organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2490-o2491

2-Methyl-5-nitro-1H-benzimidazol-6-amine dihydrate

aAnkara University, Department of Chemistry, 06100 Tandoğan, Ankara, Turkey, bAnadolu University, Faculty of Science, Department of Chemistry, 26470 Yenibağlar, Eskişehir, Turkey, and cHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 8 August 2011; accepted 23 August 2011; online 27 August 2011)

The title benzimidazole mol­ecule, C8H8N4O2·2H2O, is planar with a maximum deviation of 0.079 (2) Å (for one of the O atoms in the nitro group). It crystallized as a dihydrate and inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the uncoordinated water mol­ecules, and the nitro and amine groups, respectively. In the crystal, N—H⋯O, O—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules to form a three-dimensional network. A ππ contact between the benzene rings, [centroid–centroid distance = 3.588 (1) Å] may further stabilize the crystal structure.

Related literature

For the anti­tumor, antihelmintic, anti­bacterial, virucidal and fungucidal properties of benzimidazole derivatives, see: Refaat (2010[Refaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949-2956.]); Laryea et al. (2010[Laryea, D., Gullbo, J., Isakssoon, A., Larsson, R. & Nygren, P. (2010). Anti-Cancer Drugs, 21, 33-42.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Spasov et al. (1999[Spasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232-243.]); Soula & Luu-Duc (1986[Soula, C. & Luu-Duc, C. (1986). Lyon Pharm. 37, 297-302.]). For the coord­ination and corrosion inhibitor abilities of benzimidazoles, see: Kuznetsov & Kaza­nsky (2008[Kuznetsov, Y. I. & Kazansky, L. P. (2008). Russ. Chem. Rev. 77, 219-232.]); Subramanyam & Mayanna (1985[Subramanyam, N. C. & Mayanna, S. M. (1985). Corros. Sci. 25, 163-169.]). For the use of benzimidazole derivatives as photographic materials and dyes, see: Hoffmann et al. (2011[Hoffmann, H. S., Stefani, V., Benvenutti, E. V., Costa, T. M. H. & Gallas, M. R. (2011). Mater. Chem. Phys. 126, 97-101.]); Alamgir et al. (2007[Alamgir, M., Black, D. S. C. & Kumar, N. (2007). Top. Heterocycl. Chem. 9, 87-118.]). For related structures, see: Hökelek et al. (2002[Hökelek, T., Dinçer, S. & Kılıç, E. (2002). Cryst. Res. Technol. 37, 1138-1142.]); Dinçer et al. (2011[Dinçer, S., Gönülalan, G., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, o806-o807.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N4O2·2H2O

  • Mr = 228.22

  • Triclinic, [P \overline 1]

  • a = 7.0475 (3) Å

  • b = 7.2801 (3) Å

  • c = 10.9906 (4) Å

  • α = 76.754 (3)°

  • β = 71.686 (2)°

  • γ = 71.809 (2)°

  • V = 503.18 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.43 × 0.19 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.988

  • 8838 measured reflections

  • 2533 independent reflections

  • 1800 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.03

  • 2533 reflections

  • 174 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O3i 0.94 (2) 1.87 (2) 2.7735 (18) 160.4 (19)
N2—H21⋯O1ii 0.88 (2) 2.39 (2) 3.2212 (18) 158.8 (17)
N2—H21⋯O4iii 0.88 (2) 2.59 (2) 3.163 (2) 124.1 (15)
N2—H22⋯O2 0.85 (2) 2.03 (2) 2.6387 (19) 127.3 (19)
O3—H31⋯N3iv 0.85 (2) 1.89 (2) 2.7354 (18) 176 (2)
O3—H32⋯O4v 0.89 (3) 1.90 (3) 2.776 (2) 168 (3)
O4—H41⋯O3 0.90 (2) 1.88 (3) 2.7727 (19) 170 (4)
O4—H42⋯O1vi 0.85 (2) 2.53 (2) 3.0930 (17) 125 (2)
O4—H42⋯O2vi 0.85 (2) 2.17 (2) 3.0126 (17) 171 (3)
C5—H5⋯O1ii 0.93 2.54 3.3556 (19) 146
Symmetry codes: (i) -x, -y+2, -z+2; (ii) x, y+1, z; (iii) -x+1, -y+2, -z+1; (iv) -x, -y+1, -z+2; (v) -x, -y+1, -z+1; (vi) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzimidazole derivatives are privileged structures in pharmaceutical chemistry because of their biological activities and clinical applications. They exhibit antitumor, anthelmintic, antibacterial, virucidal and fungucidal properties (Refaat, 2010; Laryea et al., 2010; Horton et al., 2003; Spasov et al., 1999; Soula & Luu-Duc, 1986). In addition to their biological activities, a review of the literature reveals that there are numerous studies including the coordination and corrosion inhibitor abilities of benzimidazoles (Kuznetsov & Kazansky, 2008; Subramanyam & Mayanna, 1985). Some of these derivatives, particularly nitro derivatives, are used as photographic materials in photography and on the other hand, the development of the chemistry of the benzimidazole dyes has been remarkable (Hoffmann et al., 2011; Alamgir et al., 2007). As a part of our ongoing investigations of benzimidazole derivatives, the title compound was synthesized and its crystal structure is reported herein.

The title molecule, (Fig. 1), consists of an imidazole ring with CH3, NO2 and NH2 substituents at positions 2, 5 and 6, respectively. It crystalllized with two uncoordinated water molecules. The intramolecular O—H···O and N—H···O hydrogen bonds (Table 1) link the uncoordinated water molecules and the NH2 and NO2 groups, respectively. The imidazole ring system is planar with a maximum deviation of -0.010 (2) Å (for atom C4). Atoms C8, O1, O2, N1 and N2 are 0.032 (2), 0.029 (2), -0.008 (2), -0.001 (1) and 0.079 (2) Å away from the imidazole ring mean plane, respectively.

In the crystal of the title compound N—H···O, O—H···N, O—H···O and C—H···O hydrogen bonds link the molecules to form a three-dimensional network (Table 1 and Fig. 2). The ππ contact between the benzene rings, Cg1—Cg1i, [symmetry code: (i) 1 - x, - y, - z, where Cg1 is the centroid of ring (C1—C6)], may further stabilize the structure, with a centroid-centroid distance of 3.588 (1) Å.

The crystal structures of similar benzimidazole derivatives, (C7H4N4O4).H2O (Hökelek et al., 2002) and C8H7N4O4+. Cl- (Dinçer et al., 2011) have been reported.

Related literature top

For literature on antitumor, anthelmintic, antibacterial, virucidal and fungucidal properties of benzimidazole derivatives, see: Refaat (2010); Laryea et al. (2010); Horton et al. (2003); Spasov et al. (1999); Soula & Luu-Duc (1986). For literature on the coordination and corrosion inhibitor abilities of benzimidazoles, see: Kuznetsov & Kazansky (2008); Subramanyam & Mayanna (1985). For literature on the use of benzimidazole derivatives as photographic materials and dyes, see: Hoffmann et al. (2011); Alamgir et al. (2007). For a related structure, see: Hökelek et al. (2002); Dinçer et al. (2011).

Experimental top

For the preparation of the title compound, a solution of Na2S.9H2O (35.0 g) and S (9.0 g) in warm water (150 ml) was added slowly to a solution of 2-methyl-5,6-dinitro-1H-benzimidazole (30.0 g) in water (150 ml,) and the mixture was warmed at 333-343 K for 20 min. After the reaction was completed, the mixture was filtered, acidified with dilute HCl and heated until termination of H2S and SO2 formation. After cooling, the reaction mixture was treated with dilute ammonium hydroxide. The precipitate was filtered and crystallized from ethanol to give red rod-shaped crystals of the the title compound (m.p. 563-565 K).

Refinement top

Atoms H4 (of the NH group), H21 and H22 (of the NH2 group), H31, H32, H41 and H42 (of the water molecules) were located in a difference Fourier map and were freely refined. The C-bound H-atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, for aromatic and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the crystallographic labelling scheme and displacement ellipsoids drawn at the 50% probability level. The O-H···O and N-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
2-Methyl-5-nitro-1H-benzimidazol-6-amine dihydrate top
Crystal data top
C8H8N4O2·2H2OZ = 2
Mr = 228.22F(000) = 240
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0475 (3) ÅCell parameters from 2308 reflections
b = 7.2801 (3) Åθ = 3.0–28.1°
c = 10.9906 (4) ŵ = 0.12 mm1
α = 76.754 (3)°T = 100 K
β = 71.686 (2)°Rod-shaped, red
γ = 71.809 (2)°0.43 × 0.19 × 0.10 mm
V = 503.18 (4) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2533 independent reflections
Radiation source: fine-focus sealed tube1800 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 28.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 98
Tmin = 0.973, Tmax = 0.988k = 99
8838 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.1317P]
where P = (Fo2 + 2Fc2)/3
2533 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.32 e Å3
4 restraintsΔρmin = 0.31 e Å3
Crystal data top
C8H8N4O2·2H2Oγ = 71.809 (2)°
Mr = 228.22V = 503.18 (4) Å3
Triclinic, P1Z = 2
a = 7.0475 (3) ÅMo Kα radiation
b = 7.2801 (3) ŵ = 0.12 mm1
c = 10.9906 (4) ÅT = 100 K
α = 76.754 (3)°0.43 × 0.19 × 0.10 mm
β = 71.686 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2533 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1800 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.988Rint = 0.036
8838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0434 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
2533 reflectionsΔρmin = 0.31 e Å3
174 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42086 (18)0.73704 (16)0.82496 (11)0.0228 (3)
O20.52698 (19)0.97324 (17)0.68889 (11)0.0249 (3)
O30.0077 (2)0.36444 (17)0.67272 (12)0.0217 (3)
H310.006 (3)0.245 (2)0.697 (2)0.036 (6)*
H320.104 (4)0.434 (5)0.646 (3)0.099 (11)*
O40.3036 (2)0.39114 (18)0.43791 (12)0.0254 (3)
H410.218 (5)0.370 (6)0.517 (2)0.148 (17)*
H420.339 (4)0.292 (3)0.400 (2)0.051 (7)*
N10.4333 (2)0.90831 (19)0.79926 (13)0.0182 (3)
N20.4577 (2)1.3147 (2)0.76156 (15)0.0218 (3)
H210.466 (3)1.434 (3)0.7566 (18)0.027 (5)*
H220.521 (3)1.251 (3)0.698 (2)0.031 (6)*
N30.0180 (2)1.01263 (18)1.24009 (12)0.0167 (3)
N40.0340 (2)1.32261 (19)1.20831 (13)0.0164 (3)
H40.013 (3)1.445 (3)1.231 (2)0.040 (6)*
C10.3378 (2)1.0322 (2)0.89745 (15)0.0158 (3)
C20.2319 (2)0.9471 (2)1.01679 (15)0.0156 (3)
H20.22690.81781.02930.019*
C30.1361 (2)1.0585 (2)1.11424 (15)0.0148 (3)
C40.1479 (2)1.2541 (2)1.09322 (15)0.0149 (3)
C50.2526 (2)1.3396 (2)0.97763 (15)0.0162 (3)
H50.25721.46860.96740.019*
C60.3532 (2)1.2294 (2)0.87459 (15)0.0163 (3)
C70.0386 (2)1.1733 (2)1.29146 (15)0.0157 (3)
C80.1690 (3)1.1990 (2)1.42471 (15)0.0206 (4)
H8A0.28291.31291.42150.031*
H8B0.08761.21481.47520.031*
H8C0.22101.08611.46370.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0276 (7)0.0150 (6)0.0264 (6)0.0065 (5)0.0035 (5)0.0080 (5)
O20.0287 (7)0.0235 (6)0.0194 (6)0.0106 (5)0.0037 (5)0.0061 (5)
O30.0281 (7)0.0135 (6)0.0253 (6)0.0070 (5)0.0066 (5)0.0045 (5)
O40.0267 (7)0.0215 (7)0.0261 (7)0.0046 (5)0.0012 (6)0.0099 (5)
N10.0168 (7)0.0178 (7)0.0215 (7)0.0041 (5)0.0047 (6)0.0066 (5)
N20.0257 (8)0.0174 (7)0.0207 (8)0.0083 (6)0.0001 (6)0.0043 (6)
N30.0174 (7)0.0154 (7)0.0180 (7)0.0042 (5)0.0042 (6)0.0046 (5)
N40.0191 (7)0.0129 (7)0.0175 (7)0.0041 (5)0.0038 (6)0.0043 (5)
C10.0147 (8)0.0156 (8)0.0180 (8)0.0023 (6)0.0047 (6)0.0061 (6)
C20.0151 (8)0.0131 (7)0.0210 (8)0.0038 (6)0.0064 (6)0.0045 (6)
C30.0139 (8)0.0147 (7)0.0175 (8)0.0043 (6)0.0063 (6)0.0021 (6)
C40.0140 (8)0.0142 (7)0.0186 (8)0.0027 (6)0.0066 (6)0.0043 (6)
C50.0177 (8)0.0112 (7)0.0211 (8)0.0039 (6)0.0067 (7)0.0025 (6)
C60.0140 (8)0.0175 (8)0.0185 (8)0.0038 (6)0.0062 (6)0.0022 (6)
C70.0158 (8)0.0146 (7)0.0187 (8)0.0044 (6)0.0065 (6)0.0031 (6)
C80.0239 (9)0.0182 (8)0.0191 (8)0.0051 (7)0.0034 (7)0.0053 (6)
Geometric parameters (Å, º) top
O1—N11.2383 (17)C2—C11.401 (2)
O2—N11.2487 (17)C2—C31.364 (2)
O3—H310.854 (16)C2—H20.9300
O3—H320.890 (18)C4—N41.376 (2)
O4—H410.899 (19)C4—C31.414 (2)
O4—H420.845 (16)C4—C51.372 (2)
N1—C11.429 (2)C5—C61.409 (2)
N2—C61.352 (2)C5—H50.9300
N2—H210.87 (2)C6—C11.433 (2)
N2—H220.85 (2)C8—C71.482 (2)
N3—C31.398 (2)C8—H8A0.9600
N3—C71.310 (2)C8—H8B0.9600
N4—C71.370 (2)C8—H8C0.9600
N4—H40.94 (2)
H31—O3—H32111 (3)C2—C3—C4119.69 (14)
H42—O4—H41110 (3)N4—C4—C3104.44 (13)
O1—N1—O2120.75 (13)C5—C4—N4132.73 (14)
O1—N1—C1119.17 (13)C5—C4—C3122.82 (14)
O2—N1—C1120.08 (13)C4—C5—C6119.18 (14)
C6—N2—H21118.8 (13)C4—C5—H5120.4
C6—N2—H22120.7 (14)C6—C5—H5120.4
H21—N2—H22120.4 (19)N2—C6—C1124.24 (15)
C7—N3—C3104.78 (13)N2—C6—C5118.63 (14)
C4—N4—H4128.3 (13)C5—C6—C1117.13 (14)
C7—N4—C4107.67 (13)N3—C7—N4113.09 (14)
C7—N4—H4123.9 (13)N3—C7—C8125.40 (14)
N1—C1—C6121.60 (14)N4—C7—C8121.52 (14)
C2—C1—N1115.68 (14)C7—C8—H8A109.5
C2—C1—C6122.71 (14)C7—C8—H8B109.5
C1—C2—H2120.8C7—C8—H8C109.5
C3—C2—C1118.45 (14)H8A—C8—H8B109.5
C3—C2—H2120.8H8A—C8—H8C109.5
N3—C3—C4110.02 (13)H8B—C8—H8C109.5
C2—C3—N3130.29 (14)
O1—N1—C1—C21.3 (2)C3—C4—N4—C70.29 (16)
O1—N1—C1—C6177.83 (14)C5—C4—N4—C7179.23 (16)
O2—N1—C1—C2178.33 (14)N4—C4—C3—C2179.06 (13)
O2—N1—C1—C62.6 (2)N4—C4—C3—N30.32 (17)
C7—N3—C3—C2179.07 (16)C5—C4—C3—N3179.40 (14)
C7—N3—C3—C40.23 (17)C5—C4—C3—C20.0 (2)
C3—N3—C7—N40.05 (17)N4—C4—C5—C6178.66 (16)
C3—N3—C7—C8179.45 (15)C3—C4—C5—C60.1 (2)
C4—N4—C7—N30.16 (18)C4—C5—C6—N2179.35 (14)
C4—N4—C7—C8179.68 (14)C4—C5—C6—C10.5 (2)
C3—C2—C1—N1179.56 (13)N2—C6—C1—N10.4 (2)
C3—C2—C1—C61.3 (2)N2—C6—C1—C2178.59 (15)
C1—C2—C3—N3178.54 (15)C5—C6—C1—N1179.73 (14)
C1—C2—C3—C40.7 (2)C5—C6—C1—C21.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O3i0.94 (2)1.87 (2)2.7735 (18)160.4 (19)
N2—H21···O1ii0.88 (2)2.39 (2)3.2212 (18)158.8 (17)
N2—H21···O4iii0.88 (2)2.59 (2)3.163 (2)124.1 (15)
N2—H22···O20.85 (2)2.03 (2)2.6387 (19)127.3 (19)
O3—H31···N3iv0.85 (2)1.89 (2)2.7354 (18)176 (2)
O3—H32···O4v0.89 (3)1.90 (3)2.776 (2)168 (3)
O4—H41···O30.90 (2)1.88 (3)2.7727 (19)170 (4)
O4—H42···O1vi0.85 (2)2.53 (2)3.0930 (17)125 (2)
O4—H42···O2vi0.85 (2)2.17 (2)3.0126 (17)171 (3)
C5—H5···O1ii0.932.543.3556 (19)146
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x, y+1, z+2; (v) x, y+1, z+1; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H8N4O2·2H2O
Mr228.22
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.0475 (3), 7.2801 (3), 10.9906 (4)
α, β, γ (°)76.754 (3), 71.686 (2), 71.809 (2)
V3)503.18 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.43 × 0.19 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.973, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
8838, 2533, 1800
Rint0.036
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.03
No. of reflections2533
No. of parameters174
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O3i0.94 (2)1.87 (2)2.7735 (18)160.4 (19)
N2—H21···O1ii0.88 (2)2.39 (2)3.2212 (18)158.8 (17)
N2—H21···O4iii0.88 (2)2.59 (2)3.163 (2)124.1 (15)
N2—H22···O20.85 (2)2.03 (2)2.6387 (19)127.3 (19)
O3—H31···N3iv0.852 (15)1.885 (16)2.7354 (18)175.5 (19)
O3—H32···O4v0.89 (3)1.90 (3)2.776 (2)168 (3)
O4—H41···O30.90 (2)1.88 (3)2.7727 (19)170 (4)
O4—H42···O1vi0.85 (2)2.53 (2)3.0930 (17)124.7 (19)
O4—H42···O2vi0.85 (2)2.17 (2)3.0126 (17)171 (3)
C5—H5···O1ii0.932.543.3556 (19)146
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x, y+1, z+2; (v) x, y+1, z+1; (vi) x+1, y+1, z+1.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for use of the X-ray diffractometer.

References

First citationAlamgir, M., Black, D. S. C. & Kumar, N. (2007). Top. Heterocycl. Chem. 9, 87–118.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinçer, S., Gönülalan, G., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, o806–o807.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHoffmann, H. S., Stefani, V., Benvenutti, E. V., Costa, T. M. H. & Gallas, M. R. (2011). Mater. Chem. Phys. 126, 97–101.  Web of Science CrossRef CAS Google Scholar
First citationHökelek, T., Dinçer, S. & Kılıç, E. (2002). Cryst. Res. Technol. 37, 1138–1142.  CSD CrossRef CAS Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKuznetsov, Y. I. & Kazansky, L. P. (2008). Russ. Chem. Rev. 77, 219–232.  CrossRef CAS Google Scholar
First citationLaryea, D., Gullbo, J., Isakssoon, A., Larsson, R. & Nygren, P. (2010). Anti-Cancer Drugs, 21, 33–42.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRefaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949–2956.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoula, C. & Luu-Duc, C. (1986). Lyon Pharm. 37, 297–302.  CAS Google Scholar
First citationSpasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232–243.  CrossRef CAS Google Scholar
First citationSubramanyam, N. C. & Mayanna, S. M. (1985). Corros. Sci. 25, 163–169.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2490-o2491
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds