organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 1-benzyl-2,2-dioxo-4-phenyl-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]thia­zine-1,3-di­carboxyl­ate

aDepartment of Physics, Sri Subramanya College of Engineering & Technology, Palani 624 615, India, bDepartment of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629 004, India, cDepartment of Physics, Kalasalingam University, Krishnan koil 626 190, India, and dDepartment of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: athi81s@yahoo.co.in

(Received 16 May 2011; accepted 2 August 2011; online 6 August 2011)

In the title compound, C26H31NO6S, the five-membered pyrrolidine ring adopts an envelope conformation and the six-membered thia­zine ring is in a distorted chair conformation. The crystal packing is stabilized through an inter­molecular C—H⋯O inter­action, generating inversion-related R22(10) ring motifs.

Related literature

For the biological and pharmacological importance of thia­zine compounds, see: Moriyama et al. (2004[Moriyama, H., Tsukida, T., Inoue, Y., Yokota, K., Yoshino, K., Kondo, H., Miura, N. & Nishimura, S. (2004). J. Med. Chem. 47, 1930-1938.]); Koketsu et al. (2002[Koketsu, M., Tanaka, K., Takenaka, Y., Kwong, C. D. & Ishihara, H. (2002). Eur. J. Pharm. Sci. 15, 307-310.]). For the biological and pharmacological properties of compounds containing the pyrrolidine sub-structure, see: Hemming & Patel (2004[Hemming, K. & Patel, N. (2004). Tetrahedron Lett. 45, 7553-7556.]); Kueh et al. (2003[Kueh, A. J., Marriott, P. J., Wynne, P. M. & Vine, J. H. (2003). J. Chromatogr. A, 1000, 109-124.]). For biological properties of compounds containing the pyrrolo­thia­zine scaffold, see: Armenise et al. (1991[Armenise, D., Trapani, G., Arrivo, V. & Morlacchi, F. (1991). Farmaco, 46, 1023-1032.], 1998[Armenise, D., Trapani, G., Stasi, F. & Morlacchi, F. (1998). Arch. Pharm. 331, 54-58.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bonding inter­actions, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C26H31NO6S

  • Mr = 485.58

  • Monoclinic, P 21 /c

  • a = 13.5232 (9) Å

  • b = 16.8402 (12) Å

  • c = 12.1789 (9) Å

  • β = 116.568 (1)°

  • V = 2480.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 23528 measured reflections

  • 4360 independent reflections

  • 3885 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.05

  • 4360 reflections

  • 328 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O11i 0.98 2.51 3.447 (2) 159
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Thiazines occupy a unique place in medicinal chemistry since they show diverse biological properties, such as antifungal, anti-inflammatory, anti-HIV, anti-psoriatic, sedative, neuroleptic, antitussive and anti-tubercular (Moriyama et al., 2004; Koketsu et al., 2002). In addition, compounds with a pyrrolidine sub-structure exhibit anti-tumour, analgesic, antidepressant, antihistaminic, anti-asthmatic and anti-Parkinson activities (Hemming & Patel, 2004; Kueh et al., 2003). Compounds containing the pyrrolothiazine scaffold have also been shown to exhibit anti-inflammatory, anti-fungal and anti-microbial activities (Armenise et al., 1998; Armenise et al., 1991).

The molecular structure of the title molecule is illustrated in Fig. 1. The five-membered pyrrolidine ring has an envelope conformation [puckering parameters: Q(2) = 0.412 (2) Å, ϕ(2) = 152.9 (3)°; Cremer & Pople, 1975], with atom C6 at the flap. The six-membered thazine ring adopts a slightly distorted chair conformation [Puckering parameters: Q(2) = 0.1011 (19) Å, ϕ(2) = 101.2 (9) ° and Q(3) = 0.6610 (17) Å]. The dihedral angle between the phenyl rings is 54.3 (1)°. The planes of the carboxylate groups (CO2) are oriented with a dihedral angle of 22.5 (3)°.

In the crystal molecules are linked via intermolecular C—H···O interactions (Desiraju & Steiner, 1999). This interaction makes a R22(10) ring motif centered about an inversion center (Table 1, Fig. 2; Etter et al., 1990).

Related literature top

For the biological and pharmacological importance of thiazine compounds, see: Moriyama et al. (2004); Koketsu et al. (2002). For the biological and pharmacological properties of compounds containing the pyrrolidine sub-structure, see: Hemming & Patel (2004); Kueh et al. (2003). For biological properties of compounds containing the pyrrolothiazine scaffold, see: Armenise et al. (1991, 1998). For ring puckering analysis, see: Cremer & Pople (1975). For hydrogen-bonding interactions, see: Desiraju & Steiner (1999). For graph-set analysis, see: Etter et al. (1990).

Experimental top

A mixture of ethyl 2-[(2-ethoxy-2-oxoethyl)sulfonyl]acetate (1.6 mmol), benzaldehyde (3.2 mmol) and pyrrolidine (1.6 mmol) was dissolved in ethanol (10 ml), heated until the solution turned yellow and stirred at room temperature for 2–5 days. After completion of the reaction, the crude product was purified using flash column chromatography on silica gel (230–400 mesh) with petroleum ether and ethyl acetate mixture (95:5 v/v) as an eluent. Crystals, suitable for X-ray diffraction analysis, were obtained by recrystallization from ethanol.

Refinement top

All the H atoms were positioned geometrically and treated as rding atoms: C—H = 0.93, 0.98, 0.97 and 0.96 Å for CH(methine), CH(aromatic), CH2 and CH3 H-atoms, respectively, with Uiso(H)= k × Ueq(C), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms. One of the side chains, -CH2-CH3, is disordered over two positions. The site occupancies of theses atoms (C3B1,C3B2) and (C3C1,C3C2) were fixed at 0.6 and 0.4, respectively.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with atom numbering scheme and 30% probability displacement ellipsoids. H-bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b-axis. H-bonds are shown as dashed lines (see Table 1 for details).
Diethyl 1-benzyl-2,2-dioxo-4-phenyl-3,4,6,7,8,8a-hexahydro-1H- pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate top
Crystal data top
C26H31NO6SF(000) = 1032
Mr = 485.58Dx = 1.300 Mg m3
Monoclinic, P21/cMelting point: 419 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.5232 (9) ÅCell parameters from 3512 reflections
b = 16.8402 (12) Åθ = 2.4–23.8°
c = 12.1789 (9) ŵ = 0.17 mm1
β = 116.568 (1)°T = 293 K
V = 2480.7 (3) Å3Block, colourless
Z = 40.22 × 0.18 × 0.15 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3885 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
ω scansh = 1516
23528 measured reflectionsk = 1919
4360 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.6606P]
where P = (Fo2 + 2Fc2)/3
4360 reflections(Δ/σ)max = 0.001
328 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C26H31NO6SV = 2480.7 (3) Å3
Mr = 485.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5232 (9) ŵ = 0.17 mm1
b = 16.8402 (12) ÅT = 293 K
c = 12.1789 (9) Å0.22 × 0.18 × 0.15 mm
β = 116.568 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3885 reflections with I > 2σ(I)
23528 measured reflectionsRint = 0.023
4360 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
4360 reflectionsΔρmin = 0.21 e Å3
328 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.15741 (3)0.92139 (2)0.43420 (4)0.0492 (1)
O3A0.35985 (10)0.97564 (9)0.43234 (14)0.0719 (5)
O3B0.29527 (10)1.07744 (8)0.30412 (13)0.0659 (5)
O4A0.15678 (12)0.88688 (9)0.70359 (14)0.0746 (5)
O4B0.31214 (10)0.83490 (7)0.71181 (12)0.0603 (4)
O110.04484 (10)0.91684 (8)0.41508 (13)0.0635 (5)
O120.20400 (11)0.85244 (7)0.40719 (12)0.0621 (4)
N10.22020 (11)1.09127 (8)0.53463 (13)0.0514 (4)
C3B10.4011 (11)1.0955 (8)0.3087 (12)0.091 (4)0.600
C20.13365 (14)1.07966 (10)0.40838 (16)0.0518 (5)
C3C10.4416 (7)1.1711 (6)0.3650 (10)0.177 (5)0.600
C30.16594 (12)1.00898 (9)0.34934 (15)0.0475 (5)
C3A0.28510 (13)1.01706 (10)0.36781 (16)0.0505 (5)
C40.24346 (13)0.94980 (9)0.59187 (15)0.0476 (5)
C4A0.23023 (14)0.88740 (10)0.67482 (16)0.0524 (5)
C4B0.30779 (17)0.77085 (12)0.79068 (19)0.0686 (7)
C4C0.3898 (2)0.71084 (15)0.7988 (3)0.0970 (10)
C50.21555 (13)1.03327 (10)0.62232 (16)0.0505 (5)
C60.20688 (18)1.17373 (11)0.5649 (2)0.0677 (7)
C70.19111 (19)1.21696 (11)0.4504 (2)0.0739 (7)
C80.11953 (17)1.16161 (11)0.34662 (19)0.0662 (7)
C310.07930 (13)1.00024 (11)0.21296 (16)0.0562 (6)
C320.09916 (13)0.93866 (10)0.13463 (16)0.0524 (5)
C330.16040 (15)0.95665 (12)0.07280 (17)0.0624 (6)
C340.17452 (18)0.90259 (14)0.00374 (19)0.0717 (8)
C350.12652 (19)0.82867 (13)0.02086 (19)0.0738 (7)
C360.0654 (2)0.80987 (13)0.0397 (2)0.0793 (8)
C370.05118 (16)0.86437 (12)0.11638 (19)0.0683 (7)
C510.29799 (15)1.05548 (10)0.75148 (17)0.0546 (6)
C520.2635 (2)1.06714 (12)0.8413 (2)0.0710 (8)
C530.3373 (2)1.08980 (14)0.9581 (2)0.0883 (10)
C540.4456 (2)1.10084 (14)0.9869 (2)0.0895 (9)
C550.48211 (19)1.09012 (14)0.8991 (2)0.0857 (9)
C560.40837 (16)1.06721 (12)0.7808 (2)0.0683 (7)
C3B20.4149 (13)1.0937 (6)0.3395 (18)0.062 (4)0.400
C3C20.4129 (7)1.1751 (5)0.2913 (6)0.069 (3)0.400
H3B20.394401.095700.226000.1100*0.600
H3C40.393401.212300.315000.2650*0.600
H40.320700.949700.606000.0570*
H3C50.514701.179500.372600.2650*0.600
H50.141001.032800.616700.0610*
H3C60.443901.172200.444900.2650*0.600
H6A0.272101.192400.635700.0810*
H6B0.142901.179500.580400.0810*
H7A0.261601.226400.449600.0890*
H7B0.154301.267400.443800.0890*
H8A0.144501.160300.283300.0790*
H8B0.042801.178300.310200.0790*
H4B10.234400.747600.756000.0820*
H4B20.324900.791200.871700.0820*
H4C10.373600.692500.717800.1450*
H4C20.387000.666900.847500.1450*
H4C30.462400.733900.836200.1450*
H31A0.008500.988600.211600.0670*
H31B0.072401.051400.173700.0670*
H330.192901.006500.083100.0750*
H340.216600.916000.044000.0860*
H350.135500.792000.072800.0890*
H360.033100.759900.029100.0950*
H370.008800.850800.156200.0820*
H520.189601.059600.822600.0850*
H530.312801.097601.017500.1060*
H540.495201.115701.066200.1070*
H550.556201.098200.918800.1030*
H560.433101.059800.721500.0820*
H3B10.453701.054500.354900.1100*0.600
H20.064601.066300.411800.0620*
H3B30.458901.091900.427800.0740*0.400
H3B40.444201.055700.301800.0740*0.400
H3C10.360301.177100.206200.1030*0.400
H3C20.485001.188300.299700.1030*0.400
H3C30.392101.212400.336900.1030*0.400
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0454 (2)0.0417 (2)0.0580 (3)0.0019 (2)0.0209 (2)0.0040 (2)
O3A0.0435 (7)0.0786 (9)0.0905 (10)0.0157 (6)0.0273 (7)0.0259 (8)
O3B0.0477 (7)0.0663 (8)0.0768 (9)0.0028 (6)0.0218 (6)0.0149 (7)
O4A0.0731 (9)0.0739 (9)0.0948 (10)0.0031 (7)0.0537 (8)0.0090 (8)
O4B0.0588 (7)0.0533 (7)0.0682 (8)0.0028 (6)0.0279 (6)0.0108 (6)
O110.0481 (7)0.0620 (8)0.0773 (9)0.0112 (6)0.0252 (6)0.0060 (6)
O120.0750 (8)0.0440 (6)0.0674 (8)0.0058 (6)0.0320 (7)0.0032 (6)
N10.0450 (7)0.0401 (7)0.0608 (8)0.0022 (6)0.0163 (6)0.0026 (6)
C3B10.059 (5)0.136 (8)0.073 (5)0.009 (4)0.024 (4)0.012 (4)
C20.0408 (8)0.0450 (9)0.0628 (10)0.0054 (7)0.0172 (8)0.0000 (7)
C3C10.087 (5)0.147 (7)0.299 (13)0.048 (5)0.089 (8)0.088 (9)
C30.0389 (8)0.0423 (8)0.0561 (10)0.0023 (6)0.0165 (7)0.0012 (7)
C3A0.0429 (9)0.0500 (9)0.0533 (9)0.0002 (7)0.0169 (7)0.0006 (7)
C40.0411 (8)0.0438 (9)0.0560 (9)0.0004 (7)0.0200 (7)0.0023 (7)
C4A0.0516 (9)0.0478 (9)0.0575 (10)0.0047 (7)0.0241 (8)0.0052 (8)
C4B0.0715 (12)0.0615 (12)0.0663 (12)0.0063 (10)0.0249 (10)0.0130 (9)
C4C0.1060 (19)0.0645 (14)0.119 (2)0.0164 (13)0.0489 (16)0.0299 (14)
C50.0422 (8)0.0453 (9)0.0622 (10)0.0011 (7)0.0218 (8)0.0054 (7)
C60.0679 (12)0.0431 (10)0.0787 (13)0.0041 (8)0.0207 (10)0.0070 (9)
C70.0739 (13)0.0438 (10)0.0942 (15)0.0042 (9)0.0289 (11)0.0022 (10)
C80.0622 (11)0.0486 (10)0.0777 (13)0.0125 (8)0.0224 (10)0.0064 (9)
C310.0405 (9)0.0590 (10)0.0583 (10)0.0040 (7)0.0124 (8)0.0015 (8)
C320.0403 (8)0.0545 (10)0.0495 (9)0.0000 (7)0.0085 (7)0.0015 (7)
C330.0599 (11)0.0599 (11)0.0597 (11)0.0040 (9)0.0199 (9)0.0026 (9)
C340.0684 (13)0.0833 (15)0.0618 (12)0.0042 (11)0.0278 (10)0.0008 (11)
C350.0768 (14)0.0715 (13)0.0579 (11)0.0145 (11)0.0165 (10)0.0062 (10)
C360.0844 (15)0.0594 (12)0.0753 (14)0.0124 (11)0.0190 (12)0.0104 (10)
C370.0623 (11)0.0684 (12)0.0673 (12)0.0166 (10)0.0228 (10)0.0087 (10)
C510.0536 (10)0.0427 (9)0.0619 (11)0.0002 (7)0.0208 (8)0.0037 (8)
C520.0789 (14)0.0624 (12)0.0734 (13)0.0089 (10)0.0355 (11)0.0122 (10)
C530.118 (2)0.0741 (15)0.0689 (14)0.0171 (14)0.0382 (14)0.0137 (11)
C540.109 (2)0.0680 (14)0.0611 (13)0.0189 (13)0.0109 (13)0.0026 (11)
C550.0618 (13)0.0702 (14)0.0918 (17)0.0102 (10)0.0045 (12)0.0033 (12)
C560.0539 (11)0.0655 (12)0.0722 (13)0.0026 (9)0.0164 (9)0.0039 (10)
C3B20.036 (4)0.050 (4)0.089 (9)0.003 (3)0.018 (5)0.030 (4)
C3C20.074 (5)0.054 (4)0.083 (4)0.019 (3)0.040 (4)0.014 (3)
Geometric parameters (Å, º) top
S1—O111.4354 (16)C55—C561.391 (3)
S1—O121.4279 (14)C3B1—H3B10.9700
S1—C31.8341 (16)C3B1—H3B20.9700
S1—C41.8087 (17)C2—H20.9800
O3A—C3A1.190 (2)C3C1—H3C40.9600
O3B—C3B11.440 (16)C3C1—H3C50.9600
O3B—C3A1.323 (2)C3C1—H3C60.9600
O3B—C3B21.50 (2)C3B2—H3B30.9700
O4A—C4A1.192 (3)C3B2—H3B40.9700
O4B—C4A1.329 (2)C4—H40.9800
O4B—C4B1.463 (2)C3C2—H3C10.9600
N1—C21.471 (2)C3C2—H3C30.9600
N1—C51.469 (2)C3C2—H3C20.9600
N1—C61.468 (2)C4B—H4B20.9700
C3B1—C3C11.434 (17)C4B—H4B10.9700
C2—C31.551 (2)C4C—H4C20.9600
C2—C81.542 (3)C4C—H4C30.9600
C3—C3A1.530 (3)C4C—H4C10.9600
C3—C311.553 (2)C5—H50.9800
C3B2—C3C21.487 (15)C6—H6B0.9700
C4—C4A1.523 (2)C6—H6A0.9700
C4—C51.543 (2)C7—H7A0.9700
C4B—C4C1.471 (4)C7—H7B0.9700
C5—C511.513 (3)C8—H8A0.9700
C6—C71.501 (3)C8—H8B0.9700
C7—C81.520 (3)C31—H31B0.9700
C31—C321.512 (3)C31—H31A0.9700
C32—C331.379 (3)C33—H330.9300
C32—C371.381 (3)C34—H340.9300
C33—C341.376 (3)C35—H350.9300
C34—C351.376 (3)C36—H360.9300
C35—C361.369 (4)C37—H370.9300
C36—C371.383 (3)C52—H520.9300
C51—C561.385 (3)C53—H530.9300
C51—C521.382 (3)C54—H540.9300
C52—C531.377 (3)C55—H550.9300
C53—C541.358 (4)C56—H560.9300
C54—C551.376 (4)
O11—S1—O12117.67 (9)H3C5—C3C1—H3C6110.00
O11—S1—C3106.32 (8)H3B3—C3B2—H3B4109.00
O11—S1—C4108.57 (9)O3B—C3B2—H3B3111.00
O12—S1—C3112.26 (8)O3B—C3B2—H3B4111.00
O12—S1—C4108.60 (8)C3C2—C3B2—H3B3111.00
C3—S1—C4102.28 (7)C3C2—C3B2—H3B4111.00
C3B1—O3B—C3A120.1 (5)C5—C4—H4108.00
C3B2—O3B—C3A110.7 (6)C4A—C4—H4108.00
C4A—O4B—C4B116.17 (16)S1—C4—H4108.00
C2—N1—C5113.51 (14)H3C1—C3C2—H3C3110.00
C2—N1—C6104.99 (14)C3B2—C3C2—H3C1109.00
C5—N1—C6113.35 (15)C3B2—C3C2—H3C2109.00
O3B—C3B1—C3C1111.5 (11)H3C2—C3C2—H3C3109.00
N1—C2—C3109.23 (15)H3C1—C3C2—H3C2109.00
N1—C2—C8104.95 (14)C3B2—C3C2—H3C3109.00
C3—C2—C8117.37 (16)C4C—C4B—H4B2110.00
S1—C3—C2104.73 (11)H4B1—C4B—H4B2109.00
S1—C3—C3A108.43 (11)C4C—C4B—H4B1110.00
S1—C3—C31108.60 (11)O4B—C4B—H4B1110.00
C2—C3—C3A111.10 (14)O4B—C4B—H4B2110.00
C2—C3—C31109.53 (14)C4B—C4C—H4C2110.00
C3A—C3—C31114.00 (14)C4B—C4C—H4C3110.00
O3B—C3B2—C3C2103.2 (11)C4B—C4C—H4C1109.00
O3A—C3A—O3B123.89 (19)H4C2—C4C—H4C3109.00
O3A—C3A—C3124.94 (16)H4C1—C4C—H4C2109.00
O3B—C3A—C3111.16 (15)H4C1—C4C—H4C3109.00
S1—C4—C5112.69 (12)N1—C5—H5109.00
C4A—C4—C5110.81 (15)C4—C5—H5109.00
S1—C4—C4A108.13 (11)C51—C5—H5109.00
O4A—C4A—O4B124.99 (17)N1—C6—H6A111.00
O4A—C4A—C4124.11 (17)H6A—C6—H6B109.00
O4B—C4A—C4110.90 (17)N1—C6—H6B111.00
O4B—C4B—C4C107.5 (2)C7—C6—H6A111.00
N1—C5—C4109.65 (14)C7—C6—H6B111.00
C4—C5—C51109.23 (14)C6—C7—H7B111.00
N1—C5—C51109.89 (14)C8—C7—H7A111.00
N1—C6—C7101.99 (16)C8—C7—H7B111.00
C6—C7—C8104.37 (17)C6—C7—H7A111.00
C2—C8—C7104.44 (16)H7A—C7—H7B109.00
C3—C31—C32118.54 (15)C2—C8—H8B111.00
C31—C32—C33120.88 (16)C7—C8—H8A111.00
C33—C32—C37117.70 (18)H8A—C8—H8B109.00
C31—C32—C37121.31 (18)C7—C8—H8B111.00
C32—C33—C34121.6 (2)C2—C8—H8A111.00
C33—C34—C35120.2 (2)C3—C31—H31A108.00
C34—C35—C36119.0 (2)H31A—C31—H31B107.00
C35—C36—C37120.7 (2)C32—C31—H31B108.00
C32—C37—C36120.9 (2)C3—C31—H31B108.00
C5—C51—C52120.4 (2)C32—C31—H31A108.00
C52—C51—C56118.83 (19)C34—C33—H33119.00
C5—C51—C56120.76 (18)C32—C33—H33119.00
C51—C52—C53120.8 (3)C35—C34—H34120.00
C52—C53—C54120.3 (2)C33—C34—H34120.00
C53—C54—C55120.1 (2)C34—C35—H35120.00
C54—C55—C56120.1 (2)C36—C35—H35120.00
C51—C56—C55119.8 (2)C37—C36—H36120.00
O3B—C3B1—H3B1109.00C35—C36—H36120.00
O3B—C3B1—H3B2109.00C32—C37—H37120.00
C3C1—C3B1—H3B1109.00C36—C37—H37120.00
C3C1—C3B1—H3B2109.00C51—C52—H52120.00
H3B1—C3B1—H3B2108.00C53—C52—H52120.00
N1—C2—H2108.00C52—C53—H53120.00
C3—C2—H2108.00C54—C53—H53120.00
C8—C2—H2108.00C55—C54—H54120.00
C3B1—C3C1—H3C4109.00C53—C54—H54120.00
C3B1—C3C1—H3C5109.00C56—C55—H55120.00
C3B1—C3C1—H3C6110.00C54—C55—H55120.00
H3C4—C3C1—H3C5109.00C51—C56—H56120.00
H3C4—C3C1—H3C6110.00C55—C56—H56120.00
O11—S1—C3—C260.76 (13)S1—C3—C3A—O3B177.24 (12)
O11—S1—C3—C3A179.45 (11)C2—C3—C3A—O3A110.7 (2)
O11—S1—C3—C3156.19 (14)C2—C3—C3A—O3B68.19 (18)
O12—S1—C3—C2169.24 (12)C31—C3—C3A—O3A125.01 (19)
O12—S1—C3—C3A50.56 (13)C31—C3—C3A—O3B56.15 (19)
O12—S1—C3—C3173.80 (14)S1—C3—C31—C3270.74 (18)
C4—S1—C3—C253.02 (13)C2—C3—C31—C32175.43 (15)
C4—S1—C3—C3A65.66 (13)C3A—C3—C31—C3250.3 (2)
C4—S1—C3—C31169.97 (12)S1—C4—C4A—O4A83.5 (2)
O11—S1—C4—C4A59.37 (14)S1—C4—C4A—O4B97.50 (15)
O11—S1—C4—C563.46 (14)C5—C4—C4A—O4A40.5 (2)
O12—S1—C4—C4A69.69 (15)C5—C4—C4A—O4B138.54 (15)
O12—S1—C4—C5167.49 (13)S1—C4—C5—N154.12 (18)
C3—S1—C4—C4A171.48 (13)S1—C4—C5—C51174.60 (13)
C3—S1—C4—C548.66 (15)C4A—C4—C5—N1175.43 (15)
C3A—O3B—C3B1—C3C1114.7 (9)C4A—C4—C5—C5164.1 (2)
C3B1—O3B—C3A—O3A1.1 (7)N1—C5—C51—C52123.55 (18)
C3B1—O3B—C3A—C3180.0 (6)N1—C5—C51—C5654.2 (2)
C4B—O4B—C4A—O4A2.0 (3)C4—C5—C51—C52116.12 (19)
C4B—O4B—C4A—C4179.00 (14)C4—C5—C51—C5666.2 (2)
C4A—O4B—C4B—C4C167.85 (18)N1—C6—C7—C839.0 (2)
C5—N1—C2—C377.18 (19)C6—C7—C8—C219.6 (2)
C5—N1—C2—C8156.15 (16)C3—C31—C32—C3387.6 (2)
C6—N1—C2—C3158.50 (16)C3—C31—C32—C3796.5 (2)
C6—N1—C2—C831.8 (2)C31—C32—C33—C34176.65 (19)
C2—N1—C5—C466.77 (19)C37—C32—C33—C340.6 (3)
C2—N1—C5—C51173.16 (15)C31—C32—C37—C36176.75 (19)
C6—N1—C5—C4173.57 (16)C33—C32—C37—C360.7 (3)
C6—N1—C5—C5153.5 (2)C32—C33—C34—C350.4 (3)
C2—N1—C6—C744.3 (2)C33—C34—C35—C360.3 (3)
C5—N1—C6—C7168.71 (17)C34—C35—C36—C370.5 (4)
N1—C2—C3—S167.82 (16)C35—C36—C37—C320.7 (3)
N1—C2—C3—C3A49.04 (18)C5—C51—C52—C53177.94 (18)
N1—C2—C3—C31175.88 (14)C56—C51—C52—C530.2 (3)
C8—C2—C3—S1172.95 (15)C5—C51—C56—C55177.91 (18)
C8—C2—C3—C3A70.2 (2)C52—C51—C56—C550.2 (3)
C8—C2—C3—C3156.7 (2)C51—C52—C53—C540.2 (3)
N1—C2—C8—C77.0 (2)C52—C53—C54—C550.6 (4)
C3—C2—C8—C7128.48 (19)C53—C54—C55—C560.6 (4)
S1—C3—C3A—O3A3.9 (2)C54—C55—C56—C510.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O11i0.982.513.447 (2)159
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC26H31NO6S
Mr485.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.5232 (9), 16.8402 (12), 12.1789 (9)
β (°) 116.568 (1)
V3)2480.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.22 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23528, 4360, 3885
Rint0.023
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.05
No. of reflections4360
No. of parameters328
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.21

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O11i0.982.513.447 (2)159
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

AC and SAB sincerely thank the Vice-Chancellor and Management of Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement.

References

First citationArmenise, D., Trapani, G., Arrivo, V. & Morlacchi, F. (1991). Farmaco, 46, 1023–1032.  PubMed CAS Web of Science Google Scholar
First citationArmenise, D., Trapani, G., Stasi, F. & Morlacchi, F. (1998). Arch. Pharm. 331, 54–58.  CrossRef CAS Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemming, K. & Patel, N. (2004). Tetrahedron Lett. 45, 7553–7556.  Web of Science CrossRef CAS Google Scholar
First citationKoketsu, M., Tanaka, K., Takenaka, Y., Kwong, C. D. & Ishihara, H. (2002). Eur. J. Pharm. Sci. 15, 307–310.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKueh, A. J., Marriott, P. J., Wynne, P. M. & Vine, J. H. (2003). J. Chromatogr. A, 1000, 109–124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoriyama, H., Tsukida, T., Inoue, Y., Yokota, K., Yoshino, K., Kondo, H., Miura, N. & Nishimura, S. (2004). J. Med. Chem. 47, 1930–1938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds