organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{Hy­dr­oxy[1-(4-meth­­oxy­phen­yl)-4-oxo-3-phenyl­azetidin-2-yl]meth­yl}acrylo­nitrile

aDepartment of Physics Ethiraj College for Women, Chennai 600 008, India, bDepartment of Physics RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cDepartment of Organic Chemistry University of Madras Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 3 August 2011; accepted 9 August 2011; online 17 August 2011)

In the title compound, C20H18N2O3, the β-lactam ring is essentially planar, having a maximum deviation of 0.0291 (15) Å for the N atom, and perpendicular to the phenyl ring [dihedral angle = 85.55 (11)°]. The carbonitrile side chain is almost linear, the C—C—N angle being 176.8 (2)°. The crystal packing is stabilized by inter­molecular O—H⋯O and C—H⋯O inter­actions.

Related literature

For uses of acrylonitrile derivatives, see: Ambrosi et al. (1994[Ambrosi, H.-D., Duczek, W., Ranm, M., Gründemann, E., Schulz, B. & Jahnisch, K. (1994). Liebigs Ann. Chem. pp. 1013-1018.]). For the pharmacological properties of β-lactam derivatives, see: Brakhage (1998[Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.]). For related structures, see: Sundaresan et al. (2008[Sundaresan, S., Ramesh, P., Arumugam, N., Raghunathan, R. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o2042.]); Kamala et al. (2008[Kamala, E. T. S., Nirmala, S., Sudha, L., Arumugam, N. & Raghunathan, R. (2008). Acta Cryst. E64, o887-o888.]). For related geometrical parameters, see: Nizam Mohideen et al. (2007[Nizam Mohideen, M., Kannan, P. S., Subbiah Pandi, A., Ramesh, E. & Raghunathan, R. (2007). Acta Cryst. E63, o4756.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O3

  • Mr = 334.36

  • Monoclinic, C c

  • a = 9.9694 (3) Å

  • b = 19.8196 (6) Å

  • c = 9.6013 (3) Å

  • β = 112.718 (1)°

  • V = 1749.93 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 10596 measured reflections

  • 4368 independent reflections

  • 3621 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.100

  • S = 1.01

  • 4368 reflections

  • 228 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.82 1.90 2.716 (2) 172
C9—H9⋯O2ii 0.98 2.50 3.467 (2) 169
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acrylonitriles are useful intermediates in organic synthesis and are capable of undergoing many useful organic transformations (Ambrosi et al., 1994), for example, into pyrazole, isoxazole and pyrimidine derivatives. β-Lactams are one of the best known and most extensively studied class of compounds due to their biological activities. The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin (Brakhage, 1998). X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1.

In the title compound C20H18N2O3, due to conjugation in the C19C18–C20N2 moiety, the bond length between C18 and C20 (1.429 (3)Å) shows a significant shortening (Nizam Mohideen et al., 2007). The β-lactam ring is essentially planar and the keto O1 atom deviates from this mean plane by -0.1095 (13)°. The methoxy phenyl (C11-C15) and the phenyl rings (C1-C6) form dihedral angles of 15.66 (10)° and 85.55 (11)°, respectively, with the β-lactam ring. The sum of the angles around N1 atom of the β-lactam ring system accounts for 359.5 (3)° which is in accordance with sp2 hybridization. The phenyl ring and methoxy phenyl ring are cis related with respect to the β-lactam ring.

The bond angles at C18 deviate significantly from regular trigonal geometry. The bond angle around C20, in the chains of atoms C18/C20/N2, is 176.8 (2)° and thus the carbonitrile side chain is almost linear. The torsion angle of -112.87 (19)° for C7–C17–C18C19 indicates a deviation of the β-lactam ring from the plane of the olefinic double bond. The methoxy group is slightly twisted from the plane of the phenyl ring (C10-C15) to which it is attached as evidenced by the torsion angle C14-C13-O2-C16 of 7.8 (2)°. The interplanar angle between the phenyl (C1-C6) and methoxy phenyl group (C10-C15) is 81.04 (9)°. The title compound exhibits structural similarities with the already reported related structures (Sundaresan et al., 2008, Kamala et al., 2008).

The crystal packing is stabilized by O–H···O and C–H···O hydrogen bonds via O3–H3···O1i and C9–H9···O2ii intermolecular interactions, viewed down the a axis. Symmetry codes: (i) x, -y, z+1/2; (ii) x+1, y, z. The packing view of the title compound is shown in Fig. 2.

Related literature top

For uses of acrylonitrile derivatives, see: Ambrosi et al. (1994). For the pharmacological properties of β-lactam derivatives, see: Brakhage (1998). For related structures, see: Sundaresan et al. (2008); Kamala et al. (2008). For related geometrical parameters, see: Nizam Mohideen et al. (2007).

Experimental top

To the reaction mixture of 1-(4-methoxyphenyl)-4-oxo-3-phenylazetidine-2-carbaldehyde (1 mmol) with acrylonitrile (2 mmol), a catalytic quantity of 1,4-diazabicyclo[2.2.2]octane (10-15 mol %) was added. The reaction mixture was left standing at room temperature in a stoppered sample flask. The progress of the reaction was monitored by TLC over a period of several days. After a period of 10 days, the TLC revealed the presence of a product. The reaction mixture was dissolved in ethyl acetate and washed with aqueous HCl solution (0.25 M) and water followed by brine solution. The organic layer was separated and dried over sodium sulfate. Filtering and evaporation of the organic solvent was done under reduced pressure. The product was separated by flash column chromatography using hexane and ethyl acetate as an eluent (1:9) to give colourless solid. The product was dissolved in chloroform and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent resulting in single crystals suitable for XRD studies.

Refinement top

The hydrogen atoms were placed in calculated positions with C–H = 0.93Å to 0.98Å, O–H = 0.82Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.2Ueq(C) for aromatic, methylene, methine groups, Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.5Ueq(O) for hydroxy groups.

The 1876 Friedel pairs were merged ('MERG 2' instruction in SHELXL refinement).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing arrangement of the title compound in the unit cell as viewed down the a axis. The O–H···O and C–H···O intermolecular interactions indicated by dashed lines.
2-{Hydroxy[1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl]methyl}acrylonitrile top
Crystal data top
C20H18N2O3F(000) = 704
Mr = 334.36Dx = 1.269 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4368 reflections
a = 9.9694 (3) Åθ = 2.4–29.7°
b = 19.8196 (6) ŵ = 0.09 mm1
c = 9.6013 (3) ÅT = 295 K
β = 112.718 (1)°Block, colourless
V = 1749.93 (9) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3621 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 29.7°, θmin = 2.4°
ω and ϕ scansh = 1313
10596 measured reflectionsk = 2527
4368 independent reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.1723P]
where P = (Fo2 + 2Fc2)/3
4368 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.16 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C20H18N2O3V = 1749.93 (9) Å3
Mr = 334.36Z = 4
Monoclinic, CcMo Kα radiation
a = 9.9694 (3) ŵ = 0.09 mm1
b = 19.8196 (6) ÅT = 295 K
c = 9.6013 (3) Å0.30 × 0.20 × 0.20 mm
β = 112.718 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3621 reflections with I > 2σ(I)
10596 measured reflectionsRint = 0.019
4368 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
4368 reflectionsΔρmin = 0.15 e Å3
228 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6009 (3)0.19499 (12)0.1527 (3)0.0809 (7)
H10.68770.21160.15150.097*
C20.6025 (2)0.15799 (11)0.2755 (3)0.0630 (5)
H20.69020.14990.35580.076*
C30.47523 (17)0.13317 (8)0.27943 (17)0.0401 (3)
C40.3470 (2)0.14539 (10)0.1573 (2)0.0579 (5)
H40.25990.12840.15700.069*
C50.3470 (3)0.18264 (12)0.0352 (2)0.0779 (7)
H50.26000.19080.04610.093*
C60.4739 (3)0.20732 (11)0.0336 (3)0.0746 (7)
H60.47370.23240.04820.089*
C70.38921 (15)0.13134 (7)0.50213 (17)0.0340 (3)
H70.34520.17420.45610.041*
C80.36425 (16)0.03948 (7)0.39009 (16)0.0379 (3)
C90.47470 (16)0.09626 (7)0.41628 (17)0.0362 (3)
H90.57270.08270.48440.043*
C100.16463 (15)0.06120 (7)0.49049 (16)0.0359 (3)
C110.10281 (17)0.11362 (8)0.5408 (2)0.0443 (4)
H110.13960.15710.54660.053*
C120.01237 (18)0.10169 (8)0.5822 (2)0.0471 (4)
H120.05280.13710.61650.057*
C130.06861 (16)0.03725 (8)0.57319 (18)0.0414 (3)
C140.00915 (17)0.01503 (8)0.51980 (19)0.0425 (4)
H140.04710.05840.51230.051*
C150.10649 (17)0.00288 (8)0.47766 (18)0.0410 (3)
H150.14520.03790.44060.049*
C160.2330 (2)0.03522 (11)0.6291 (3)0.0599 (5)
H16A0.27100.05560.53080.090*
H16B0.30830.03270.66800.090*
H16C0.15400.06200.69570.090*
C170.47215 (16)0.13644 (8)0.67345 (17)0.0391 (3)
H170.40460.14920.72080.047*
C180.58853 (18)0.19031 (8)0.70558 (18)0.0433 (4)
C190.7295 (2)0.17793 (11)0.7631 (2)0.0607 (5)
H19A0.79530.21310.77780.073*
H19B0.76290.13410.78900.073*
C200.5348 (2)0.25736 (10)0.6650 (3)0.0602 (5)
N10.28665 (13)0.07467 (6)0.45591 (15)0.0381 (3)
N20.4860 (3)0.30955 (10)0.6326 (4)0.1008 (8)
O10.34670 (14)0.01631 (6)0.33461 (15)0.0505 (3)
O20.18217 (13)0.03094 (6)0.61854 (16)0.0557 (3)
O30.53772 (13)0.07510 (6)0.73290 (14)0.0525 (3)
H30.48560.05420.76610.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0945 (18)0.0779 (15)0.098 (2)0.0164 (13)0.0673 (17)0.0082 (13)
C20.0580 (11)0.0681 (11)0.0739 (13)0.0036 (9)0.0375 (10)0.0104 (10)
C30.0488 (8)0.0364 (7)0.0431 (8)0.0012 (6)0.0268 (7)0.0027 (6)
C40.0618 (10)0.0669 (11)0.0434 (10)0.0110 (9)0.0186 (8)0.0037 (8)
C50.1023 (18)0.0790 (15)0.0425 (11)0.0110 (13)0.0172 (11)0.0081 (10)
C60.129 (2)0.0563 (12)0.0573 (12)0.0166 (12)0.0570 (14)0.0006 (9)
C70.0361 (7)0.0303 (6)0.0398 (7)0.0006 (5)0.0192 (6)0.0018 (5)
C80.0429 (8)0.0365 (7)0.0377 (8)0.0052 (6)0.0193 (7)0.0000 (6)
C90.0379 (7)0.0364 (7)0.0381 (7)0.0036 (5)0.0186 (6)0.0004 (5)
C100.0334 (7)0.0358 (7)0.0390 (7)0.0036 (6)0.0146 (6)0.0007 (6)
C110.0438 (8)0.0321 (7)0.0628 (11)0.0002 (6)0.0271 (7)0.0025 (7)
C120.0438 (8)0.0399 (8)0.0655 (11)0.0089 (7)0.0298 (8)0.0003 (7)
C130.0322 (7)0.0448 (8)0.0474 (9)0.0027 (6)0.0155 (6)0.0056 (6)
C140.0415 (8)0.0352 (8)0.0521 (9)0.0046 (6)0.0195 (7)0.0016 (6)
C150.0432 (8)0.0359 (7)0.0442 (8)0.0009 (6)0.0171 (7)0.0056 (6)
C160.0520 (10)0.0602 (11)0.0747 (14)0.0111 (8)0.0324 (10)0.0041 (9)
C170.0426 (8)0.0425 (8)0.0381 (8)0.0011 (6)0.0221 (6)0.0006 (6)
C180.0497 (9)0.0449 (9)0.0386 (8)0.0053 (7)0.0206 (7)0.0064 (6)
C190.0509 (10)0.0615 (11)0.0645 (12)0.0068 (9)0.0166 (9)0.0034 (9)
C200.0520 (10)0.0496 (11)0.0780 (13)0.0107 (8)0.0239 (9)0.0131 (9)
N10.0395 (6)0.0323 (6)0.0473 (7)0.0010 (5)0.0221 (5)0.0062 (5)
N20.0825 (14)0.0460 (11)0.161 (3)0.0015 (9)0.0328 (14)0.0037 (12)
O10.0618 (7)0.0393 (6)0.0584 (7)0.0014 (5)0.0321 (6)0.0114 (5)
O20.0462 (7)0.0517 (7)0.0801 (9)0.0010 (5)0.0364 (6)0.0068 (6)
O30.0558 (7)0.0535 (7)0.0536 (7)0.0034 (5)0.0271 (6)0.0171 (5)
Geometric parameters (Å, º) top
C1—C61.361 (4)C11—C121.373 (2)
C1—C21.383 (3)C11—H110.9300
C1—H10.9300C12—C131.384 (2)
C2—C31.375 (2)C12—H120.9300
C2—H20.9300C13—O21.367 (2)
C3—C41.382 (2)C13—C141.387 (2)
C3—C91.506 (2)C14—C151.382 (2)
C4—C51.385 (3)C14—H140.9300
C4—H40.9300C15—H150.9300
C5—C61.361 (4)C16—O21.423 (2)
C5—H50.9300C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—N11.4675 (18)C16—H16C0.9600
C7—C171.533 (2)C17—O31.3938 (19)
C7—C91.559 (2)C17—C181.518 (2)
C7—H70.9800C17—H170.9800
C8—O11.2105 (18)C18—C191.319 (3)
C8—N11.3645 (19)C18—C201.429 (3)
C8—C91.526 (2)C19—H19A0.9300
C9—H90.9800C19—H19B0.9300
C10—C151.382 (2)C20—N21.134 (3)
C10—C111.387 (2)O3—H30.8200
C10—N11.4047 (19)
C6—C1—C2120.8 (2)C10—C11—H11119.8
C6—C1—H1119.6C11—C12—C13120.30 (14)
C2—C1—H1119.6C11—C12—H12119.8
C3—C2—C1120.4 (2)C13—C12—H12119.8
C3—C2—H2119.8O2—C13—C12115.46 (14)
C1—C2—H2119.8O2—C13—C14125.06 (14)
C2—C3—C4118.34 (16)C12—C13—C14119.48 (14)
C2—C3—C9120.81 (15)C15—C14—C13120.13 (14)
C4—C3—C9120.79 (14)C15—C14—H14119.9
C3—C4—C5120.60 (19)C13—C14—H14119.9
C3—C4—H4119.7C10—C15—C14120.17 (14)
C5—C4—H4119.7C10—C15—H15119.9
C6—C5—C4120.3 (2)C14—C15—H15119.9
C6—C5—H5119.8O2—C16—H16A109.5
C4—C5—H5119.8O2—C16—H16B109.5
C1—C6—C5119.6 (2)H16A—C16—H16B109.5
C1—C6—H6120.2O2—C16—H16C109.5
C5—C6—H6120.2H16A—C16—H16C109.5
N1—C7—C17113.52 (12)H16B—C16—H16C109.5
N1—C7—C987.60 (10)O3—C17—C18109.23 (12)
C17—C7—C9114.72 (12)O3—C17—C7110.82 (13)
N1—C7—H7112.9C18—C17—C7108.52 (12)
C17—C7—H7112.9O3—C17—H17109.4
C9—C7—H7112.9C18—C17—H17109.4
O1—C8—N1131.25 (14)C7—C17—H17109.4
O1—C8—C9135.95 (14)C19—C18—C20120.90 (16)
N1—C8—C992.80 (11)C19—C18—C17124.13 (16)
C3—C9—C8117.38 (13)C20—C18—C17114.94 (15)
C3—C9—C7115.56 (12)C18—C19—H19A120.0
C8—C9—C784.78 (11)C18—C19—H19B120.0
C3—C9—H9112.2H19A—C19—H19B120.0
C8—C9—H9112.2N2—C20—C18176.8 (2)
C7—C9—H9112.2C8—N1—C10135.24 (12)
C15—C10—C11119.48 (14)C8—N1—C794.46 (11)
C15—C10—N1121.69 (13)C10—N1—C7129.77 (11)
C11—C10—N1118.83 (13)C13—O2—C16117.93 (14)
C12—C11—C10120.40 (14)C17—O3—H3109.5
C12—C11—H11119.8
C6—C1—C2—C30.2 (4)C12—C13—C14—C150.7 (2)
C1—C2—C3—C40.9 (3)C11—C10—C15—C142.3 (2)
C1—C2—C3—C9176.48 (18)N1—C10—C15—C14176.76 (14)
C2—C3—C4—C51.0 (3)C13—C14—C15—C100.9 (2)
C9—C3—C4—C5176.35 (18)N1—C7—C17—O352.33 (16)
C3—C4—C5—C60.5 (3)C9—C7—C17—O346.30 (16)
C2—C1—C6—C50.3 (4)N1—C7—C17—C18172.26 (12)
C4—C5—C6—C10.2 (4)C9—C7—C17—C1873.64 (15)
C2—C3—C9—C8146.86 (16)O3—C17—C18—C198.0 (2)
C4—C3—C9—C835.9 (2)C7—C17—C18—C19112.87 (19)
C2—C3—C9—C7115.42 (18)O3—C17—C18—C20173.48 (15)
C4—C3—C9—C761.8 (2)C7—C17—C18—C2065.61 (19)
O1—C8—C9—C368.9 (2)O1—C8—N1—C102.8 (3)
N1—C8—C9—C3111.64 (14)C9—C8—N1—C10176.66 (16)
O1—C8—C9—C7174.95 (18)O1—C8—N1—C7174.71 (17)
N1—C8—C9—C74.50 (11)C9—C8—N1—C74.78 (12)
N1—C7—C9—C3113.74 (13)C15—C10—N1—C89.6 (3)
C17—C7—C9—C3131.40 (14)C11—C10—N1—C8171.31 (17)
N1—C7—C9—C84.18 (11)C15—C10—N1—C7159.80 (15)
C17—C7—C9—C8110.68 (13)C11—C10—N1—C719.2 (2)
C15—C10—C11—C122.1 (2)C17—C7—N1—C8111.32 (13)
N1—C10—C11—C12177.01 (15)C9—C7—N1—C84.67 (12)
C10—C11—C12—C130.4 (3)C17—C7—N1—C1061.25 (19)
C11—C12—C13—O2179.40 (16)C9—C7—N1—C10177.24 (14)
C11—C12—C13—C141.0 (3)C12—C13—O2—C16172.56 (17)
O2—C13—C14—C15179.66 (15)C14—C13—O2—C167.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.821.902.716 (2)172
C9—H9···O2ii0.982.503.467 (2)169
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H18N2O3
Mr334.36
Crystal system, space groupMonoclinic, Cc
Temperature (K)295
a, b, c (Å)9.9694 (3), 19.8196 (6), 9.6013 (3)
β (°) 112.718 (1)
V3)1749.93 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10596, 4368, 3621
Rint0.019
(sin θ/λ)max1)0.698
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.01
No. of reflections4368
No. of parameters228
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.821.902.716 (2)172
C9—H9···O2ii0.982.503.467 (2)169
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

CMS and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, for providing facilities in the department to carry out this work.

References

First citationAmbrosi, H.-D., Duczek, W., Ranm, M., Gründemann, E., Schulz, B. & Jahnisch, K. (1994). Liebigs Ann. Chem. pp. 1013–1018.  Google Scholar
First citationBrakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.  Web of Science CAS PubMed Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKamala, E. T. S., Nirmala, S., Sudha, L., Arumugam, N. & Raghunathan, R. (2008). Acta Cryst. E64, o887–o888.  Google Scholar
First citationNizam Mohideen, M., Kannan, P. S., Subbiah Pandi, A., Ramesh, E. & Raghunathan, R. (2007). Acta Cryst. E63, o4756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundaresan, S., Ramesh, P., Arumugam, N., Raghunathan, R. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o2042.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds