1—C3—H3B109.5
C1—N1—Cu107.95 (8)C4i—C3—H3B109.5
C4—N1—H2102.3 (14)H3A—C3—H3B108.1
C1—N1—H2111.3 (14)N1—C4—C3i112.19 (11)
Cu—N1—H2111.2 (14)N1—C4—H4A109.2
C2—N2—Cu109.47 (8)C3i—C4—H4A109.2
C2—N2—H2A109.8N1—C4—H4B109.2
Cu—N2—H2A109.8C3i—C4—H4B109.2
C2—N2—H2B109.8H4A—C4—H4B107.9
Cu—N2—H2B109.8
N2—Cu—O1—C379.30 (10)O1i—Cu—N1—C1105.41 (9)
N2i—Cu—O1—C3172.76 (10)N2i—Cu—N2—C2157.09 (10)
N1i—Cu—O1—C32.56 (10)N1i—Cu—N2—C216.74 (8)
N1—Cu—O1—C3104.40 (10)O1—Cu—N2—C263.74 (9)
O1i—Cu—O1—C353.89 (10)O1i—Cu—N2—C2107.54 (9)
N2i—Cu—N1—C4117.16 (10)C4—N1—C1—C2i88.06 (14)
N1i—Cu—N1—C468.61 (10)Cu—N1—C1—C2i33.15 (13)
O1—Cu—N1—C4149.92 (10)Cu—N2—C2—C1i38.94 (13)
O1i—Cu—N1—C420.75 (10)Cu—O1—C3—C4i25.17 (15)
N2i—Cu—N1—C19.00 (8)C1—N1—C4—C3i79.92 (15)
N1i—Cu—N1—C1165.23 (9)Cu—N1—C4—C3i41.32 (15)
O1—Cu—N1—C183.92 (8)
Symmetry code: (i) x+3/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3ii0.902.142.9963 (17)159
O1—H1···O4iii0.932.283.1256 (16)152
N2—H2B···O4iv0.902.583.3356 (18)141
N1—H2···O4v0.92 (2)2.49 (2)3.2449 (18)139.8 (18)
Symmetry codes: (ii) y+1/4, x+5/4, z1/4; (iii) y+3/4, x1/4, z+1/4; (iv) y+3/4, x1/4, z1/4; (v) y+1/4, x+3/4, z+1/4.

Experimental details

Crystal data
Chemical formula[Cu(C4H12N2O)2](NO3)2
Mr395.87
Crystal system, space groupTetragonal, I41/acd
Temperature (K)296
a, c (Å)14.6640 (1), 29.8298 (7)
V3)6414.39 (16)
Z16
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.45 × 0.36 × 0.23
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.532, 0.741
No. of measured, independent and
observed [I > 2σ(I)] reflections
224935, 4172, 3346
Rint0.047
(sin θ/λ)max1)0.856
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.121, 1.04
No. of reflections4172
No. of parameters109
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.72

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.902.142.9963 (17)159.0
O1—H1···O4ii0.932.283.1256 (16)151.6
N2—H2B···O4iii0.902.583.3356 (18)141.4
N1—H2···O4iv0.92 (2)2.49 (2)3.2449 (18)139.8 (18)
Symmetry codes: (i) y+1/4, x+5/4, z1/4; (ii) y+3/4, x1/4, z+1/4; (iii) y+3/4, x1/4, z1/4; (iv) y+1/4, x+3/4, z+1/4.
 

Acknowledgements

We are grateful to Payame Noor University (PNU) for financial support.

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChastain, R. V. Jr & Dominick, T. L. (1973). Inorg. Chem. 12, 1973–2621  CrossRef Web of Science Google Scholar
First citationQu, Y., You, Z.-L., Liu, Z.-D., Zhu, H.-L. & Tan, M.-Y. (2004). Acta Cryst. E60, m1187–m1188.  Web of Science CSD Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUçar, I. & Bulut, A. (2005). Acta Cryst. E61, m2730–m2732.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds