organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2387-o2388

2-[(E)-(6-Amino-1,3-di­methyl-2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-5-yl)imino­meth­yl]pyridinium bromide

aUniversity of Kwazulu-Natal, School of Chemistry, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 12 August 2011; accepted 16 August 2011; online 27 August 2011)

The title compound, C12H14N5O2+·Br, is the hydro­bromide salt of a Schiff base in which protonation has taken place at the pyridine N atom. This organic cation is essentially planar (r.m.s. of all fitted non-H atoms = 0.0448 Å). In the crystal, N—H⋯Br hydrogen bonds as well as C—H⋯O and C–H⋯Br inter­actions connect the mol­ecules, forming a three-dimensional network.

Related literature

For the development of radiopharmaceuticals, see: Gerber et al. (2011[Gerber, T. I. A., Betz, R., Booysen, I. N., Potgieter, K. C. & Mayer, P. (2011). Polyhedron, 30, 1739-1745.]). For the crystal structure of the neutral organic parent molecule, see: Booysen et al. (2011a[Booysen, I., Hlela, T., Ismail, M., Gerber, T., Hosten, E. & Betz, R. (2011a). Acta Cryst. E67, o2289.]). For the crystal structures of polymorphs of 6-amino-1,3-dimethyl-5-[(E-2-(methyl­sulfan­yl)benzyl­idene­amino]pyrimidine-2,4(1H,3H)-dione, see: Booysen et al. (2011b[Booysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011b). Acta Cryst. E67, o1592.],c[Booysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011c). Acta Cryst. E67, o2025-o2026.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N5O2+·Br

  • Mr = 340.19

  • Monoclinic, P 21 /c

  • a = 8.9520 (2) Å

  • b = 4.9630 (1) Å

  • c = 30.9123 (6) Å

  • β = 105.391 (1)°

  • V = 1324.14 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.11 mm−1

  • T = 200 K

  • 0.55 × 0.28 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.660, Tmax = 1.000

  • 10606 measured reflections

  • 3277 independent reflections

  • 2998 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.068

  • S = 1.16

  • 3277 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H741⋯Br1i 0.87 (3) 2.77 (3) 3.4584 (19) 138 (2)
N4—H742⋯Br1ii 0.82 (3) 2.55 (3) 3.312 (2) 154 (2)
N5—H751⋯Br1ii 0.85 (3) 2.41 (3) 3.1763 (18) 151 (2)
C5—H5A⋯Br1i 0.98 2.89 3.764 (2) 148
C6—H6A⋯O1iii 0.98 2.60 3.453 (3) 145
C9—H9⋯O2iv 0.95 2.53 3.446 (3) 162
C10—H10⋯O1v 0.95 2.56 3.429 (3) 152
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x, y-1, z; (iii) [-x+3, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y-2, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Next to cardiovascular diseases, cancer has become one of the main fatal diseases in industrialized countries. Apart from classical surgery, chemo- and radiotherapeutic treatments have entered the arsenal of possible cures for certain types of cancer. All methods, however, suffer from their own set of problematic side-effects and, as a consequence, the development of radiopharmaceuticals – combining the advantages of chemotherapy as well as radiation methods while at the same time avoiding their unique respective undesired side-effects – has been a topic of research (Gerber et al., 2011). Tailoring and fine-tuning of the envisioned radiopharmaceuticals' properties such as lipophilicity and, in particular, inertness is of paramount importance with respect to possible future in vivo applications in contemporary medicine and requires sound knowledge about structural parameters of the ligands applied if a more heuristic approach in the synthesis is to triumph over pure trial-and-error as it is encountered in this specific field of coordination chemistry up to the present day. To allow for an assessment of changes in structural features upon coordination, the molecular and crystal structure of the title compound has been determined. The crystal structure of the neutral compound (Booysen et al., 2011a), and other 6-amino-1,3-dimethyl-2,4(1H,3H)-dione-derived Schiff-base ligands (Booysen et al., 2011b,c), have been described previously.

The molecular structure of the title molecule is illustrated in Fig. 1. Protonation of the neutral organic ligand took place on the nitrogen atom, N5, of the pyridine moiety. The molecule has the E configuration about the C=N bond. As expected the intracyclic angles in the protonated pyridine moiety cover a range of 118.09 (19)–123.33 (19) °, with the largest angle on the protonated nitrogen atom, N, and the smallest angle on the carbon atom, C , bonded to the exocyclic substituent. The organic cation is essentially planar (r.m.s. for all its fitted non-hydrogen atoms = 0.0448 Å).

In the crystal, N-H···Br hydrogen bonds as well as C–H···O and C–H···Br contacts are observed (Table 1). While the hydrogen bonds are formed between the nitrogen-bonded hydrogen atoms and the bromide anion exclusively, the C–H···O contacts involve the hydrogen atoms of the pyridine moiety and one of the nitrogen-bonded methyl groups as donors and both oxygen atoms as acceptors. The C–H···Br contact is supported by one of the hydrogen atoms of the second nitrogen-bonded methyl group. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is DDD on the unitary level, whereas the C–H···O contacts necessitate a C(5)C(8)C(11) on the same level. In total, these contact result in the formation of a three-dimensional network (Fig. 3).

Related literature top

For the development of radiopharmaceuticals, see: Gerber et al. (2011). For the crystal structure of the neutral organic parent ligand, see: Booysen et al. (2011a). For the crystal structures of 6-amino-1,3-dimethyl-5-[(E-2-(methylsulfanyl)benzylideneamino] pyrimidine-2,4(1H,3H)-dione, see: Booysen et al. (2011b,c). For graph-set analysis, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The title compound was prepared by the reaction of (E)-6-amino-1,3- dimethyl-5-(pyridin-2-ylmethyleneamino)pyrimidine-2,4(1H,3H)- dione and trans-[ReOBr3(PPh3)2] in methanol. The solution was filtered and single crystals suitable for the X-ray analysis were obtained from the mother liquor which was left in a fridge for several days.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). All nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b-axis of the intermolecular contacts in the crystal of the title compound [Blue dashed lines indicate N-H···Br hydrogen bonds, green dashed lines C–H···O contacts and yellow dashed lines C–H···Br contacts; see Table 1 for details; Symmetry operators: (i) x - 1, y - 2, z; (ii) -x + 2, y - 1/2, -z + 1/2; (iii) -x + 3, y - 1/2,-z + 1/2; (iv) x + 1, y + 2, z; (v) -x + 2, -y + 1, -z; (vi) x, y - 1, z].
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed along the b-axis. The N-H···Br, C-H···Br and C-H···O interactions are shown as dashed cyan lines - see Table 1 for details.
2-[(E)-(6-Amino-1,3-dimethyl-2,4-dioxo-1,2,3,4- tetrahydropyrimidin-5-yl)iminomethyl]pyridinium bromide top
Crystal data top
C12H14N5O2+·BrF(000) = 688
Mr = 340.19Dx = 1.706 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 7045 reflections
a = 8.9520 (2) Åθ = 2.7–28.3°
b = 4.9630 (1) ŵ = 3.11 mm1
c = 30.9123 (6) ÅT = 200 K
β = 105.391 (1)°Plate, orange
V = 1324.14 (5) Å30.55 × 0.28 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3277 independent reflections
Radiation source: fine-focus sealed tube2998 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.660, Tmax = 1.000k = 66
10606 measured reflectionsl = 4138
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0154P)2 + 1.8033P]
where P = (Fo2 + 2Fc2)/3
3277 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C12H14N5O2+·BrV = 1324.14 (5) Å3
Mr = 340.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9520 (2) ŵ = 3.11 mm1
b = 4.9630 (1) ÅT = 200 K
c = 30.9123 (6) Å0.55 × 0.28 × 0.12 mm
β = 105.391 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3277 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2998 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 1.000Rint = 0.017
10606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.42 e Å3
3277 reflectionsΔρmin = 0.36 e Å3
195 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.37652 (19)0.7382 (4)0.17215 (6)0.0318 (4)
O21.1136 (2)0.0840 (3)0.22406 (5)0.0308 (4)
N11.2019 (2)0.4910 (4)0.12052 (6)0.0207 (4)
N21.2433 (2)0.4126 (4)0.19775 (6)0.0231 (4)
N30.94690 (19)0.0572 (4)0.13177 (6)0.0190 (3)
N41.0173 (2)0.2538 (4)0.06812 (6)0.0242 (4)
H7411.053 (3)0.317 (6)0.0469 (10)0.039 (8)*
H7420.950 (3)0.138 (6)0.0608 (9)0.026 (7)*
N50.7294 (2)0.4378 (4)0.09421 (6)0.0222 (4)
H7510.763 (3)0.333 (6)0.0774 (9)0.030 (7)*
C11.0559 (2)0.1427 (4)0.14542 (6)0.0189 (4)
C21.0908 (2)0.2922 (4)0.11067 (7)0.0188 (4)
C31.2809 (2)0.5581 (4)0.16435 (7)0.0226 (4)
C41.1344 (2)0.2018 (4)0.19125 (7)0.0212 (4)
C51.2294 (3)0.6593 (5)0.08419 (8)0.0292 (5)
H5A1.27840.55040.06530.044*
H5B1.29770.80960.09710.044*
H5C1.13040.72980.06590.044*
C61.3189 (3)0.4895 (6)0.24431 (8)0.0354 (6)
H6A1.40770.37090.25640.053*
H6B1.24480.47240.26250.053*
H6C1.35460.67660.24510.053*
C70.8975 (2)0.2117 (4)0.15854 (7)0.0201 (4)
H70.93680.19470.19010.024*
C80.7801 (2)0.4132 (4)0.13933 (7)0.0194 (4)
C90.7160 (2)0.5808 (4)0.16555 (7)0.0235 (4)
H90.74850.56730.19730.028*
C100.6044 (3)0.7680 (5)0.14522 (8)0.0269 (5)
H100.55980.88220.16310.032*
C110.5580 (3)0.7884 (5)0.09892 (8)0.0287 (5)
H110.48230.91730.08470.034*
C120.6233 (2)0.6188 (5)0.07375 (7)0.0269 (5)
H120.59300.63040.04190.032*
Br10.75392 (3)0.85034 (5)0.004599 (7)0.03093 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0294 (8)0.0307 (9)0.0339 (9)0.0127 (7)0.0057 (7)0.0055 (7)
O20.0388 (9)0.0325 (9)0.0189 (7)0.0090 (7)0.0039 (6)0.0023 (7)
N10.0219 (8)0.0197 (9)0.0213 (8)0.0046 (7)0.0073 (7)0.0011 (7)
N20.0253 (9)0.0225 (9)0.0190 (8)0.0031 (7)0.0013 (7)0.0029 (7)
N30.0189 (8)0.0183 (8)0.0200 (8)0.0004 (7)0.0054 (6)0.0006 (7)
N40.0271 (9)0.0271 (10)0.0182 (8)0.0072 (8)0.0056 (7)0.0012 (7)
N50.0228 (8)0.0245 (9)0.0197 (8)0.0040 (7)0.0067 (7)0.0021 (7)
C10.0192 (9)0.0187 (10)0.0186 (9)0.0003 (8)0.0047 (7)0.0009 (8)
C20.0185 (9)0.0171 (10)0.0207 (9)0.0012 (7)0.0052 (7)0.0008 (8)
C30.0193 (9)0.0227 (10)0.0250 (10)0.0000 (8)0.0042 (8)0.0026 (8)
C40.0224 (9)0.0192 (10)0.0209 (10)0.0008 (8)0.0035 (8)0.0008 (8)
C50.0359 (12)0.0257 (11)0.0290 (11)0.0091 (10)0.0138 (9)0.0017 (10)
C60.0413 (13)0.0355 (14)0.0223 (11)0.0073 (11)0.0038 (10)0.0053 (10)
C70.0211 (9)0.0205 (10)0.0188 (9)0.0001 (8)0.0055 (7)0.0003 (8)
C80.0194 (9)0.0199 (10)0.0192 (9)0.0012 (8)0.0055 (7)0.0002 (8)
C90.0254 (10)0.0245 (11)0.0213 (10)0.0004 (9)0.0075 (8)0.0024 (8)
C100.0245 (10)0.0271 (11)0.0301 (11)0.0033 (9)0.0089 (9)0.0055 (9)
C110.0232 (10)0.0287 (12)0.0318 (12)0.0068 (9)0.0030 (9)0.0010 (9)
C120.0246 (10)0.0310 (12)0.0223 (10)0.0043 (9)0.0015 (8)0.0004 (9)
Br10.03684 (13)0.03914 (14)0.01623 (10)0.01255 (11)0.00606 (8)0.00141 (10)
Geometric parameters (Å, º) top
O1—C31.217 (3)C1—C41.435 (3)
O2—C41.227 (3)C5—H5A0.9800
N1—C21.377 (3)C5—H5B0.9800
N1—C31.392 (3)C5—H5C0.9800
N1—C51.471 (3)C6—H6A0.9800
N2—C31.373 (3)C6—H6B0.9800
N2—C41.407 (3)C6—H6C0.9800
N2—C61.469 (3)C7—C81.458 (3)
N3—C71.290 (3)C7—H70.9500
N3—C11.377 (3)C8—C91.387 (3)
N4—C21.319 (3)C9—C101.387 (3)
N4—H7410.87 (3)C9—H90.9500
N4—H7420.82 (3)C10—C111.384 (3)
N5—C121.338 (3)C10—H100.9500
N5—C81.353 (3)C11—C121.377 (3)
N5—H7510.85 (3)C11—H110.9500
C1—C21.407 (3)C12—H120.9500
C2—N1—C3122.47 (17)N1—C5—H5C109.5
C2—N1—C5119.69 (18)H5A—C5—H5C109.5
C3—N1—C5117.56 (18)H5B—C5—H5C109.5
C3—N2—C4125.60 (18)N2—C6—H6A109.5
C3—N2—C6117.31 (19)N2—C6—H6B109.5
C4—N2—C6117.04 (18)H6A—C6—H6B109.5
C7—N3—C1124.61 (18)N2—C6—H6C109.5
C2—N4—H741121 (2)H6A—C6—H6C109.5
C2—N4—H742120.8 (18)H6B—C6—H6C109.5
H741—N4—H742116 (3)N3—C7—C8118.67 (18)
C12—N5—C8123.33 (19)N3—C7—H7120.7
C12—N5—H751116.5 (18)C8—C7—H7120.7
C8—N5—H751120.1 (18)N5—C8—C9118.09 (19)
N3—C1—C2115.38 (17)N5—C8—C7119.33 (18)
N3—C1—C4124.84 (18)C9—C8—C7122.58 (19)
C2—C1—C4119.77 (18)C10—C9—C8119.8 (2)
N4—C2—N1117.62 (19)C10—C9—H9120.1
N4—C2—C1122.17 (19)C8—C9—H9120.1
N1—C2—C1120.19 (18)C11—C10—C9120.0 (2)
O1—C3—N2122.5 (2)C11—C10—H10120.0
O1—C3—N1121.2 (2)C9—C10—H10120.0
N2—C3—N1116.34 (18)C12—C11—C10118.9 (2)
O2—C4—N2119.16 (19)C12—C11—H11120.5
O2—C4—C1125.2 (2)C10—C11—H11120.5
N2—C4—C1115.60 (18)N5—C12—C11119.8 (2)
N1—C5—H5A109.5N5—C12—H12120.1
N1—C5—H5B109.5C11—C12—H12120.1
H5A—C5—H5B109.5
C7—N3—C1—C2178.59 (19)C6—N2—C4—O23.8 (3)
C7—N3—C1—C42.4 (3)C3—N2—C4—C11.3 (3)
C3—N1—C2—N4176.60 (19)C6—N2—C4—C1176.35 (19)
C5—N1—C2—N42.8 (3)N3—C1—C4—O20.7 (3)
C3—N1—C2—C11.7 (3)C2—C1—C4—O2179.7 (2)
C5—N1—C2—C1175.54 (19)N3—C1—C4—N2179.18 (18)
N3—C1—C2—N43.9 (3)C2—C1—C4—N20.2 (3)
C4—C1—C2—N4177.0 (2)C1—N3—C7—C8179.27 (18)
N3—C1—C2—N1177.84 (17)C12—N5—C8—C91.5 (3)
C4—C1—C2—N11.3 (3)C12—N5—C8—C7179.3 (2)
C4—N2—C3—O1179.9 (2)N3—C7—C8—N51.8 (3)
C6—N2—C3—O12.5 (3)N3—C7—C8—C9177.43 (19)
C4—N2—C3—N10.9 (3)N5—C8—C9—C100.6 (3)
C6—N2—C3—N1176.75 (19)C7—C8—C9—C10179.8 (2)
C2—N1—C3—O1178.6 (2)C8—C9—C10—C110.4 (3)
C5—N1—C3—O14.7 (3)C9—C10—C11—C120.6 (4)
C2—N1—C3—N20.7 (3)C8—N5—C12—C111.3 (3)
C5—N1—C3—N2174.62 (19)C10—C11—C12—N50.2 (4)
C3—N2—C4—O2178.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H741···Br1i0.87 (3)2.77 (3)3.4584 (19)138 (2)
N4—H742···Br1ii0.82 (3)2.55 (3)3.312 (2)154 (2)
N5—H751···Br1ii0.85 (3)2.41 (3)3.1763 (18)151 (2)
C5—H5A···Br1i0.982.893.764 (2)148
C6—H6A···O1iii0.982.603.453 (3)145
C9—H9···O2iv0.952.533.446 (3)162
C10—H10···O1v0.952.563.429 (3)152
Symmetry codes: (i) x+2, y+1, z; (ii) x, y1, z; (iii) x+3, y1/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x1, y2, z.

Experimental details

Crystal data
Chemical formulaC12H14N5O2+·Br
Mr340.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)8.9520 (2), 4.9630 (1), 30.9123 (6)
β (°) 105.391 (1)
V3)1324.14 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.11
Crystal size (mm)0.55 × 0.28 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.660, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10606, 3277, 2998
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.068, 1.16
No. of reflections3277
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.36

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H741···Br1i0.87 (3)2.77 (3)3.4584 (19)138 (2)
N4—H742···Br1ii0.82 (3)2.55 (3)3.312 (2)154 (2)
N5—H751···Br1ii0.85 (3)2.41 (3)3.1763 (18)151 (2)
C5—H5A···Br1i0.982.893.764 (2)148.4
C6—H6A···O1iii0.982.603.453 (3)145.0
C9—H9···O2iv0.952.533.446 (3)162.1
C10—H10···O1v0.952.563.429 (3)152.0
Symmetry codes: (i) x+2, y+1, z; (ii) x, y1, z; (iii) x+3, y1/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x1, y2, z.
 

Acknowledgements

The authors thank Ms Dakota Neale-Shutte for helpful discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBooysen, I., Hlela, T., Ismail, M., Gerber, T., Hosten, E. & Betz, R. (2011a). Acta Cryst. E67, o2289.  CrossRef IUCr Journals Google Scholar
First citationBooysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011b). Acta Cryst. E67, o1592.  CrossRef IUCr Journals Google Scholar
First citationBooysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011c). Acta Cryst. E67, o2025–o2026.  CrossRef IUCr Journals Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGerber, T. I. A., Betz, R., Booysen, I. N., Potgieter, K. C. & Mayer, P. (2011). Polyhedron, 30, 1739–1745.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2387-o2388
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds