organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4α,6α-Dihy­dr­oxy-1β-methyl­sulfonyl-8α,9α-ep­­oxy-2β,12-epoxymethano-β-di­hydro­agaro­furan

aInstitute of Pesticide Science and College of Sciences, Northwest A&F University, Yangling 712100, Shannxi Province, People's Republic of China, and bCollege of Science, Northwest A&F University, Yangling 712100, Shannxi Province, People's Republic of China
*Correspondence e-mail: nwzjw@yahoo.com.cn

(Received 15 August 2011; accepted 20 August 2011; online 27 August 2011)

The title mol­ecule, C16H24O8S, is a dihydro­agrofuran derivative and has a heteropolycyclic structure. One cyclohexane ring exhibits a chair conformation and the other a non-chair conformation. In the crystal structure there is an inter­molecular C—H⋯O hydrogen-bonding inter­action to stabilize the packing.

Related literature

For general background, see: Gao et al. (2007[Gao, J. M., Wu, W. J., Zhang, J. W. & Konishi, Y. (2007). Nat. Prod. Rep. 24, 1153-1189.]); Spivey et al. (2002[Spivey, A. C., Weston, M. & Woodhead, S. (2002). Chem. Soc. Rev. C31, 43-59.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24O8S

  • Mr = 376.41

  • Orthorhombic, P 21 21 21

  • a = 9.530 (3) Å

  • b = 10.228 (3) Å

  • c = 17.424 (5) Å

  • V = 1698.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.944, Tmax = 0.953

  • 8175 measured reflections

  • 3151 independent reflections

  • 2633 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.085

  • S = 1.06

  • 3151 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1325 Friedel pairs

  • Flack parameter: 0.13 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16C⋯O2i 0.96 2.32 3.218 (4) 156
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dihydroagrofuran esters and their derivatives have been widely explored as insecticidal medicine (Gao et al. 2007; Spivey et al. 2002). As a result of our program of screening insecticidal activity constituents from plants of China, some insecticidal β-dihydroagrofuran sesquiterpene polyol esters were isolated from the root bark of Chinese bittersweet, Celastrus angulatus Max. In order to find a new synthetic insecticide, the /b-dihydroagrofuran sesquiterpene polyol ester was optimized as a lead compound and we obtained an intermediate compound C16H24O8S (I) and the synthesis and structure are reported here.

The title compound has a hetero-polycyclic structure. The 6-membering ring (C1–C6) exhibits a chair conformation. However, the other 6-membering ring (C1, C6–C10) exhibits neither a chair nor a boat conformation. The five atoms C1, C6, C8, C9 and C10 lie approximately in a plane, and the distance from C7 to the plane is 0.929 (3) Å.

The molecules of I crystalized in the P212121 space group. In the crystal structure there is an intermolecular C—H···O hydrogen-bonding interaction (Table 1), which is helpful to the stabilization of the packing. Symmetry code: x, 1+y, z.

Related literature top

For general background, see: Gao et al. (2007); Spivey et al. (2002).

Experimental top

A mixture of dihydroagarofuran (3.34 g, 10 mmol) and methanesulfonyl chloride (3.5 mL, 44 mmol) in dry Pyridine (20 mL) was stirred over night at room temperature. When the reaction was completed, 2 mL methol was added to the reaction mixture to quench the reaction, then 50 mL water was added to the mixture and it was extracted with ethyl acetate. The ethyl acetate layer was washed with 50 mL of water, 15 mL of saturated sodium chloride and dried over anhydrous sodium sulfate and was separated on a silica gel column chromatography with a gradient of petroleum ether and ethyl acetate as eluent to yield 1.87 g of the title compound. The compound was then dissolved in THF, and colorless crystals were formed on slow evaporation at room temperature over one week.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93 Å and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
4α,6α-Dihydroxy-1β-methylsulfonyl-8α,9α-epoxy-2β,12-epoxymethano- β-dihydroagarofuran top
Crystal data top
C16H24O8SF(000) = 800
Mr = 376.41Dx = 1.472 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2687 reflections
a = 9.530 (3) Åθ = 2.3–22.5°
b = 10.228 (3) ŵ = 0.23 mm1
c = 17.424 (5) ÅT = 296 K
V = 1698.3 (9) Å3Block, colorless
Z = 40.25 × 0.22 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
3151 independent reflections
Radiation source: fine-focus sealed tube2633 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 117
Tmin = 0.944, Tmax = 0.953k = 1212
8175 measured reflectionsl = 2120
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.135P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3151 reflectionsΔρmax = 0.19 e Å3
232 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 1325 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (9)
Crystal data top
C16H24O8SV = 1698.3 (9) Å3
Mr = 376.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.530 (3) ŵ = 0.23 mm1
b = 10.228 (3) ÅT = 296 K
c = 17.424 (5) Å0.25 × 0.22 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
3151 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2633 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.953Rint = 0.034
8175 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.19 e Å3
S = 1.06Δρmin = 0.20 e Å3
3151 reflectionsAbsolute structure: Flack (1983), 1325 Friedel pairs
232 parametersAbsolute structure parameter: 0.13 (9)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8202 (3)0.4554 (2)0.91912 (13)0.0328 (6)
C20.9087 (3)0.5765 (2)0.90120 (14)0.0346 (6)
H20.89650.60790.84850.042*
C31.0539 (3)0.5224 (3)0.91630 (14)0.0426 (7)
H31.12230.59320.92200.051*
C41.0957 (3)0.4311 (3)0.85095 (16)0.0463 (7)
H4A1.19150.40210.85900.056*
H4B1.09300.47930.80300.056*
C51.0002 (3)0.3113 (3)0.84427 (14)0.0390 (6)
C60.8443 (3)0.3563 (2)0.85189 (13)0.0303 (6)
C70.7308 (3)0.2501 (3)0.85700 (16)0.0423 (7)
H70.71080.23160.91110.051*
C80.6076 (3)0.3248 (3)0.82229 (14)0.0422 (7)
H80.53170.26520.80770.051*
C90.5590 (3)0.4210 (3)0.88392 (16)0.0444 (7)
H90.46830.40230.90810.053*
C100.6664 (3)0.4827 (2)0.93331 (15)0.0388 (6)
H100.63930.49860.98670.047*
C110.8932 (3)0.4131 (3)0.99432 (15)0.0477 (7)
H11A0.84980.45551.03810.057*
H11B0.88630.31921.00100.057*
C120.6735 (3)0.3883 (3)0.75151 (14)0.0382 (6)
C130.6056 (3)0.5133 (3)0.72187 (17)0.0538 (8)
H13A0.62240.58300.75760.081*
H13B0.50630.50000.71640.081*
H13C0.64520.53560.67290.081*
C140.6857 (3)0.2946 (3)0.68275 (15)0.0531 (8)
H14A0.74520.33290.64440.080*
H14B0.59430.27930.66150.080*
H14C0.72540.21320.69950.080*
C151.0454 (4)0.2017 (3)0.89920 (18)0.0582 (9)
H15A0.97020.13990.90470.087*
H15B1.06770.23840.94840.087*
H15C1.12660.15820.87880.087*
C160.7165 (3)0.8404 (3)0.88369 (19)0.0586 (8)
H16A0.63930.81040.91430.088*
H16B0.72230.78910.83770.088*
H16C0.70250.93060.87050.088*
O11.0156 (2)0.2516 (2)0.76988 (11)0.0515 (5)
H10.98320.30030.73700.077*
O20.7634 (3)0.13165 (18)0.81877 (13)0.0598 (6)
H2A0.83830.13960.79610.090*
O31.0372 (2)0.4519 (2)0.98764 (10)0.0540 (6)
O40.59795 (19)0.56021 (18)0.87714 (11)0.0489 (5)
O50.81435 (16)0.42256 (15)0.77981 (8)0.0310 (4)
O60.87426 (18)0.67549 (17)0.95895 (9)0.0407 (4)
O70.9879 (2)0.85121 (19)0.88633 (12)0.0590 (6)
O80.8610 (2)0.89333 (19)1.00595 (11)0.0558 (5)
S10.87153 (7)0.82442 (6)0.93543 (4)0.04001 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0404 (14)0.0302 (13)0.0278 (13)0.0028 (12)0.0013 (11)0.0036 (11)
C20.0408 (15)0.0339 (14)0.0293 (12)0.0035 (12)0.0021 (11)0.0016 (12)
C30.0402 (16)0.0470 (17)0.0406 (15)0.0038 (14)0.0085 (12)0.0057 (14)
C40.0324 (15)0.0525 (19)0.0539 (17)0.0080 (14)0.0023 (13)0.0076 (15)
C50.0423 (15)0.0369 (15)0.0378 (14)0.0094 (14)0.0046 (12)0.0021 (13)
C60.0372 (15)0.0265 (13)0.0273 (12)0.0023 (11)0.0007 (11)0.0044 (10)
C70.0555 (17)0.0296 (14)0.0418 (16)0.0075 (14)0.0082 (14)0.0024 (13)
C80.0367 (15)0.0397 (16)0.0502 (15)0.0110 (14)0.0013 (12)0.0043 (14)
C90.0360 (14)0.0453 (17)0.0518 (16)0.0074 (13)0.0099 (13)0.0013 (14)
C100.0430 (16)0.0378 (15)0.0355 (13)0.0011 (12)0.0092 (13)0.0052 (13)
C110.0603 (19)0.0474 (17)0.0353 (14)0.0002 (15)0.0053 (14)0.0032 (13)
C120.0309 (14)0.0440 (17)0.0396 (15)0.0021 (13)0.0042 (12)0.0073 (12)
C130.0502 (19)0.064 (2)0.0476 (16)0.0101 (16)0.0130 (15)0.0021 (16)
C140.0508 (17)0.062 (2)0.0463 (17)0.0026 (16)0.0084 (14)0.0189 (15)
C150.065 (2)0.0468 (19)0.063 (2)0.0182 (16)0.0101 (16)0.0088 (17)
C160.061 (2)0.0390 (18)0.076 (2)0.0010 (16)0.0203 (16)0.0003 (17)
O10.0583 (13)0.0482 (13)0.0481 (12)0.0175 (11)0.0052 (11)0.0063 (10)
O20.0803 (16)0.0256 (10)0.0734 (15)0.0025 (11)0.0017 (12)0.0087 (10)
O30.0535 (13)0.0666 (14)0.0420 (11)0.0020 (11)0.0171 (10)0.0074 (11)
O40.0431 (11)0.0423 (12)0.0614 (12)0.0022 (10)0.0045 (9)0.0029 (10)
O50.0323 (9)0.0312 (9)0.0294 (8)0.0006 (8)0.0029 (7)0.0035 (8)
O60.0544 (11)0.0357 (10)0.0318 (9)0.0046 (10)0.0022 (8)0.0062 (8)
O70.0615 (13)0.0448 (13)0.0707 (13)0.0125 (11)0.0216 (11)0.0122 (11)
O80.0592 (13)0.0517 (12)0.0565 (12)0.0056 (11)0.0002 (11)0.0267 (10)
S10.0402 (4)0.0345 (4)0.0453 (4)0.0067 (3)0.0010 (3)0.0108 (3)
Geometric parameters (Å, º) top
C1—C101.512 (3)C10—O41.419 (3)
C1—C21.531 (4)C10—H100.9800
C1—C111.545 (3)C11—O31.433 (3)
C1—C61.566 (3)C11—H11A0.9700
C2—O61.465 (3)C11—H11B0.9700
C2—C31.513 (4)C12—O51.472 (3)
C2—H20.9800C12—C131.523 (4)
C3—O31.446 (3)C12—C141.538 (4)
C3—C41.525 (4)C13—H13A0.9600
C3—H30.9800C13—H13B0.9600
C4—C51.531 (4)C13—H13C0.9600
C4—H4A0.9700C14—H14A0.9600
C4—H4B0.9700C14—H14B0.9600
C5—O11.440 (3)C14—H14C0.9600
C5—C151.536 (4)C15—H15A0.9600
C5—C61.561 (3)C15—H15B0.9600
C6—O51.455 (3)C15—H15C0.9600
C6—C71.535 (4)C16—S11.738 (3)
C7—O21.417 (3)C16—H16A0.9600
C7—C81.526 (4)C16—H16B0.9600
C7—H70.9800C16—H16C0.9600
C8—C91.528 (4)O1—H10.8200
C8—C121.529 (4)O2—H2A0.8200
C8—H80.9800O6—S11.5777 (19)
C9—O41.476 (3)O7—S11.427 (2)
C9—C101.478 (4)O8—S11.4201 (18)
C9—H90.9800
C10—C1—C2114.7 (2)O4—C10—C961.24 (17)
C10—C1—C11110.5 (2)O4—C10—C1115.9 (2)
C2—C1—C1198.7 (2)C9—C10—C1119.8 (2)
C10—C1—C6112.6 (2)O4—C10—H10116.2
C2—C1—C6106.88 (19)C9—C10—H10116.2
C11—C1—C6112.8 (2)C1—C10—H10116.2
O6—C2—C3109.8 (2)O3—C11—C1106.6 (2)
O6—C2—C1107.20 (19)O3—C11—H11A110.4
C3—C2—C199.9 (2)C1—C11—H11A110.4
O6—C2—H2113.0O3—C11—H11B110.4
C3—C2—H2113.0C1—C11—H11B110.4
C1—C2—H2113.0H11A—C11—H11B108.6
O3—C3—C2103.4 (2)O5—C12—C13107.5 (2)
O3—C3—C4111.4 (2)O5—C12—C8101.85 (19)
C2—C3—C4109.5 (2)C13—C12—C8117.1 (2)
O3—C3—H3110.8O5—C12—C14109.9 (2)
C2—C3—H3110.8C13—C12—C14106.9 (2)
C4—C3—H3110.8C8—C12—C14113.3 (2)
C3—C4—C5113.0 (2)C12—C13—H13A109.5
C3—C4—H4A109.0C12—C13—H13B109.5
C5—C4—H4A109.0H13A—C13—H13B109.5
C3—C4—H4B109.0C12—C13—H13C109.5
C5—C4—H4B109.0H13A—C13—H13C109.5
H4A—C4—H4B107.8H13B—C13—H13C109.5
O1—C5—C4110.3 (2)C12—C14—H14A109.5
O1—C5—C15102.9 (2)C12—C14—H14B109.5
C4—C5—C15111.7 (2)H14A—C14—H14B109.5
O1—C5—C6107.38 (19)C12—C14—H14C109.5
C4—C5—C6108.9 (2)H14A—C14—H14C109.5
C15—C5—C6115.4 (2)H14B—C14—H14C109.5
O5—C6—C7103.96 (19)C5—C15—H15A109.5
O5—C6—C5104.51 (18)C5—C15—H15B109.5
C7—C6—C5117.8 (2)H15A—C15—H15B109.5
O5—C6—C1108.37 (17)C5—C15—H15C109.5
C7—C6—C1108.1 (2)H15A—C15—H15C109.5
C5—C6—C1113.21 (19)H15B—C15—H15C109.5
O2—C7—C8114.2 (2)S1—C16—H16A109.5
O2—C7—C6115.0 (2)S1—C16—H16B109.5
C8—C7—C699.5 (2)H16A—C16—H16B109.5
O2—C7—H7109.2S1—C16—H16C109.5
C8—C7—H7109.2H16A—C16—H16C109.5
C6—C7—H7109.2H16B—C16—H16C109.5
C7—C8—C9106.1 (2)C5—O1—H1109.5
C7—C8—C12102.5 (2)C7—O2—H2A109.5
C9—C8—C12114.7 (2)C11—O3—C3108.27 (19)
C7—C8—H8111.0C10—O4—C961.38 (17)
C9—C8—H8111.0C6—O5—C12110.91 (17)
C12—C8—H8111.0C2—O6—S1119.51 (14)
O4—C9—C1057.38 (16)O8—S1—O7118.56 (12)
O4—C9—C8119.2 (2)O8—S1—O6104.81 (11)
C10—C9—C8118.3 (2)O7—S1—O6109.17 (11)
O4—C9—H9116.3O8—S1—C16110.00 (15)
C10—C9—H9116.3O7—S1—C16109.34 (14)
C8—C9—H9116.3O6—S1—C16103.88 (12)
C10—C1—C2—O648.0 (3)O2—C7—C8—C1277.3 (3)
C11—C1—C2—O669.4 (2)C6—C7—C8—C1245.7 (2)
C6—C1—C2—O6173.55 (17)C7—C8—C9—O4102.8 (3)
C10—C1—C2—C3162.4 (2)C12—C8—C9—O49.5 (3)
C11—C1—C2—C345.1 (2)C7—C8—C9—C1036.4 (3)
C6—C1—C2—C372.0 (2)C12—C8—C9—C1076.0 (3)
O6—C2—C3—O367.6 (2)C8—C9—C10—O4108.3 (3)
C1—C2—C3—O344.9 (2)O4—C9—C10—C1105.0 (3)
O6—C2—C3—C4173.6 (2)C8—C9—C10—C13.3 (4)
C1—C2—C3—C474.0 (2)C2—C1—C10—O450.3 (3)
O3—C3—C4—C550.7 (3)C11—C1—C10—O4160.8 (2)
C2—C3—C4—C563.0 (3)C6—C1—C10—O472.2 (3)
C3—C4—C5—O1162.3 (2)C2—C1—C10—C9120.5 (3)
C3—C4—C5—C1584.0 (3)C11—C1—C10—C9129.0 (3)
C3—C4—C5—C644.7 (3)C6—C1—C10—C92.0 (3)
O1—C5—C6—O546.7 (2)C10—C1—C11—O3151.7 (2)
C4—C5—C6—O572.7 (2)C2—C1—C11—O331.1 (3)
C15—C5—C6—O5160.7 (2)C6—C1—C11—O381.4 (3)
O1—C5—C6—C768.1 (3)C7—C8—C12—O537.4 (2)
C4—C5—C6—C7172.5 (2)C9—C8—C12—O577.1 (2)
C15—C5—C6—C746.0 (3)C7—C8—C12—C13154.3 (2)
O1—C5—C6—C1164.40 (19)C9—C8—C12—C1339.8 (3)
C4—C5—C6—C145.0 (3)C7—C8—C12—C1480.6 (2)
C15—C5—C6—C181.6 (3)C9—C8—C12—C14165.0 (2)
C10—C1—C6—O573.0 (2)C1—C11—O3—C33.9 (3)
C2—C1—C6—O553.8 (2)C2—C3—O3—C1125.7 (3)
C11—C1—C6—O5161.2 (2)C4—C3—O3—C1191.7 (3)
C10—C1—C6—C739.1 (3)C1—C10—O4—C9111.3 (3)
C2—C1—C6—C7165.9 (2)C8—C9—O4—C10106.7 (3)
C11—C1—C6—C786.7 (3)C7—C6—O5—C1214.6 (2)
C10—C1—C6—C5171.5 (2)C5—C6—O5—C12138.72 (19)
C2—C1—C6—C561.7 (2)C1—C6—O5—C12100.3 (2)
C11—C1—C6—C545.7 (3)C13—C12—O5—C6137.7 (2)
O5—C6—C7—O285.7 (3)C8—C12—O5—C614.1 (2)
C5—C6—C7—O229.4 (3)C14—C12—O5—C6106.2 (2)
C1—C6—C7—O2159.3 (2)C3—C2—O6—S1107.6 (2)
O5—C6—C7—C836.8 (2)C1—C2—O6—S1144.83 (16)
C5—C6—C7—C8151.9 (2)C2—O6—S1—O8169.57 (16)
C1—C6—C7—C878.2 (2)C2—O6—S1—O741.58 (19)
O2—C7—C8—C9162.0 (2)C2—O6—S1—C1675.0 (2)
C6—C7—C8—C974.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16C···O2i0.962.323.218 (4)156
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H24O8S
Mr376.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)9.530 (3), 10.228 (3), 17.424 (5)
V3)1698.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.25 × 0.22 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.944, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
8175, 3151, 2633
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.085, 1.06
No. of reflections3151
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20
Absolute structureFlack (1983), 1325 Friedel pairs
Absolute structure parameter0.13 (9)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16C···O2i0.962.323.218 (4)156
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the National Key S&T Research Foundation of China (grant No. 2010CB126105) and the National Natural Science Foundation of China (grant Nos. 30871663 and 30800729) as well as the program for Excellent Young Talents in Northwest A&F University (grant No. QNGG-2009-020).

References

First citationBruker (2001). SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, J. M., Wu, W. J., Zhang, J. W. & Konishi, Y. (2007). Nat. Prod. Rep. 24, 1153–1189.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpivey, A. C., Weston, M. & Woodhead, S. (2002). Chem. Soc. Rev. C31, 43–59.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds