organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-1-phenyl-1H-pyrazol-4-amine

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60–780 Poznań, Poland, and bThe ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus, Squires Way, Fairy Meadow, NSW 2519, Australia
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 29 July 2011; accepted 8 August 2011; online 11 August 2011)

In the crystal structure of the title compound, C9H8ClN3, amino–pyrazole N—H⋯N hydrogen bonds connect the mol­ecules along the [010] direction; the chains interact with each other only by van der Waals-type inter­actions. The pyrazole and phenyl rings are inclined at a dihedral angle of 45.65 (6)°

Related literature

For the synthesis, see: Tallec et al. (2000[Tallec, A., Hazard, R., Suwinski, J. & Wagner, P. (2000). Pol. J. Chem. 74, 1177-1183.]). For other 4-amino­pyrazoles, see: Infantes et al. (1998[Infantes, L., Foces-Foces, C., Cabildo, P., Claramunt, R. M., Mo, O., Yanez, M. & Elguero, J. (1998). Heterocycles, 49, 157-168.], 1999[Infantes, L., Foces-Foces, C., Claramunt, R. M., Lopez, C. & Elguero, J. (1999). J. Heterocycl. Chem. 36, 595-600.]); Schmidt et al. (2001[Schmidt, R. D., Lee, G. S., Pagoria, P. F., Mitchell, A. R. & Gilardi, R. (2001). J. Heterocycl. Chem. 38, 1227-1230.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8ClN3

  • Mr = 193.63

  • Monoclinic, P 21 /c

  • a = 3.8926 (6) Å

  • b = 9.9679 (13) Å

  • c = 22.617 (2) Å

  • β = 92.795 (11)°

  • V = 876.52 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 295 K

  • 0.4 × 0.07 × 0.06 mm

Data collection
  • Agilent Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.853, Tmax = 1.000

  • 5036 measured reflections

  • 1879 independent reflections

  • 1340 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.091

  • S = 1.02

  • 1879 reflections

  • 132 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H41⋯N2i 0.85 (3) 2.31 (3) 3.144 (3) 169 (3)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our studies on small heterocyclic ring derivatives we have determined the crystal structure of another member of 1–phenyl–4–amino–5–chloro–pyrazole, I, (Scheme 1). Some crystal structures of 4–aminopyrazoles were also reported, e.g. two polymorphic forms of 4–aminopyrazole (Infantes et al., 1998), 3,5–dimethyl–4–aminopyrazole (Infantes et al., 1999), and 4–amino–3,5–dinitropyrazole and it s dimethylsulfoxide solvate (Schmidt et al., 2001).

The Fig. 1 shows the perspective view of I. Two planar fragments, pyrazole (maximum deviation 0.0025 (12)Å) and phenyl (0.0082 (13)Å) rings are inclined by 45.65 (6)°. This is quite a typical value, for 241 compounds with similar structural fragment (5–substituted pyrazole, non–o–substituted phenyl) found in the Cambridge Structural Database (Allen, 2002; ver. 5.32 of Nov. 2010, last update May 2011) mean value of the twist angle is around 43°, and such is also the median value. The NH2–group is quite significantly twisted with respect to the pyrazole ring plane, the dihedral angle between two planes is 48 (2)°.

In the crystal structure the relatively weak N4—H41···N2i hydrogen bonds join 21 screw–related molecules into the C(5) chains along y–direction. Symmetry code: (i) -x, y-1/2, -z+1/2. There are no other specific interactions, so apparently the chains are organized into three–dimensional structure by van der Waals forces.

Related literature top

For the synthesis, see: Tallec et al. (2000). For other 4-aminopyrazoles, see: Infantes et al. (1998, 1999); Schmidt et al. (2001). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The compound was synthesized by electrochemical reduction of 4–nitro–1–phenylpyrazole in diluted hydrochloric acid to corresponding hydroxylamine and its in situ nucleophilic transformation into 5–chloro derivative. The compound was separated from post–reaction mixture with low yield. (Tallec et al., 2000).

Refinement top

Hydrogen atoms from NH2–group were found in the difference Fourier maps and freely refined with isotropic displacement parameters. All other hydrogen atoms were placed in idealized positions (C—H distance 0.93Å) and refined as a riding model with their Uiso = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. The displacement ellipsoids are drawn at 50% probability level. Hydrogen atoms are depicted as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing as seen along [1 0 0] direction; hydrogen bonds are shown as dashed lines.
5-Chloro-1-phenyl-1H-pyrazol-4-amine top
Crystal data top
C9H8ClN3F(000) = 400
Mr = 193.63Dx = 1.467 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1285 reflections
a = 3.8926 (6) Åθ = 2.0–27.8°
b = 9.9679 (13) ŵ = 0.39 mm1
c = 22.617 (2) ÅT = 295 K
β = 92.795 (11)°Needle, colourless
V = 876.52 (19) Å30.4 × 0.07 × 0.06 mm
Z = 4
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
1879 independent reflections
Radiation source: Enhance (Mo) X–ray Source1340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.1929 pixels mm-1θmax = 27.0°, θmin = 3.6°
ω scansh = 44
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1212
Tmin = 0.853, Tmax = 1.000l = 2828
5036 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.093P]
where P = (Fo2 + 2Fc2)/3
1879 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H8ClN3V = 876.52 (19) Å3
Mr = 193.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.8926 (6) ŵ = 0.39 mm1
b = 9.9679 (13) ÅT = 295 K
c = 22.617 (2) Å0.4 × 0.07 × 0.06 mm
β = 92.795 (11)°
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
1879 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1340 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 1.000Rint = 0.035
5036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.17 e Å3
1879 reflectionsΔρmin = 0.21 e Å3
132 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2024 (4)1.05610 (15)0.15336 (6)0.0333 (4)
C110.2744 (4)1.17917 (18)0.12513 (8)0.0323 (4)
C120.1587 (5)1.2018 (2)0.06707 (8)0.0398 (5)
H120.04151.13500.04570.043 (6)*
C130.2187 (5)1.3236 (2)0.04152 (9)0.0476 (5)
H130.14421.33910.00240.070 (7)*
C140.3879 (5)1.4228 (2)0.07319 (10)0.0497 (6)
H140.42541.50560.05580.060 (7)*
C150.5023 (5)1.3995 (2)0.13093 (9)0.0457 (5)
H150.61651.46700.15240.046 (6)*
C160.4486 (5)1.27721 (19)0.15698 (8)0.0377 (4)
H160.52921.26100.19570.039 (5)*
N20.0761 (4)1.05812 (17)0.20821 (6)0.0400 (4)
C30.0204 (5)0.9308 (2)0.22098 (8)0.0414 (5)
H30.06870.90220.25630.057 (6)*
C40.1090 (5)0.8444 (2)0.17613 (8)0.0400 (5)
N40.0706 (7)0.7062 (2)0.17291 (11)0.0673 (7)
H420.231 (7)0.668 (3)0.1551 (14)0.096 (12)*
H410.059 (7)0.670 (3)0.2067 (13)0.090 (10)*
C50.2237 (5)0.92795 (19)0.13352 (7)0.0343 (4)
Cl50.39097 (13)0.88538 (6)0.06812 (2)0.04946 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0408 (8)0.0330 (9)0.0265 (7)0.0010 (7)0.0052 (7)0.0009 (7)
C110.0326 (9)0.0331 (10)0.0316 (9)0.0015 (8)0.0051 (8)0.0015 (8)
C120.0402 (10)0.0455 (12)0.0339 (10)0.0005 (10)0.0034 (8)0.0001 (9)
C130.0519 (12)0.0535 (14)0.0378 (11)0.0064 (11)0.0082 (10)0.0132 (10)
C140.0514 (12)0.0404 (13)0.0588 (14)0.0034 (10)0.0186 (11)0.0133 (11)
C150.0459 (11)0.0366 (12)0.0552 (13)0.0017 (10)0.0071 (10)0.0038 (10)
C160.0392 (10)0.0368 (11)0.0370 (10)0.0032 (9)0.0016 (8)0.0018 (9)
N20.0506 (9)0.0423 (10)0.0278 (8)0.0028 (8)0.0086 (7)0.0006 (7)
C30.0526 (12)0.0422 (12)0.0300 (9)0.0003 (10)0.0078 (9)0.0072 (9)
C40.0479 (11)0.0361 (11)0.0356 (10)0.0021 (9)0.0021 (9)0.0025 (9)
N40.113 (2)0.0338 (11)0.0560 (14)0.0017 (12)0.0120 (14)0.0028 (10)
C50.0367 (10)0.0377 (11)0.0283 (9)0.0018 (8)0.0007 (8)0.0021 (8)
Cl50.0591 (3)0.0560 (4)0.0338 (3)0.0070 (3)0.0076 (2)0.0094 (2)
Geometric parameters (Å, º) top
N1—N21.3566 (19)C15—C161.375 (3)
N1—C51.358 (2)C15—H150.9300
N1—C111.417 (2)C16—H160.9300
C11—C161.373 (2)N2—C31.322 (2)
C11—C121.386 (2)C3—C41.387 (3)
C12—C131.369 (3)C3—H30.9300
C12—H120.9300C4—C51.365 (3)
C13—C141.371 (3)C4—N41.387 (3)
C13—H130.9300N4—H420.85 (3)
C14—C151.379 (3)N4—H410.85 (3)
C14—H140.9300C5—Cl51.6988 (18)
N2—N1—C5110.30 (15)C14—C15—H15119.8
N2—N1—C11119.19 (15)C11—C16—C15119.21 (18)
C5—N1—C11130.45 (15)C11—C16—H16120.4
C16—C11—C12120.69 (17)C15—C16—H16120.4
C16—C11—N1118.89 (15)C3—N2—N1104.85 (15)
C12—C11—N1120.37 (17)N2—C3—C4112.76 (17)
C13—C12—C11119.35 (19)N2—C3—H3123.6
C13—C12—H12120.3C4—C3—H3123.6
C11—C12—H12120.3C5—C4—C3103.84 (18)
C12—C13—C14120.42 (19)C5—C4—N4127.4 (2)
C12—C13—H13119.8C3—C4—N4128.7 (2)
C14—C13—H13119.8C4—N4—H42113 (2)
C13—C14—C15119.9 (2)C4—N4—H41113 (2)
C13—C14—H14120.0H42—N4—H41108 (3)
C15—C14—H14120.0N1—C5—C4108.25 (16)
C16—C15—C14120.4 (2)N1—C5—Cl5123.71 (14)
C16—C15—H15119.8C4—C5—Cl5127.94 (16)
N2—N1—C11—C1645.7 (2)C11—N1—N2—C3176.97 (15)
C5—N1—C11—C16137.71 (19)N1—N2—C3—C40.4 (2)
N2—N1—C11—C12131.79 (18)N2—C3—C4—C50.4 (2)
C5—N1—C11—C1244.8 (3)N2—C3—C4—N4176.6 (2)
C16—C11—C12—C130.2 (3)N2—N1—C5—C40.1 (2)
N1—C11—C12—C13177.24 (16)C11—N1—C5—C4176.81 (17)
C11—C12—C13—C140.8 (3)N2—N1—C5—Cl5176.49 (12)
C12—C13—C14—C150.8 (3)C11—N1—C5—Cl56.7 (3)
C13—C14—C15—C160.2 (3)C3—C4—C5—N10.2 (2)
C12—C11—C16—C151.1 (3)N4—C4—C5—N1176.4 (2)
N1—C11—C16—C15176.34 (17)C3—C4—C5—Cl5176.55 (14)
C14—C15—C16—C111.1 (3)N4—C4—C5—Cl57.2 (3)
C5—N1—N2—C30.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···N2i0.85 (3)2.31 (3)3.144 (3)169 (3)
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H8ClN3
Mr193.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)3.8926 (6), 9.9679 (13), 22.617 (2)
β (°) 92.795 (11)
V3)876.52 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.4 × 0.07 × 0.06
Data collection
DiffractometerAgilent Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.853, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5036, 1879, 1340
Rint0.035
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.091, 1.02
No. of reflections1879
No. of parameters132
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: CrysAlis PRO (Agilent, 2010), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···N2i0.85 (3)2.31 (3)3.144 (3)169 (3)
Symmetry code: (i) x, y1/2, z+1/2.
 

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationInfantes, L., Foces–Foces, C., Cabildo, P., Claramunt, R. M., Mo, O., Yanez, M. & Elguero, J. (1998). Heterocycles, 49, 157–168.  CAS Google Scholar
First citationInfantes, L., Foces–Foces, C., Claramunt, R. M., Lopez, C. & Elguero, J. (1999). J. Heterocycl. Chem. 36, 595–600.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchmidt, R. D., Lee, G. S., Pagoria, P. F., Mitchell, A. R. & Gilardi, R. (2001). J. Heterocycl. Chem. 38, 1227–1230.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTallec, A., Hazard, R., Suwinski, J. & Wagner, P. (2000). Pol. J. Chem. 74, 1177–1183.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds