organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-(2-Hy­dr­oxy­phen­yl)-1,3-di­methyl-1H-purine-2,6(3H,7H)-dione

aUniversity of Kwazulu-Natal, School of Chemistry, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 3 August 2011; accepted 10 August 2011; online 17 August 2011)

The title compound, C13H12N4O3, is an imidazole derivative featuring an annealed purine ring system. The benzimidazole-inspired moiety is essentially planar (r.m.s. of all fitted non-H atoms = 0.0205 Å). An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds are observed, which connect the mol­ecules into chains along [110]. The shortest centroid–centroid distance between two aromatic systems is 3.7771 (11) Å.

Related literature

For the crystal structure of benzimidazole, see: Krawczyk & Gdaniec (2005[Krawczyk, S. & Gdaniec, M. (2005). Acta Cryst. E61, o4116-o4118.]). For the crystal structure of hypoxanthinium nitrate monohydrate as an example of an oxopurine compound, see: Schmalle et al. (1990[Schmalle, H. W., Hänggi, G. & Dubler, E. (1990). Acta Cryst. C46, 340-342.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For general information about the chelate effect in coordination chemistry, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N4O3

  • Mr = 272.27

  • Monoclinic, P 21 /c

  • a = 8.6418 (5) Å

  • b = 5.9415 (3) Å

  • c = 23.4475 (10) Å

  • β = 91.275 (2)°

  • V = 1203.62 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.41 × 0.10 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.860, Tmax = 1.000

  • 10068 measured reflections

  • 2975 independent reflections

  • 1752 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.124

  • S = 1.01

  • 2975 reflections

  • 188 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.84 1.86 2.611 (2) 148
N1—H71⋯O1i 0.97 (2) 1.78 (2) 2.746 (2) 175.4 (19)
C9—H9⋯O1i 0.95 2.37 3.294 (2) 164
C5—H5A⋯O3ii 0.98 2.58 3.234 (2) 124
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y-1, -z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to metal complexes exclusively applying comparable monodentate ligands (Gade 1998). Combining different sets of donor atoms in one chelate ligand molecule, a probe for testing and accomodating metal centers of different Lewis acidities is at hand. To enable comparative studies with envisioned coordination compounds, we determined the crystal structure of the title compound. The crystal structure of benzimidazole has been reported various times in the literature (e.g. Krawczyk & Gdaniec, 2005). In addition, several oxopurine derivatives have been the topic of crystal structure determinations (e.g. Schmalle et al., 1990).

The molecule features a benzimidazole-inspired backbone comprised of a 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione moiety which is annealed to a five-membered aromatic ring. This part of the molecule is essentially planar (r.m.s. of its fitted non-hydrogen atoms = 0.0205 Å). The small puckering amplitude (τ = 1.6 °) of the six-membered heterocycle precludes a conformation analysis (Cremer & Pople, 1975). The least-squares planes defined by the atoms of the phenyl ring on the one hand and the benzimidazole-type ring system on the other hand enclose an angle of 0.45 (10) ° (Fig. 1). Both C–N–C angles in the five-membered heterocycle are similar in value with 106.25 (15)° and 104.41 (15)°, with the smaller value found on the non-protonated nitrogen atom. However, these angles are smaller in value than the corresponding ones in hypoxanthinium nitrate monohydrate – invariably above 108 ° – where both nitrogen atoms bear a hydrogen atom (Schmalle et al., 1990).

In the crystal structure, intra- as well as intermolecular hydrogen bonds and C–H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of atoms participating are observed. While the intramolecular hydrogen bonds are exclusively made up by the proton of the hydroxyl group as donor and the non-protonated nitrogen atom of the five-membered heterocycle, intermolecular hydrogen bonds are solely apparent between the amino group and one of the double-bonded oxygen atoms (Table 1). The C–H···O contacts can be separated in two groups: while one of the nitrogen-bound methyl groups forms a C–H···O contact involving the oxygen atom of the hydroxyl group, one of the aromatic C–H groups acts as donor for the double-bonded oxygen atom that is already part of the N–H···O type hydrogen bonds. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is S(6)R22(10) on the unitary level. For the C–H···O contacts, a R22(16)R22(18) descriptor on the same level is needed for description. In total, the molecules are connected to chains along [1 1 0]. The shortest intercentroid distance between two aromatic systems was measured at 3.7771 (11) Å (Fig. 2).

The packing of the title compound in the crystal is shown in Figure 3.

Related literature top

For the crystal structure of benzimidazole, see: Krawczyk & Gdaniec (2005). For the crystal structure of hypoxanthinium nitrate monohydrate as an example of an oxopurine compound, see: Schmalle et al. (1990). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For puckering analysis, see: Cremer & Pople (1975). For general information about the chelate effect in coordination chemistry, see: Gade (1998).

Experimental top

The title compound was prepared by reacting 6-amino-1,3-dimethyl-5-[(E)- 2-(hydroxy)benzylideneamino]pyrimidine-2,4-(1H,3H)-dione and NH4VO3 in methanol. A bright yellow precipitate was filtered, washed with methanol and dried under reduced pressure. Single-crystals suitable for the X-ray diffraction study were obtained by recrystallization from ethanol-dichlormethane (v:v = 1:1) mixture which was left in a fridge for several days.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). The nitrogen-bound H atom was located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. Symmetry operators: i -x + 2, -y - 1, -z; ii -x + 1, -y + 1, -z.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
8-(2-Hydroxyphenyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)- dione top
Crystal data top
C13H12N4O3F(000) = 568
Mr = 272.27Dx = 1.502 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1955 reflections
a = 8.6418 (5) Åθ = 2.4–27.2°
b = 5.9415 (3) ŵ = 0.11 mm1
c = 23.4475 (10) ÅT = 200 K
β = 91.275 (2)°Platelet, yellow
V = 1203.62 (11) Å30.41 × 0.10 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2975 independent reflections
Radiation source: fine-focus sealed tube1752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.860, Tmax = 1.000k = 76
10068 measured reflectionsl = 3127
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.0815P]
where P = (Fo2 + 2Fc2)/3
2975 reflections(Δ/σ)max < 0.001
188 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H12N4O3V = 1203.62 (11) Å3
Mr = 272.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6418 (5) ŵ = 0.11 mm1
b = 5.9415 (3) ÅT = 200 K
c = 23.4475 (10) Å0.41 × 0.10 × 0.05 mm
β = 91.275 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2975 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1752 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 1.000Rint = 0.043
10068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.25 e Å3
2975 reflectionsΔρmin = 0.21 e Å3
188 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47991 (16)0.4606 (2)0.07866 (5)0.0356 (4)
O20.66823 (16)0.0720 (2)0.20267 (6)0.0390 (4)
O30.94790 (18)0.3204 (3)0.06725 (6)0.0454 (4)
H30.91050.29230.03530.068*
N10.65931 (17)0.2091 (3)0.01367 (6)0.0260 (4)
H710.615 (2)0.330 (4)0.0365 (9)0.049 (7)*
N20.79184 (18)0.1028 (3)0.00928 (6)0.0273 (4)
N30.73063 (17)0.1106 (3)0.10978 (6)0.0269 (4)
N40.57335 (17)0.1913 (3)0.13977 (6)0.0259 (4)
C10.6392 (2)0.1685 (3)0.04385 (7)0.0247 (4)
C20.7221 (2)0.0211 (3)0.05591 (7)0.0238 (4)
C30.6584 (2)0.0024 (3)0.15408 (8)0.0267 (4)
C40.5573 (2)0.2871 (3)0.08562 (7)0.0254 (4)
C50.8231 (2)0.3115 (3)0.12198 (8)0.0323 (5)
H5A0.82960.40320.08740.048*
H5B0.77420.39930.15200.048*
H5C0.92740.26680.13470.048*
C60.4923 (2)0.3034 (4)0.18658 (8)0.0342 (5)
H6A0.53890.45130.19380.051*
H6B0.50120.21120.22120.051*
H6C0.38270.32210.17590.051*
C70.7514 (2)0.0418 (3)0.03268 (8)0.0254 (4)
C80.8012 (2)0.0162 (3)0.09136 (8)0.0258 (4)
C90.7563 (2)0.1677 (3)0.13407 (8)0.0307 (5)
H90.69130.29080.12480.037*
C100.8043 (2)0.1426 (4)0.18967 (8)0.0352 (5)
H100.77320.24760.21820.042*
C110.8985 (2)0.0377 (4)0.20303 (8)0.0383 (5)
H110.93160.05680.24110.046*
C120.9443 (2)0.1892 (4)0.16178 (8)0.0391 (5)
H121.00930.31150.17160.047*
C130.8968 (2)0.1664 (3)0.10562 (8)0.0316 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0444 (8)0.0353 (8)0.0272 (8)0.0189 (7)0.0052 (6)0.0019 (6)
O20.0474 (9)0.0435 (9)0.0265 (8)0.0104 (7)0.0069 (6)0.0106 (7)
O30.0634 (10)0.0420 (10)0.0311 (8)0.0278 (8)0.0109 (7)0.0036 (7)
N10.0290 (9)0.0272 (9)0.0219 (8)0.0080 (7)0.0029 (6)0.0010 (7)
N20.0320 (9)0.0256 (9)0.0245 (8)0.0059 (7)0.0016 (7)0.0002 (7)
N30.0296 (9)0.0270 (9)0.0240 (8)0.0059 (7)0.0022 (6)0.0037 (7)
N40.0284 (8)0.0283 (9)0.0212 (8)0.0062 (7)0.0047 (6)0.0010 (7)
C10.0278 (10)0.0251 (10)0.0212 (9)0.0041 (8)0.0024 (7)0.0008 (8)
C20.0248 (9)0.0243 (10)0.0224 (9)0.0006 (8)0.0029 (7)0.0011 (8)
C30.0261 (10)0.0269 (11)0.0270 (10)0.0011 (8)0.0028 (8)0.0032 (8)
C40.0252 (10)0.0270 (11)0.0241 (10)0.0034 (9)0.0015 (8)0.0006 (8)
C50.0356 (11)0.0274 (11)0.0339 (11)0.0090 (9)0.0015 (8)0.0052 (9)
C60.0396 (11)0.0399 (13)0.0233 (10)0.0084 (10)0.0088 (8)0.0003 (9)
C70.0246 (10)0.0257 (10)0.0257 (10)0.0038 (8)0.0012 (7)0.0019 (8)
C80.0274 (10)0.0282 (10)0.0219 (9)0.0036 (8)0.0031 (7)0.0025 (8)
C90.0309 (10)0.0341 (12)0.0271 (10)0.0063 (9)0.0028 (8)0.0014 (9)
C100.0370 (11)0.0425 (13)0.0261 (10)0.0046 (10)0.0019 (9)0.0018 (10)
C110.0439 (12)0.0475 (14)0.0239 (11)0.0060 (11)0.0067 (9)0.0053 (10)
C120.0458 (13)0.0388 (13)0.0330 (12)0.0124 (11)0.0090 (9)0.0070 (10)
C130.0352 (11)0.0308 (11)0.0289 (11)0.0058 (9)0.0026 (8)0.0012 (9)
Geometric parameters (Å, º) top
O1—C41.237 (2)C5—H5A0.9800
O2—C31.213 (2)C5—H5B0.9800
O3—C131.351 (2)C5—H5C0.9800
O3—H30.8400C6—H6A0.9800
N1—C71.355 (2)C6—H6B0.9800
N1—C11.385 (2)C6—H6C0.9800
N1—H710.97 (2)C7—C81.459 (2)
N2—C71.346 (2)C8—C91.395 (3)
N2—C21.351 (2)C8—C131.409 (3)
N3—C21.371 (2)C9—C101.385 (3)
N3—C31.382 (2)C9—H90.9500
N3—C51.461 (2)C10—C111.385 (3)
N4—C41.396 (2)C10—H100.9500
N4—C31.402 (2)C11—C121.373 (3)
N4—C61.474 (2)C11—H110.9500
C1—C21.361 (3)C12—C131.394 (3)
C1—C41.410 (3)C12—H120.9500
C13—O3—H3109.5H5B—C5—H5C109.5
C7—N1—C1106.25 (15)N4—C6—H6A109.5
C7—N1—H71126.1 (13)N4—C6—H6B109.5
C1—N1—H71127.6 (13)H6A—C6—H6B109.5
C7—N2—C2104.41 (15)N4—C6—H6C109.5
C2—N3—C3119.72 (16)H6A—C6—H6C109.5
C2—N3—C5121.03 (15)H6B—C6—H6C109.5
C3—N3—C5119.14 (15)N2—C7—N1111.87 (15)
C4—N4—C3126.42 (15)N2—C7—C8123.05 (16)
C4—N4—C6116.97 (15)N1—C7—C8125.08 (16)
C3—N4—C6116.61 (15)C9—C8—C13118.81 (17)
C2—C1—N1105.66 (16)C9—C8—C7121.77 (17)
C2—C1—C4122.63 (17)C13—C8—C7119.42 (17)
N1—C1—C4131.69 (17)C10—C9—C8121.44 (18)
N2—C2—C1111.80 (16)C10—C9—H9119.3
N2—C2—N3126.19 (17)C8—C9—H9119.3
C1—C2—N3122.00 (16)C9—C10—C11119.09 (19)
O2—C3—N3121.57 (17)C9—C10—H10120.5
O2—C3—N4122.01 (17)C11—C10—H10120.5
N3—C3—N4116.43 (16)C12—C11—C10120.61 (18)
O1—C4—N4120.16 (16)C12—C11—H11119.7
O1—C4—C1127.08 (17)C10—C11—H11119.7
N4—C4—C1112.74 (16)C11—C12—C13121.01 (19)
N3—C5—H5A109.5C11—C12—H12119.5
N3—C5—H5B109.5C13—C12—H12119.5
H5A—C5—H5B109.5O3—C13—C12117.67 (18)
N3—C5—H5C109.5O3—C13—C8123.27 (17)
H5A—C5—H5C109.5C12—C13—C8119.05 (18)
C7—N1—C1—C20.44 (19)C2—C1—C4—O1179.62 (19)
C7—N1—C1—C4179.0 (2)N1—C1—C4—O11.2 (3)
C7—N2—C2—C10.3 (2)C2—C1—C4—N41.1 (3)
C7—N2—C2—N3179.25 (17)N1—C1—C4—N4177.26 (18)
N1—C1—C2—N20.5 (2)C2—N2—C7—N10.0 (2)
C4—C1—C2—N2179.25 (17)C2—N2—C7—C8179.54 (17)
N1—C1—C2—N3179.11 (16)C1—N1—C7—N20.3 (2)
C4—C1—C2—N30.4 (3)C1—N1—C7—C8179.23 (17)
C3—N3—C2—N2177.08 (17)N2—C7—C8—C9179.44 (17)
C5—N3—C2—N20.9 (3)N1—C7—C8—C90.0 (3)
C3—N3—C2—C12.5 (3)N2—C7—C8—C130.4 (3)
C5—N3—C2—C1178.64 (17)N1—C7—C8—C13179.78 (18)
C2—N3—C3—O2177.22 (18)C13—C8—C9—C100.4 (3)
C5—N3—C3—O21.0 (3)C7—C8—C9—C10179.85 (18)
C2—N3—C3—N42.8 (2)C8—C9—C10—C110.3 (3)
C5—N3—C3—N4179.07 (16)C9—C10—C11—C120.3 (3)
C4—N4—C3—O2178.72 (17)C10—C11—C12—C130.3 (3)
C6—N4—C3—O21.7 (3)C11—C12—C13—O3179.3 (2)
C4—N4—C3—N31.3 (3)C11—C12—C13—C80.4 (3)
C6—N4—C3—N3178.23 (16)C9—C8—C13—O3179.20 (18)
C3—N4—C4—O1179.24 (17)C7—C8—C13—O31.0 (3)
C6—N4—C4—O11.2 (3)C9—C8—C13—C120.4 (3)
C3—N4—C4—C10.6 (3)C7—C8—C13—C12179.82 (18)
C6—N4—C4—C1179.82 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.841.862.611 (2)148
N1—H71···O1i0.97 (2)1.78 (2)2.746 (2)175.4 (19)
C9—H9···O1i0.952.373.294 (2)164
C5—H5A···O3ii0.982.583.234 (2)124
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y1, z.

Experimental details

Crystal data
Chemical formulaC13H12N4O3
Mr272.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)8.6418 (5), 5.9415 (3), 23.4475 (10)
β (°) 91.275 (2)
V3)1203.62 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.41 × 0.10 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.860, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10068, 2975, 1752
Rint0.043
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 1.01
No. of reflections2975
No. of parameters188
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.841.862.611 (2)148.2
N1—H71···O1i0.97 (2)1.78 (2)2.746 (2)175.4 (19)
C9—H9···O1i0.952.373.294 (2)164.3
C5—H5A···O3ii0.982.583.234 (2)124.2
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y1, z.
 

Acknowledgements

The authors thank Mrs Patricia Pono for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley–VCH.  Google Scholar
First citationKrawczyk, S. & Gdaniec, M. (2005). Acta Cryst. E61, o4116–o4118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchmalle, H. W., Hänggi, G. & Dubler, E. (1990). Acta Cryst. C46, 340–342.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds