organic compounds
5-Chloro-1-phenyl-1H-pyrazol-4-amine
aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60–780 Poznań, Poland, and bThe ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus, Squires Way, Fairy Meadow, NSW 2519, Australia
*Correspondence e-mail: mkubicki@amu.edu.pl
In the 9H8ClN3, amino–pyrazole N—H⋯N hydrogen bonds connect the molecules along the [010] direction; the chains interact with each other only by van der Waals-type interactions. The pyrazole and phenyl rings are inclined at a dihedral angle of 45.65 (6)°
of the title compound, CRelated literature
For the synthesis, see: Tallec et al. (2000). For other 4-aminopyrazoles, see: Infantes et al. (1998, 1999); Schmidt et al. (2001). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811032065/rk2288sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811032065/rk2288Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811032065/rk2288Isup3.cml
The compound was synthesized by electrochemical reduction of 4–nitro–1–phenylpyrazole in diluted hydrochloric acid to corresponding hydroxylamine and its in situ nucleophilic transformation into 5–chloro derivative. The compound was separated from post–reaction mixture with low yield. (Tallec et al., 2000).
Hydrogen atoms from NH2–group were found in the difference Fourier maps and freely refined with isotropic displacement parameters. All other hydrogen atoms were placed in idealized positions (C—H distance 0.93Å) and refined as a riding model with their Uiso = 1.2Ueq(C).
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C9H8ClN3 | F(000) = 400 |
Mr = 193.63 | Dx = 1.467 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1285 reflections |
a = 3.8926 (6) Å | θ = 2.0–27.8° |
b = 9.9679 (13) Å | µ = 0.39 mm−1 |
c = 22.617 (2) Å | T = 295 K |
β = 92.795 (11)° | Needle, colourless |
V = 876.52 (19) Å3 | 0.4 × 0.07 × 0.06 mm |
Z = 4 |
Agilent Xcalibur Sapphire2 diffractometer | 1879 independent reflections |
Radiation source: Enhance (Mo) X–ray Source | 1340 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 8.1929 pixels mm-1 | θmax = 27.0°, θmin = 3.6° |
ω scans | h = −4→4 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −12→12 |
Tmin = 0.853, Tmax = 1.000 | l = −28→28 |
5036 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0382P)2 + 0.093P] where P = (Fo2 + 2Fc2)/3 |
1879 reflections | (Δ/σ)max < 0.001 |
132 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C9H8ClN3 | V = 876.52 (19) Å3 |
Mr = 193.63 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.8926 (6) Å | µ = 0.39 mm−1 |
b = 9.9679 (13) Å | T = 295 K |
c = 22.617 (2) Å | 0.4 × 0.07 × 0.06 mm |
β = 92.795 (11)° |
Agilent Xcalibur Sapphire2 diffractometer | 1879 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 1340 reflections with I > 2σ(I) |
Tmin = 0.853, Tmax = 1.000 | Rint = 0.035 |
5036 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.17 e Å−3 |
1879 reflections | Δρmin = −0.21 e Å−3 |
132 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.2024 (4) | 1.05610 (15) | 0.15336 (6) | 0.0333 (4) | |
C11 | 0.2744 (4) | 1.17917 (18) | 0.12513 (8) | 0.0323 (4) | |
C12 | 0.1587 (5) | 1.2018 (2) | 0.06707 (8) | 0.0398 (5) | |
H12 | 0.0415 | 1.1350 | 0.0457 | 0.043 (6)* | |
C13 | 0.2187 (5) | 1.3236 (2) | 0.04152 (9) | 0.0476 (5) | |
H13 | 0.1442 | 1.3391 | 0.0024 | 0.070 (7)* | |
C14 | 0.3879 (5) | 1.4228 (2) | 0.07319 (10) | 0.0497 (6) | |
H14 | 0.4254 | 1.5056 | 0.0558 | 0.060 (7)* | |
C15 | 0.5023 (5) | 1.3995 (2) | 0.13093 (9) | 0.0457 (5) | |
H15 | 0.6165 | 1.4670 | 0.1524 | 0.046 (6)* | |
C16 | 0.4486 (5) | 1.27721 (19) | 0.15698 (8) | 0.0377 (4) | |
H16 | 0.5292 | 1.2610 | 0.1957 | 0.039 (5)* | |
N2 | 0.0761 (4) | 1.05812 (17) | 0.20821 (6) | 0.0400 (4) | |
C3 | 0.0204 (5) | 0.9308 (2) | 0.22098 (8) | 0.0414 (5) | |
H3 | −0.0687 | 0.9022 | 0.2563 | 0.057 (6)* | |
C4 | 0.1090 (5) | 0.8444 (2) | 0.17613 (8) | 0.0400 (5) | |
N4 | 0.0706 (7) | 0.7062 (2) | 0.17291 (11) | 0.0673 (7) | |
H42 | 0.231 (7) | 0.668 (3) | 0.1551 (14) | 0.096 (12)* | |
H41 | 0.059 (7) | 0.670 (3) | 0.2067 (13) | 0.090 (10)* | |
C5 | 0.2237 (5) | 0.92795 (19) | 0.13352 (7) | 0.0343 (4) | |
Cl5 | 0.39097 (13) | 0.88538 (6) | 0.06812 (2) | 0.04946 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0408 (8) | 0.0330 (9) | 0.0265 (7) | 0.0010 (7) | 0.0052 (7) | −0.0009 (7) |
C11 | 0.0326 (9) | 0.0331 (10) | 0.0316 (9) | 0.0015 (8) | 0.0051 (8) | 0.0015 (8) |
C12 | 0.0402 (10) | 0.0455 (12) | 0.0339 (10) | 0.0005 (10) | 0.0034 (8) | 0.0001 (9) |
C13 | 0.0519 (12) | 0.0535 (14) | 0.0378 (11) | 0.0064 (11) | 0.0082 (10) | 0.0132 (10) |
C14 | 0.0514 (12) | 0.0404 (13) | 0.0588 (14) | 0.0034 (10) | 0.0186 (11) | 0.0133 (11) |
C15 | 0.0459 (11) | 0.0366 (12) | 0.0552 (13) | −0.0017 (10) | 0.0071 (10) | −0.0038 (10) |
C16 | 0.0392 (10) | 0.0368 (11) | 0.0370 (10) | 0.0032 (9) | 0.0016 (8) | −0.0018 (9) |
N2 | 0.0506 (9) | 0.0423 (10) | 0.0278 (8) | 0.0028 (8) | 0.0086 (7) | 0.0006 (7) |
C3 | 0.0526 (12) | 0.0422 (12) | 0.0300 (9) | 0.0003 (10) | 0.0078 (9) | 0.0072 (9) |
C4 | 0.0479 (11) | 0.0361 (11) | 0.0356 (10) | 0.0021 (9) | −0.0021 (9) | 0.0025 (9) |
N4 | 0.113 (2) | 0.0338 (11) | 0.0560 (14) | −0.0017 (12) | 0.0120 (14) | 0.0028 (10) |
C5 | 0.0367 (10) | 0.0377 (11) | 0.0283 (9) | 0.0018 (8) | 0.0007 (8) | −0.0021 (8) |
Cl5 | 0.0591 (3) | 0.0560 (4) | 0.0338 (3) | 0.0070 (3) | 0.0076 (2) | −0.0094 (2) |
N1—N2 | 1.3566 (19) | C15—C16 | 1.375 (3) |
N1—C5 | 1.358 (2) | C15—H15 | 0.9300 |
N1—C11 | 1.417 (2) | C16—H16 | 0.9300 |
C11—C16 | 1.373 (2) | N2—C3 | 1.322 (2) |
C11—C12 | 1.386 (2) | C3—C4 | 1.387 (3) |
C12—C13 | 1.369 (3) | C3—H3 | 0.9300 |
C12—H12 | 0.9300 | C4—C5 | 1.365 (3) |
C13—C14 | 1.371 (3) | C4—N4 | 1.387 (3) |
C13—H13 | 0.9300 | N4—H42 | 0.85 (3) |
C14—C15 | 1.379 (3) | N4—H41 | 0.85 (3) |
C14—H14 | 0.9300 | C5—Cl5 | 1.6988 (18) |
N2—N1—C5 | 110.30 (15) | C14—C15—H15 | 119.8 |
N2—N1—C11 | 119.19 (15) | C11—C16—C15 | 119.21 (18) |
C5—N1—C11 | 130.45 (15) | C11—C16—H16 | 120.4 |
C16—C11—C12 | 120.69 (17) | C15—C16—H16 | 120.4 |
C16—C11—N1 | 118.89 (15) | C3—N2—N1 | 104.85 (15) |
C12—C11—N1 | 120.37 (17) | N2—C3—C4 | 112.76 (17) |
C13—C12—C11 | 119.35 (19) | N2—C3—H3 | 123.6 |
C13—C12—H12 | 120.3 | C4—C3—H3 | 123.6 |
C11—C12—H12 | 120.3 | C5—C4—C3 | 103.84 (18) |
C12—C13—C14 | 120.42 (19) | C5—C4—N4 | 127.4 (2) |
C12—C13—H13 | 119.8 | C3—C4—N4 | 128.7 (2) |
C14—C13—H13 | 119.8 | C4—N4—H42 | 113 (2) |
C13—C14—C15 | 119.9 (2) | C4—N4—H41 | 113 (2) |
C13—C14—H14 | 120.0 | H42—N4—H41 | 108 (3) |
C15—C14—H14 | 120.0 | N1—C5—C4 | 108.25 (16) |
C16—C15—C14 | 120.4 (2) | N1—C5—Cl5 | 123.71 (14) |
C16—C15—H15 | 119.8 | C4—C5—Cl5 | 127.94 (16) |
N2—N1—C11—C16 | 45.7 (2) | C11—N1—N2—C3 | 176.97 (15) |
C5—N1—C11—C16 | −137.71 (19) | N1—N2—C3—C4 | 0.4 (2) |
N2—N1—C11—C12 | −131.79 (18) | N2—C3—C4—C5 | −0.4 (2) |
C5—N1—C11—C12 | 44.8 (3) | N2—C3—C4—N4 | −176.6 (2) |
C16—C11—C12—C13 | −0.2 (3) | N2—N1—C5—C4 | 0.1 (2) |
N1—C11—C12—C13 | 177.24 (16) | C11—N1—C5—C4 | −176.81 (17) |
C11—C12—C13—C14 | −0.8 (3) | N2—N1—C5—Cl5 | −176.49 (12) |
C12—C13—C14—C15 | 0.8 (3) | C11—N1—C5—Cl5 | 6.7 (3) |
C13—C14—C15—C16 | 0.2 (3) | C3—C4—C5—N1 | 0.2 (2) |
C12—C11—C16—C15 | 1.1 (3) | N4—C4—C5—N1 | 176.4 (2) |
N1—C11—C16—C15 | −176.34 (17) | C3—C4—C5—Cl5 | 176.55 (14) |
C14—C15—C16—C11 | −1.1 (3) | N4—C4—C5—Cl5 | −7.2 (3) |
C5—N1—N2—C3 | −0.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H41···N2i | 0.85 (3) | 2.31 (3) | 3.144 (3) | 169 (3) |
Symmetry code: (i) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H8ClN3 |
Mr | 193.63 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 3.8926 (6), 9.9679 (13), 22.617 (2) |
β (°) | 92.795 (11) |
V (Å3) | 876.52 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.39 |
Crystal size (mm) | 0.4 × 0.07 × 0.06 |
Data collection | |
Diffractometer | Agilent Xcalibur Sapphire2 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.853, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5036, 1879, 1340 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.091, 1.02 |
No. of reflections | 1879 |
No. of parameters | 132 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.21 |
Computer programs: CrysAlis PRO (Agilent, 2010), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H41···N2i | 0.85 (3) | 2.31 (3) | 3.144 (3) | 169 (3) |
Symmetry code: (i) −x, y−1/2, −z+1/2. |
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Infantes, L., Foces–Foces, C., Cabildo, P., Claramunt, R. M., Mo, O., Yanez, M. & Elguero, J. (1998). Heterocycles, 49, 157–168. CAS Google Scholar
Infantes, L., Foces–Foces, C., Claramunt, R. M., Lopez, C. & Elguero, J. (1999). J. Heterocycl. Chem. 36, 595–600. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schmidt, R. D., Lee, G. S., Pagoria, P. F., Mitchell, A. R. & Gilardi, R. (2001). J. Heterocycl. Chem. 38, 1227–1230. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tallec, A., Hazard, R., Suwinski, J. & Wagner, P. (2000). Pol. J. Chem. 74, 1177–1183. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our studies on small heterocyclic ring derivatives we have determined the crystal structure of another member of 1–phenyl–4–amino–5–chloro–pyrazole, I, (Scheme 1). Some crystal structures of 4–aminopyrazoles were also reported, e.g. two polymorphic forms of 4–aminopyrazole (Infantes et al., 1998), 3,5–dimethyl–4–aminopyrazole (Infantes et al., 1999), and 4–amino–3,5–dinitropyrazole and it s dimethylsulfoxide solvate (Schmidt et al., 2001).
The Fig. 1 shows the perspective view of I. Two planar fragments, pyrazole (maximum deviation 0.0025 (12)Å) and phenyl (0.0082 (13)Å) rings are inclined by 45.65 (6)°. This is quite a typical value, for 241 compounds with similar structural fragment (5–substituted pyrazole, non–o–substituted phenyl) found in the Cambridge Structural Database (Allen, 2002; ver. 5.32 of Nov. 2010, last update May 2011) mean value of the twist angle is around 43°, and such is also the median value. The NH2–group is quite significantly twisted with respect to the pyrazole ring plane, the dihedral angle between two planes is 48 (2)°.
In the crystal structure the relatively weak N4—H41···N2i hydrogen bonds join 21 screw–related molecules into the C(5) chains along y–direction. Symmetry code: (i) -x, y-1/2, -z+1/2. There are no other specific interactions, so apparently the chains are organized into three–dimensional structure by van der Waals forces.