metal-organic compounds
1-Bromomethyl-1,4-diazoniabicyclo[2.2.2]octane tetrachloridozincate
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: shipingping1990@126.com
The reaction of 1-bromomethyl-1,4-diazoniabicyclo[2.2.2]octane bromide, zinc chloride and hydrochloric acid in water yields the title compound, (C7H15BrN2)[ZnCl4]. In the crystal, the components are linked by N—H⋯Cl hydrogen bonds. The ZnII atom has an approximately tetrahedral coordination geometry.
Related literature
For applications of ferroelectric materials, see: Fu et al. (2009); Ye et al. (2009); Zhang et al. (2009). 1,4-diazoniabicyclo[2.2.2]octane (DABCO) salts with inorganic tetrahedral anions exhibit exceptional properties, see: Szafrański et al. (2002). Furthermore, DABCO can undergo substitution with dibromomethane to obtain 1-bromomethyl-DABCO bromide, see: Finke et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811032430/qm2022sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811032430/qm2022Isup2.hkl
The mixture solution of 1,4-diazoniabicyclo[2.2.2]octane (20 mmol,2.24 g) and dibromomethane (20 mmol,3.48 g) in acetone was stirred for three hours. A white precipite of 1-Bromomethyl-1,4-diazoniabicyclo[2.2.2]octane-1-ium bromide(1) was synthesized. At room temperature,by slow evaporation of a hydrochloric acid solution containing 1 (20 mmol,5.72 g) and zinc chloride (20 mmol,2.72 g),colorless crystals of the title copound suitable for X-ray analysis were obtained.
All H atoms were positioned geometrically with C—H = 0.97 Å, N—H = 0.91 Å, and refined using a riding model, with Uiso(H) = 1.2eq(C,N).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).(C7H15BrN2)[ZnCl4] | F(000) = 816 |
Mr = 414.30 | Dx = 1.972 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 12777 reflections |
a = 10.253 (2) Å | θ = 3.2–27.5° |
b = 12.214 (2) Å | µ = 5.36 mm−1 |
c = 11.147 (2) Å | T = 293 K |
β = 90.97 (3)° | Prism, colorless |
V = 1395.7 (4) Å3 | 0.20 × 0.20 × 0.20 mm |
Z = 4 |
Rigaku SCXmini diffractometer | 3201 independent reflections |
Radiation source: fine-focus sealed tube | 2698 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
CCD_Profile_fitting scans | h = −13→13 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −15→15 |
Tmin = 0.342, Tmax = 0.356 | l = −14→14 |
14183 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0381P)2 + 2.7437P] where P = (Fo2 + 2Fc2)/3 |
3201 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 1.12 e Å−3 |
0 restraints | Δρmin = −0.92 e Å−3 |
(C7H15BrN2)[ZnCl4] | V = 1395.7 (4) Å3 |
Mr = 414.30 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.253 (2) Å | µ = 5.36 mm−1 |
b = 12.214 (2) Å | T = 293 K |
c = 11.147 (2) Å | 0.20 × 0.20 × 0.20 mm |
β = 90.97 (3)° |
Rigaku SCXmini diffractometer | 3201 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 2698 reflections with I > 2σ(I) |
Tmin = 0.342, Tmax = 0.356 | Rint = 0.040 |
14183 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.12 | Δρmax = 1.12 e Å−3 |
3201 reflections | Δρmin = −0.92 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.22858 (4) | 0.07443 (4) | 0.21406 (4) | 0.02816 (13) | |
Br1 | 0.60658 (5) | 0.19087 (4) | 0.46852 (4) | 0.04538 (15) | |
Cl1 | 0.06383 (9) | 0.14865 (9) | 0.09911 (9) | 0.0345 (2) | |
Cl2 | 0.41010 (10) | 0.13065 (10) | 0.11498 (9) | 0.0379 (2) | |
Cl3 | 0.21448 (13) | −0.10851 (8) | 0.23132 (11) | 0.0455 (3) | |
Cl4 | 0.22216 (16) | 0.14841 (9) | 0.40008 (9) | 0.0534 (4) | |
N1 | 0.7521 (3) | 0.0408 (2) | 0.3236 (3) | 0.0220 (6) | |
C5 | 0.7422 (4) | 0.1103 (3) | 0.2117 (3) | 0.0294 (8) | |
H5A | 0.8157 | 0.1601 | 0.2089 | 0.035* | |
H5B | 0.6628 | 0.1534 | 0.2130 | 0.035* | |
N2 | 0.7501 (3) | −0.0797 (3) | 0.1395 (3) | 0.0299 (7) | |
H2C | 0.7495 | −0.1232 | 0.0732 | 0.036* | |
C2 | 0.6364 (4) | −0.1081 (4) | 0.2143 (4) | 0.0383 (10) | |
H2A | 0.6409 | −0.1847 | 0.2371 | 0.046* | |
H2B | 0.5562 | −0.0967 | 0.1686 | 0.046* | |
C4 | 0.8766 (4) | −0.0259 (4) | 0.3192 (4) | 0.0313 (9) | |
H4A | 0.8840 | −0.0717 | 0.3900 | 0.038* | |
H4B | 0.9514 | 0.0228 | 0.3181 | 0.038* | |
C6 | 0.7411 (4) | 0.0367 (3) | 0.1011 (3) | 0.0316 (9) | |
H6A | 0.6614 | 0.0482 | 0.0548 | 0.038* | |
H6B | 0.8143 | 0.0548 | 0.0508 | 0.038* | |
C3 | 0.8752 (4) | −0.0969 (4) | 0.2076 (4) | 0.0371 (10) | |
H3A | 0.9483 | −0.0780 | 0.1576 | 0.045* | |
H3B | 0.8836 | −0.1733 | 0.2302 | 0.045* | |
C1 | 0.6368 (4) | −0.0367 (3) | 0.3260 (4) | 0.0315 (9) | |
H1A | 0.5564 | 0.0049 | 0.3290 | 0.038* | |
H1B | 0.6425 | −0.0824 | 0.3971 | 0.038* | |
C7 | 0.7626 (4) | 0.1111 (4) | 0.4357 (3) | 0.0341 (9) | |
H7A | 0.8338 | 0.1626 | 0.4267 | 0.041* | |
H7B | 0.7835 | 0.0645 | 0.5038 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0349 (3) | 0.0251 (2) | 0.0246 (2) | −0.00060 (18) | 0.00461 (18) | 0.00046 (18) |
Br1 | 0.0530 (3) | 0.0438 (3) | 0.0399 (3) | 0.0122 (2) | 0.0152 (2) | −0.0048 (2) |
Cl1 | 0.0290 (5) | 0.0422 (6) | 0.0323 (5) | −0.0009 (4) | 0.0019 (4) | 0.0055 (4) |
Cl2 | 0.0273 (5) | 0.0515 (6) | 0.0351 (5) | −0.0061 (4) | 0.0039 (4) | −0.0019 (5) |
Cl3 | 0.0708 (8) | 0.0177 (5) | 0.0478 (6) | 0.0032 (5) | −0.0015 (6) | 0.0023 (4) |
Cl4 | 0.1096 (11) | 0.0293 (5) | 0.0214 (5) | 0.0050 (6) | 0.0062 (6) | 0.0014 (4) |
N1 | 0.0254 (15) | 0.0230 (15) | 0.0178 (14) | 0.0006 (12) | 0.0041 (12) | 0.0003 (12) |
C5 | 0.041 (2) | 0.0245 (19) | 0.0231 (19) | −0.0007 (16) | 0.0025 (17) | 0.0050 (15) |
N2 | 0.0380 (19) | 0.0261 (17) | 0.0258 (16) | 0.0002 (14) | 0.0020 (14) | −0.0046 (13) |
C2 | 0.041 (2) | 0.031 (2) | 0.043 (2) | −0.0126 (19) | 0.008 (2) | −0.0026 (19) |
C4 | 0.030 (2) | 0.036 (2) | 0.028 (2) | 0.0072 (17) | 0.0029 (16) | −0.0013 (17) |
C6 | 0.045 (2) | 0.029 (2) | 0.0209 (19) | 0.0009 (18) | 0.0001 (17) | −0.0003 (16) |
C3 | 0.038 (2) | 0.034 (2) | 0.039 (2) | 0.0142 (18) | −0.0051 (19) | −0.0089 (19) |
C1 | 0.030 (2) | 0.034 (2) | 0.031 (2) | −0.0063 (17) | 0.0062 (16) | 0.0022 (17) |
C7 | 0.040 (2) | 0.040 (2) | 0.0229 (19) | 0.0052 (18) | 0.0022 (17) | −0.0085 (17) |
Zn1—Cl3 | 2.2475 (12) | N2—H2C | 0.9100 |
Zn1—Cl4 | 2.2639 (12) | C2—C1 | 1.521 (6) |
Zn1—Cl2 | 2.2858 (12) | C2—H2A | 0.9700 |
Zn1—Cl1 | 2.2899 (12) | C2—H2B | 0.9700 |
Br1—C7 | 1.913 (4) | C4—C3 | 1.516 (5) |
N1—C5 | 1.511 (5) | C4—H4A | 0.9700 |
N1—C1 | 1.515 (5) | C4—H4B | 0.9700 |
N1—C4 | 1.516 (5) | C6—H6A | 0.9700 |
N1—C7 | 1.519 (5) | C6—H6B | 0.9700 |
C5—C6 | 1.525 (5) | C3—H3A | 0.9700 |
C5—H5A | 0.9700 | C3—H3B | 0.9700 |
C5—H5B | 0.9700 | C1—H1A | 0.9700 |
N2—C2 | 1.486 (5) | C1—H1B | 0.9700 |
N2—C6 | 1.487 (5) | C7—H7A | 0.9700 |
N2—C3 | 1.494 (5) | C7—H7B | 0.9700 |
Cl3—Zn1—Cl4 | 108.39 (5) | N1—C4—C3 | 109.8 (3) |
Cl3—Zn1—Cl2 | 113.21 (5) | N1—C4—H4A | 109.7 |
Cl4—Zn1—Cl2 | 111.05 (5) | C3—C4—H4A | 109.7 |
Cl3—Zn1—Cl1 | 113.17 (5) | N1—C4—H4B | 109.7 |
Cl4—Zn1—Cl1 | 108.78 (5) | C3—C4—H4B | 109.7 |
Cl2—Zn1—Cl1 | 102.10 (4) | H4A—C4—H4B | 108.2 |
C5—N1—C1 | 108.9 (3) | N2—C6—C5 | 109.3 (3) |
C5—N1—C4 | 108.7 (3) | N2—C6—H6A | 109.8 |
C1—N1—C4 | 108.8 (3) | C5—C6—H6A | 109.8 |
C5—N1—C7 | 111.4 (3) | N2—C6—H6B | 109.8 |
C1—N1—C7 | 112.5 (3) | C5—C6—H6B | 109.8 |
C4—N1—C7 | 106.5 (3) | H6A—C6—H6B | 108.3 |
N1—C5—C6 | 109.6 (3) | N2—C3—C4 | 109.4 (3) |
N1—C5—H5A | 109.7 | N2—C3—H3A | 109.8 |
C6—C5—H5A | 109.7 | C4—C3—H3A | 109.8 |
N1—C5—H5B | 109.7 | N2—C3—H3B | 109.8 |
C6—C5—H5B | 109.7 | C4—C3—H3B | 109.8 |
H5A—C5—H5B | 108.2 | H3A—C3—H3B | 108.2 |
C2—N2—C6 | 109.8 (3) | N1—C1—C2 | 109.6 (3) |
C2—N2—C3 | 110.9 (3) | N1—C1—H1A | 109.8 |
C6—N2—C3 | 109.2 (3) | C2—C1—H1A | 109.8 |
C2—N2—H2C | 108.9 | N1—C1—H1B | 109.8 |
C6—N2—H2C | 108.9 | C2—C1—H1B | 109.8 |
C3—N2—H2C | 108.9 | H1A—C1—H1B | 108.2 |
N2—C2—C1 | 109.5 (3) | N1—C7—Br1 | 113.4 (3) |
N2—C2—H2A | 109.8 | N1—C7—H7A | 108.9 |
C1—C2—H2A | 109.8 | Br1—C7—H7A | 108.9 |
N2—C2—H2B | 109.8 | N1—C7—H7B | 108.9 |
C1—C2—H2B | 109.8 | Br1—C7—H7B | 108.9 |
H2A—C2—H2B | 108.2 | H7A—C7—H7B | 107.7 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2C···Cl2i | 0.91 | 2.64 | 3.313 (4) | 131 |
N2—H2C···Cl1i | 0.91 | 2.75 | 3.405 (4) | 130 |
N2—H2C···Cl4ii | 0.91 | 2.82 | 3.363 (3) | 120 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C7H15BrN2)[ZnCl4] |
Mr | 414.30 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 10.253 (2), 12.214 (2), 11.147 (2) |
β (°) | 90.97 (3) |
V (Å3) | 1395.7 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.36 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.342, 0.356 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14183, 3201, 2698 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.099, 1.12 |
No. of reflections | 3201 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.12, −0.92 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2C···Cl2i | 0.91 | 2.64 | 3.313 (4) | 131.4 |
N2—H2C···Cl1i | 0.91 | 2.75 | 3.405 (4) | 129.6 |
N2—H2C···Cl4ii | 0.91 | 2.82 | 3.363 (3) | 119.5 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The authors are grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.
References
Finke, A. D., Gray, D. L. & Moore, J. S. (2010). Acta Cryst. E66, o377. Google Scholar
Fu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994–997. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Szafrański, M., Katrusiak, A. & McIntyre, G. J. (2002). Phys. Rev. Lett. 89, 215507-1–215507-4. Google Scholar
Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Ferroelectric materials have so many potential applications in memory storage that they attract much attention(Fu et al., 2009; Ye et al., 2009; Zhang et al., 2009). In order to find more dielectric or ferroelectric materials, many novel compounds have been synthesized. Thereinto 1,4-diazoniabicyclo[2.2.2]octane (DABCO) salts with inorganic tetrahedral anions exhibit exceptional properties (Szafrański et al.,2002). Furthermore, DABCO can undergo substitution with dibromomethane to obtain 1-Bromomethyl-DABCO bromide (Finke et al.,2010).
Therefore, we report the single-crystal structure of the title copound which consists of a 1-Bromomethyl-1,4-diazoniabicyclo[2.2.2]octane-1,4-diium cation and a tetrachloridozincate dianion(Fig.1).In the ctystal structure,as showed in the packing diagram(Fig.2), the protonated N2 atom of DABCO derivant interacts via a trifurcated hydrogen bond with three Cl atoms of the two neighbouring anions.
However, within the measured temperature range from 190 K to near its melting point(m.p. > 473 K), the dielectric constant of the title compound is basically temperature-independant, suggesting that this material should be not a real ferroelectric.