metal-organic compounds
Poly[di-μ-glycinato-copper(II)]: a two-dimensional coordination polymer
aMax Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
*Correspondence e-mail: f.gschwind@fkf.mpg.de
The title coordination polymer, [Cu(C2H4NO2)2]n, is two-dimensional and consists of a distorted octahedral copper with two bidentate glycine ligands chelating the metal through the O and N atoms in a trans-square-planar configuration. The two axial coordination sites are occupied by carbonyl O atoms of neighbouring glycine molecules. The Cu—O distances for the axial O atoms [2.648 (2) and 2.837 (2) Å] are considerably longer than both the Cu—O [1.9475 (17) and 1.9483 (18) Å] and Cu—N [1.988 (2) and 1.948 (2) Å] distances in the equatorial plane, which indicates a strong Jahn–Teller effect. In the crystal, the two-dimensional networks are arranged parallel to (001) and are linked via N—H⋯O hydrogen bonds, forming a three-dimensional arrangement.
Related literature
For the first work on cadmium glycinato complexes, see: Low et al. (1959). For similar mixed-metal glycinato complexes with copper(II), see: Papavinasam (1991); Davies et al. (2003); Low et al. (1959); Bi et al. (2006); Zhang et al. (2005). For further studies on cadmium–glycinato complexes, see: Barrie et al. (1993). For the properties and structure of a three-dimensional copper–glycinate polymer, see: Chen et al. (2009). For the synthesis of [NaCu6(gly)3(ClO4)3(H2O)]n(ClO4)2n, see: Aromi et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2009); cell X-AREA; data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811031503/su2280sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811031503/su2280Isup2.hkl
The title compound was prepared by dissolving 20 mg of [NaCu6(gly)3(ClO4)3(H2O)]n (ClO4)2n (Aromi et al., 2008) in 5 ml DMSO. Crystals could be grown out of the blue solution by slow diffusion of THF.
The NH-atoms were located in difference electron-density maps and were freely refined. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.97 Å, with Uiso(H) = 1.2Ueq(C).
Data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Part of the polymeric structure of the title compound, showing the numbering scheme and the displacement ellipsoids drawn at the 50% probability level [H atoms have been omitted for clarity; symmetry codes: (i) -x-1/2, y+1/2, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2]. | |
Fig. 2. A view along the x-axis of the three-dimensional hydrogen bonded network of the title compound built up from the two-dimenional nets. The N-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; H-atoms not involved in these reactions have been omitted for clarity). |
[Cu(C2H4NO2)2] | F(000) = 428 |
Mr = 211.66 | Dx = 2.195 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5867 reflections |
a = 9.4265 (19) Å | θ = 2.3–30.5° |
b = 5.1159 (10) Å | µ = 3.37 mm−1 |
c = 13.912 (3) Å | T = 298 K |
β = 107.36 (3)° | Block, blue |
V = 640.4 (2) Å3 | 0.21 × 0.15 × 0.09 mm |
Z = 4 |
Stoe IPDS 2 diffractometer | 1876 independent reflections |
Radiation source: fine-focus sealed tube | 1561 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 6.67 pixels mm-1 | θmax = 30.0°, θmin = 2.3° |
rotation method scans | h = −13→13 |
Absorption correction: integration (X-SHAPE and X-RED; Stoe & Cie, 2009) | k = −7→6 |
Tmin = 0.549, Tmax = 0.692 | l = −19→17 |
9012 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0447P)2] where P = (Fo2 + 2Fc2)/3 |
1876 reflections | (Δ/σ)max = 0.001 |
116 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
[Cu(C2H4NO2)2] | V = 640.4 (2) Å3 |
Mr = 211.66 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.4265 (19) Å | µ = 3.37 mm−1 |
b = 5.1159 (10) Å | T = 298 K |
c = 13.912 (3) Å | 0.21 × 0.15 × 0.09 mm |
β = 107.36 (3)° |
Stoe IPDS 2 diffractometer | 1876 independent reflections |
Absorption correction: integration (X-SHAPE and X-RED; Stoe & Cie, 2009) | 1561 reflections with I > 2σ(I) |
Tmin = 0.549, Tmax = 0.692 | Rint = 0.048 |
9012 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.42 e Å−3 |
1876 reflections | Δρmin = −0.58 e Å−3 |
116 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | −0.00228 (3) | 0.02678 (5) | 0.26465 (2) | 0.0301 (1) | |
O1 | −0.17587 (17) | −0.1989 (3) | 0.21922 (12) | 0.0270 (4) | |
O2 | −0.3924 (2) | −0.2410 (4) | 0.10081 (14) | 0.0408 (6) | |
O3 | 0.17471 (18) | 0.2461 (3) | 0.30307 (13) | 0.0317 (4) | |
O4 | 0.41730 (18) | 0.2283 (4) | 0.38098 (15) | 0.0392 (5) | |
N1 | −0.1151 (2) | 0.2642 (4) | 0.15535 (16) | 0.0283 (5) | |
N2 | 0.1137 (2) | −0.2140 (4) | 0.37098 (17) | 0.0302 (6) | |
C1 | −0.2742 (2) | −0.1247 (4) | 0.13882 (17) | 0.0260 (6) | |
C2 | −0.2384 (3) | 0.1181 (4) | 0.08778 (17) | 0.0304 (6) | |
C3 | 0.2916 (2) | 0.1351 (4) | 0.36051 (16) | 0.0253 (5) | |
C4 | 0.2694 (2) | −0.1268 (4) | 0.40529 (17) | 0.0282 (6) | |
H1A | 0.112 (5) | −0.378 (10) | 0.340 (3) | 0.076 (13)* | |
H1B | 0.082 (4) | −0.233 (7) | 0.418 (3) | 0.045 (9)* | |
H2A | −0.21240 | 0.06770 | 0.02790 | 0.0360* | |
H2B | −0.32560 | 0.22930 | 0.06700 | 0.0360* | |
H3A | −0.153 (4) | 0.393 (7) | 0.184 (2) | 0.045 (9)* | |
H3B | −0.061 (4) | 0.342 (8) | 0.124 (3) | 0.061 (11)* | |
H4A | 0.33140 | −0.25670 | 0.38670 | 0.0340* | |
H4B | 0.30110 | −0.11300 | 0.47810 | 0.0340* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0249 (1) | 0.0214 (1) | 0.0380 (2) | −0.0026 (1) | −0.0001 (1) | 0.0078 (1) |
O1 | 0.0262 (7) | 0.0191 (7) | 0.0334 (8) | −0.0016 (5) | 0.0052 (6) | 0.0030 (6) |
O2 | 0.0375 (9) | 0.0391 (10) | 0.0389 (10) | −0.0142 (7) | 0.0010 (7) | 0.0043 (7) |
O3 | 0.0277 (7) | 0.0216 (7) | 0.0408 (9) | −0.0028 (6) | 0.0028 (6) | 0.0046 (6) |
O4 | 0.0275 (8) | 0.0350 (9) | 0.0510 (11) | −0.0060 (7) | 0.0057 (7) | 0.0016 (8) |
N1 | 0.0274 (9) | 0.0214 (8) | 0.0340 (10) | −0.0019 (7) | 0.0062 (7) | 0.0055 (7) |
N2 | 0.0291 (9) | 0.0253 (9) | 0.0331 (11) | −0.0023 (7) | 0.0046 (8) | 0.0068 (8) |
C1 | 0.0282 (10) | 0.0234 (9) | 0.0262 (10) | −0.0011 (7) | 0.0080 (8) | −0.0020 (8) |
C2 | 0.0351 (11) | 0.0263 (10) | 0.0264 (11) | −0.0053 (8) | 0.0041 (8) | 0.0017 (8) |
C3 | 0.0267 (9) | 0.0238 (9) | 0.0246 (10) | −0.0018 (7) | 0.0066 (8) | −0.0025 (7) |
C4 | 0.0279 (10) | 0.0272 (10) | 0.0272 (11) | 0.0017 (8) | 0.0049 (8) | 0.0043 (8) |
Cu1—O1 | 1.9475 (17) | N2—C4 | 1.471 (3) |
Cu1—O3 | 1.9483 (18) | N1—H3B | 0.86 (4) |
Cu1—N1 | 1.988 (2) | N1—H3A | 0.90 (4) |
Cu1—N2 | 1.984 (2) | N2—H1A | 0.94 (5) |
Cu1—O2i | 2.648 (2) | N2—H1B | 0.80 (4) |
Cu1—O4ii | 2.837 (2) | C1—C2 | 1.518 (3) |
O1—C1 | 1.279 (3) | C3—C4 | 1.518 (3) |
O2—C1 | 1.234 (3) | C2—H2A | 0.9700 |
O3—C3 | 1.284 (3) | C2—H2B | 0.9700 |
O4—C3 | 1.229 (3) | C4—H4A | 0.9700 |
N1—C2 | 1.463 (3) | C4—H4B | 0.9700 |
O1—Cu1—O3 | 176.59 (8) | H3A—N1—H3B | 105 (4) |
O1—Cu1—N1 | 84.73 (8) | C4—N2—H1A | 107 (3) |
O1—Cu1—N2 | 95.55 (8) | Cu1—N2—H1A | 106 (3) |
O1—Cu1—O2i | 92.26 (7) | Cu1—N2—H1B | 115 (3) |
O1—Cu1—O4ii | 80.68 (7) | C4—N2—H1B | 111 (3) |
O3—Cu1—N1 | 94.41 (8) | H1A—N2—H1B | 108 (4) |
O3—Cu1—N2 | 85.22 (8) | O2—C1—C2 | 119.5 (2) |
O2i—Cu1—O3 | 91.07 (7) | O1—C1—O2 | 123.9 (2) |
O3—Cu1—O4ii | 96.01 (7) | O1—C1—C2 | 116.60 (19) |
N1—Cu1—N2 | 178.27 (9) | N1—C2—C1 | 111.24 (19) |
O2i—Cu1—N1 | 92.22 (8) | O3—C3—O4 | 124.2 (2) |
O4ii—Cu1—N1 | 89.04 (8) | O3—C3—C4 | 116.60 (18) |
O2i—Cu1—N2 | 89.48 (8) | O4—C3—C4 | 119.3 (2) |
O4ii—Cu1—N2 | 89.32 (8) | N2—C4—C3 | 112.39 (18) |
O2i—Cu1—O4ii | 172.69 (7) | N1—C2—H2A | 109.00 |
Cu1—O1—C1 | 115.30 (14) | N1—C2—H2B | 109.00 |
Cu1iii—O2—C1 | 113.23 (15) | C1—C2—H2A | 109.00 |
Cu1—O3—C3 | 114.93 (14) | C1—C2—H2B | 109.00 |
Cu1iv—O4—C3 | 120.10 (16) | H2A—C2—H2B | 108.00 |
Cu1—N1—C2 | 108.68 (14) | N2—C4—H4A | 109.00 |
Cu1—N2—C4 | 109.16 (15) | N2—C4—H4B | 109.00 |
C2—N1—H3A | 108 (2) | C3—C4—H4A | 109.00 |
Cu1—N1—H3A | 107.6 (18) | C3—C4—H4B | 109.00 |
Cu1—N1—H3B | 114 (3) | H4A—C4—H4B | 108.00 |
C2—N1—H3B | 113 (3) | ||
N1—Cu1—O1—C1 | 6.99 (16) | N2—Cu1—O2i—C1i | −157.43 (17) |
N2—Cu1—O1—C1 | −171.29 (16) | O1—Cu1—O4ii—C3ii | −133.24 (18) |
O2i—Cu1—O1—C1 | 99.01 (15) | O3—Cu1—O4ii—C3ii | 47.61 (18) |
O4ii—Cu1—O1—C1 | −82.90 (15) | N1—Cu1—O4ii—C3ii | 141.95 (18) |
N1—Cu1—O3—C3 | −166.00 (16) | N2—Cu1—O4ii—C3ii | −37.51 (18) |
N2—Cu1—O3—C3 | 12.30 (16) | Cu1—O1—C1—O2 | −178.31 (18) |
O2i—Cu1—O3—C3 | 101.69 (16) | Cu1—O1—C1—C2 | 3.1 (2) |
O4ii—Cu1—O3—C3 | −76.51 (16) | Cu1iii—O2—C1—O1 | 32.3 (3) |
O1—Cu1—N1—C2 | −14.98 (16) | Cu1iii—O2—C1—C2 | −149.11 (17) |
O3—Cu1—N1—C2 | 161.71 (16) | Cu1—O3—C3—O4 | 169.39 (19) |
O2i—Cu1—N1—C2 | −107.04 (16) | Cu1—O3—C3—C4 | −11.0 (2) |
O4ii—Cu1—N1—C2 | 65.75 (16) | Cu1iv—O4—C3—O3 | −34.4 (3) |
O1—Cu1—N2—C4 | 166.43 (15) | Cu1iv—O4—C3—C4 | 146.03 (16) |
O3—Cu1—N2—C4 | −10.23 (15) | Cu1—N1—C2—C1 | 19.8 (2) |
O2i—Cu1—N2—C4 | −101.35 (15) | Cu1—N2—C4—C3 | 7.4 (2) |
O4ii—Cu1—N2—C4 | 85.86 (15) | O1—C1—C2—N1 | −15.8 (3) |
O1—Cu1—O2i—C1i | −61.90 (17) | O2—C1—C2—N1 | 165.5 (2) |
O3—Cu1—O2i—C1i | 117.36 (17) | O3—C3—C4—N2 | 2.1 (3) |
N1—Cu1—O2i—C1i | 22.91 (17) | O4—C3—C4—N2 | −178.3 (2) |
Symmetry codes: (i) −x−1/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x−1/2, y−1/2, −z+1/2; (iv) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1A···O3v | 0.94 (5) | 2.12 (5) | 3.029 (3) | 162 (4) |
N2—H1B···O2vi | 0.80 (4) | 2.49 (4) | 3.223 (3) | 154 (4) |
N1—H3A···O1vii | 0.90 (4) | 2.17 (4) | 2.994 (3) | 152 (3) |
N1—H3A···O1i | 0.90 (4) | 2.44 (4) | 3.003 (3) | 121 (3) |
N1—H3B···O4iv | 0.86 (4) | 2.41 (4) | 3.152 (3) | 145 (3) |
Symmetry codes: (i) −x−1/2, y+1/2, −z+1/2; (iv) −x+1/2, y+1/2, −z+1/2; (v) x, y−1, z; (vi) x+1/2, −y−1/2, z+1/2; (vii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2H4NO2)2] |
Mr | 211.66 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 9.4265 (19), 5.1159 (10), 13.912 (3) |
β (°) | 107.36 (3) |
V (Å3) | 640.4 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.37 |
Crystal size (mm) | 0.21 × 0.15 × 0.09 |
Data collection | |
Diffractometer | Stoe IPDS 2 diffractometer |
Absorption correction | Integration (X-SHAPE and X-RED; Stoe & Cie, 2009) |
Tmin, Tmax | 0.549, 0.692 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9012, 1876, 1561 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.704 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.075, 1.03 |
No. of reflections | 1876 |
No. of parameters | 116 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.42, −0.58 |
Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1A···O3i | 0.94 (5) | 2.12 (5) | 3.029 (3) | 162 (4) |
N2—H1B···O2ii | 0.80 (4) | 2.49 (4) | 3.223 (3) | 154 (4) |
N1—H3A···O1iii | 0.90 (4) | 2.17 (4) | 2.994 (3) | 152 (3) |
N1—H3A···O1iv | 0.90 (4) | 2.44 (4) | 3.003 (3) | 121 (3) |
N1—H3B···O4v | 0.86 (4) | 2.41 (4) | 3.152 (3) | 145 (3) |
Symmetry codes: (i) x, y−1, z; (ii) x+1/2, −y−1/2, z+1/2; (iii) x, y+1, z; (iv) −x−1/2, y+1/2, −z+1/2; (v) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
FG thanks the Swiss National Science Foundation for financial support.
References
Aromi, G., Novoa, J. J., Ribas-Arino, J., Igarashi, S. & Yukawa, Y. (2008). Inorg. Chim. Acta, 361, 3919–3925. CAS Google Scholar
Barrie, P. J., Gyani, A., Motevalli, M. & O'Brien, P. (1993). Inorg. Chem. 32, 3862–3867. CrossRef CAS Google Scholar
Bi, W., Mercier, N., Louvain, N. & Latroche, M. (2006). Eur. J. Inorg. Chem. 21, 4225–4228. CrossRef Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chen, P. J., Jiang, C., Yan, W. H., Liang, F. P. & Batten, S. R. (2009). Inorg. Chem. 48, 4674–4684. CrossRef CAS Google Scholar
Davies, O. H., Park, J. H. & Gillard, R. D. (2003). Inorg. Chim. Acta, 356, 69–84. CrossRef CAS Google Scholar
Low, B. W., Hirshfeld, F. L. & Richard, F. M. (1959). J. Am. Chem. Soc. 36, 4412-4416. CrossRef Google Scholar
Papavinasam, E. (1991). Z. Kristallogr. 197, 217–222. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2009). X-AREA, X-RED and X-SHAPE. Stoe & Cie GmBh, Damstadt, Germany, Google Scholar
Zhang, J. J., Hu, S. M., Xiang, S. C., Wang, L. S. & Wu, X. T. (2005). J. Mol. Struct. 748, 129–136. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Different metal glycine complexes and polymeric structures have been known since the 1960's. The first work on a cadmium glycinato complexe was done by (Low et al., 1959), and further studies were reported by (Barrie et al., 1993). Mixed metal glycinato complexes with copper(II) were investigated by (Papavinasam, 1991; Davies et al., 2003; Low et al., 1959).
The complexation of simple copper salts to amino acids is a well investigated reaction and various complexes and clusters have been reported (Low et al., 1959; Davies et al., 2003; Aromi et al., 2008; Bi et al., 2006; Zhang et al., 2005). A three-dimensional copper-glycinate coordination polymer has been reported on by (Chen et al., 2009).
While redissolving the copper cluster [NaCu6(gly)3(ClO4)3(H2O)]n (ClO4)2n (Aromi et al., 2008) in DMSO, blue crystals of the title compound were obtained and were characterized by X-ray diffraction.
The title compound is a two-dimensional coordination polymer (Fig. 1). It consists of a distorted octahedral copper coordination polyhedron with two bidentate glycine ligands chelating the metal through the oxygen and nitrogen atoms (O1, O3, N1, N2) in a trans square planar configuration. The two axial coordination sites are occupied by carbonyl oxygen atoms of the neighbouring glycine molecules (O2 and O4). The Cu—O distances are 2.648 (2) Å (Cu1—O2i) and 2.837 (2) Å (Cu1—O4ii) for the axial oxygen atoms [symmetry codes: (i) -x-1/2, y+1/2, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2]. In the equatorial plane the Cu-O distances are 1.9474 (15) and 1.9483 (16) Å for Cu1—O1 and Cu1—O3, respectively, while the Cu—N distances are 1.9883 (19) and 1.948 (2) Å for Cu1-N1 and Cu1—N2, respectively. These bond length differences indicate a strong Jahn-Teller effect.
In the crystal the two dimensional networks are linked via N-H···O hydrogen bonds to form a three-dimensional arrangement (Table 1 and Fig. 2).