organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2-Iodo­phen­yl)-2-phenyl­diazene

ainGAP Centre for Research Based Innovation, Center for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033 Blindern, Oslo 0315, Norway, and bDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, Oslo 0315, Norway
*Correspondence e-mail: david.wragg@smn.uio.no

(Received 3 August 2011; accepted 8 August 2011; online 11 August 2011)

The mol­ecule of the title compound, C12H9IN2, is approximately planar [maximum deviation = 0.020 (5) Å] with a trans arrangement of the groups around the N=N double bond. This double bond is rotated away from the iodine substiuent.

Related literature

For the synthesis, see: Badger et al. (1964[Badger, G. M., Drewer, R. J. & Lewis, G. E. (1964). Aust. J. Chem. 17, 1036-1049.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9IN2

  • Mr = 308.11

  • Orthorhombic, P 21 21 21

  • a = 4.628 (3) Å

  • b = 12.801 (9) Å

  • c = 18.312 (12) Å

  • V = 1084.9 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 296 K

  • 1.00 × 0.07 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.783, Tmax = 0.822

  • 10050 measured reflections

  • 1930 independent reflections

  • 1842 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.070

  • S = 1.07

  • 1930 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 763 Friedel pairs

  • Flack parameter: 0.08 (4)

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) in WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

(E)-1-(2-iodophenyl)-2-phenyldiazene (1) was synthesized by a literature procedure (Badger et al. 1964) and recrystallized from absolute ethanol. The molecule is planar with a trans arrangement of the phenyl groups around the N—N double bond. This double bond is rotated away from the iodine substiuent on C3 (Fig. 1). There are no strong intermolecular interactions, although π-stacking interactions may exist between the phenyl rings and the N—N double bonds (Fig. 2, 3).

Related literature top

For the synthesis, see: Badger et al. (1964).

Experimental top

(1) was synthesized according to the literature procedure (Badger et al. 1964) and recrystallized from absolute ethanol in the form of long orange needles.

Refinement top

Least squares refinement was carried out with SHELXL97 (Sheldrick, 2008) as implemented in WinGX (Farrugia, 1999). Hydrogen atoms were refined using a riding model the Uiso set to 1.2 times that of the heavy atom to which they are attached.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) in WinGX (Farrugia, 1999); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (1) shown with thermal ellipsoids at 50% probability. Hydrogen atoms unlabelled for clarity.
[Figure 2] Fig. 2. Packing diagram of (1) viewed along the a-axis.
[Figure 3] Fig. 3. Packing diagram of (1) viewed along the c-axis.
(E)-1-(2-Iodophenyl)-2-phenyldiazene top
Crystal data top
C12H9IN2F(000) = 592
Mr = 308.11Dx = 1.886 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4258 reflections
a = 4.628 (3) Åθ = 2.2–25.0°
b = 12.801 (9) ŵ = 2.92 mm1
c = 18.312 (12) ÅT = 296 K
V = 1084.9 (13) Å3Needle, orange
Z = 41.00 × 0.07 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
1930 independent reflections
Radiation source: sealed tube1842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 55
Tmin = 0.783, Tmax = 0.822k = 1515
10050 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.6387P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1930 reflectionsΔρmax = 0.57 e Å3
137 parametersΔρmin = 0.48 e Å3
0 restraintsAbsolute structure: Flack (1983), 763 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (4)
Crystal data top
C12H9IN2V = 1084.9 (13) Å3
Mr = 308.11Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.628 (3) ŵ = 2.92 mm1
b = 12.801 (9) ÅT = 296 K
c = 18.312 (12) Å1.00 × 0.07 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
1930 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
1842 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.822Rint = 0.033
10050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.57 e Å3
S = 1.07Δρmin = 0.48 e Å3
1930 reflectionsAbsolute structure: Flack (1983), 763 Friedel pairs
137 parametersAbsolute structure parameter: 0.08 (4)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1092 (10)0.3166 (4)0.1768 (3)0.0549 (12)
H10.02970.36720.18650.066*
C20.1881 (10)0.2473 (3)0.2300 (3)0.0521 (11)
H20.10320.24960.27600.062*
C30.3968 (9)0.1737 (3)0.2138 (2)0.0450 (10)
C40.5235 (10)0.1691 (3)0.1465 (2)0.0389 (8)
C51.0496 (8)0.0040 (3)0.0680 (2)0.0407 (9)
C61.1155 (10)0.0629 (3)0.1240 (3)0.0530 (10)
H61.02610.05610.16930.064*
C71.3160 (11)0.1401 (4)0.1121 (3)0.0643 (13)
H71.36370.18600.14950.077*
C81.4446 (10)0.1497 (4)0.0459 (3)0.0637 (14)
H81.57940.20250.03830.076*
C90.2346 (10)0.3116 (3)0.1090 (3)0.0523 (11)
H90.17630.35840.07310.063*
C100.4372 (8)0.2417 (3)0.0934 (2)0.0420 (10)
H100.52180.24080.04730.050*
C111.1796 (10)0.0058 (4)0.0017 (3)0.0550 (12)
H111.13310.04000.03600.066*
C121.3793 (10)0.0833 (4)0.0095 (3)0.0638 (14)
H121.46930.09030.05460.077*
N10.8420 (7)0.0855 (3)0.07490 (19)0.0433 (8)
N20.7314 (7)0.0892 (3)0.13658 (19)0.0422 (8)
I10.51175 (8)0.06841 (2)0.294862 (15)0.06222 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (2)0.039 (2)0.075 (3)0.0054 (19)0.000 (2)0.010 (2)
C20.048 (3)0.052 (3)0.056 (3)0.006 (2)0.009 (2)0.013 (2)
C30.045 (2)0.042 (2)0.048 (2)0.0057 (17)0.0028 (18)0.0042 (18)
C40.036 (2)0.0332 (16)0.0476 (19)0.003 (2)0.000 (2)0.0029 (13)
C50.032 (2)0.039 (2)0.051 (2)0.0013 (18)0.0029 (18)0.0058 (15)
C60.051 (2)0.050 (2)0.058 (3)0.005 (2)0.001 (2)0.002 (2)
C70.056 (3)0.051 (3)0.086 (4)0.011 (2)0.006 (3)0.006 (3)
C80.043 (3)0.048 (2)0.100 (4)0.008 (2)0.007 (3)0.021 (2)
C90.055 (3)0.042 (2)0.060 (3)0.002 (2)0.013 (2)0.003 (2)
C100.038 (2)0.047 (2)0.041 (2)0.0067 (18)0.0007 (17)0.0027 (16)
C110.054 (3)0.063 (3)0.049 (3)0.004 (2)0.001 (2)0.005 (2)
C120.046 (2)0.079 (4)0.066 (3)0.005 (3)0.003 (2)0.025 (3)
N10.0426 (18)0.040 (2)0.047 (2)0.0022 (16)0.0011 (16)0.0016 (15)
N20.0394 (17)0.044 (2)0.0433 (19)0.0003 (15)0.0006 (15)0.0031 (15)
I10.0674 (2)0.0688 (2)0.05044 (18)0.0007 (2)0.0006 (2)0.01231 (12)
Geometric parameters (Å, º) top
C1—C21.367 (7)C6—H60.9300
C1—C91.371 (7)C7—C81.356 (7)
C1—H10.9300C7—H70.9300
C2—C31.381 (6)C8—C121.357 (7)
C2—H20.9300C8—H80.9300
C3—C41.367 (6)C9—C101.328 (6)
C3—I12.075 (4)C9—H90.9300
C4—C101.403 (5)C10—H100.9300
C4—N21.416 (5)C11—C121.371 (7)
C5—C111.361 (6)C11—H110.9300
C5—C61.370 (6)C12—H120.9300
C5—N11.424 (5)N1—N21.241 (5)
C6—C71.374 (6)
C2—C1—C9120.1 (4)C8—C7—H7119.9
C2—C1—H1120.0C6—C7—H7119.9
C9—C1—H1120.0C7—C8—C12120.9 (4)
C1—C2—C3118.5 (4)C7—C8—H8119.5
C1—C2—H2120.8C12—C8—H8119.5
C3—C2—H2120.8C10—C9—C1121.7 (4)
C4—C3—C2121.5 (4)C10—C9—H9119.1
C4—C3—I1120.5 (3)C1—C9—H9119.1
C2—C3—I1118.0 (3)C9—C10—C4119.9 (4)
C3—C4—C10118.3 (4)C9—C10—H10120.1
C3—C4—N2116.0 (3)C4—C10—H10120.1
C10—C4—N2125.7 (4)C5—C11—C12119.8 (5)
C11—C5—C6120.8 (4)C5—C11—H11120.1
C11—C5—N1116.4 (4)C12—C11—H11120.1
C6—C5—N1122.8 (4)C8—C12—C11119.5 (5)
C5—C6—C7118.7 (5)C8—C12—H12120.3
C5—C6—H6120.6C11—C12—H12120.3
C7—C6—H6120.6N2—N1—C5112.8 (3)
C8—C7—C6120.3 (5)N1—N2—C4115.1 (3)
C9—C1—C2—C30.6 (7)C1—C9—C10—C41.3 (7)
C1—C2—C3—C40.1 (6)C3—C4—C10—C90.8 (6)
C1—C2—C3—I1179.5 (3)N2—C4—C10—C9178.5 (4)
C2—C3—C4—C100.3 (6)C6—C5—C11—C120.1 (7)
I1—C3—C4—C10179.6 (3)N1—C5—C11—C12179.2 (4)
C2—C3—C4—N2179.1 (4)C7—C8—C12—C110.3 (8)
I1—C3—C4—N20.2 (5)C5—C11—C12—C80.1 (7)
C11—C5—C6—C70.1 (7)C11—C5—N1—N2179.6 (4)
N1—C5—C6—C7179.1 (4)C6—C5—N1—N20.5 (5)
C5—C6—C7—C80.2 (7)C5—N1—N2—C4179.9 (3)
C6—C7—C8—C120.3 (8)C3—C4—N2—N1179.3 (4)
C2—C1—C9—C101.2 (7)C10—C4—N2—N10.0 (6)

Experimental details

Crystal data
Chemical formulaC12H9IN2
Mr308.11
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)4.628 (3), 12.801 (9), 18.312 (12)
V3)1084.9 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)1.00 × 0.07 × 0.07
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2011)
Tmin, Tmax0.783, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
10050, 1930, 1842
Rint0.033
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.070, 1.07
No. of reflections1930
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.48
Absolute structureFlack (1983), 763 Friedel pairs
Absolute structure parameter0.08 (4)

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) in WinGX (Farrugia, 1999), DIAMOND (Brandenburg, 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The Norwegian research council is acknowledged for funding under RENERGI project No. 200014.

References

First citationBadger, G. M., Drewer, R. J. & Lewis, G. E. (1964). Aust. J. Chem. 17, 1036–1049.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds