organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-8a'-Methyl-3′,4′,8′,8a'-tetra­hydro-2′H-spiro­[[1,3]dioxolane-2,1′-naphthalen]-6′(7′H)-one

aDepartment of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
*Correspondence e-mail: fwerner@chemnet.ee

(Received 17 August 2011; accepted 21 August 2011; online 27 August 2011)

The title racemic compound, C13H18O3, a common precursor in the total synthesis of terpenes, crystallizes with two molecules in the asymmetric unit. The crystal structure is made up of triple chains, formed by weak inter­molecular C—H⋯O contacts, propagating in the a-axis direction.

Related literature

For the synthesis of the title compound, see: Smith et al. (2007[Smith, A. B. III, Kürti, L., Davulcu, A. H. & Cho, Y. S. (2007). Org. Process Res. Dev. 11, 19-24.]). For the crystal structure of the educt, 9-methyl-Δ5,10-deca­lin-1,6-dione, see: Jones et al. (1973[Jones, C. R., Kearns, D. R. & Wing, R. M. (1973). J. Chem. Phys. 58, 1370-1383.]). For application of the title compound as a precursor in the synthesis of terpenes, see: Foot et al. (2006[Foot, J. S., Phillis, A. T., Sharp, P. P., Willis, A. C. & Banwell, M. G. (2006). Tetrahedron Lett. 47, 6817-6820.]); Hatzellis et al. (2004[Hatzellis, K., Pagona, G., Spyros, A., Demetzos, C. & Katerinopoulos, H. E. (2004). J. Nat. Prod. 67, 1996-2001.]); Coltart & Danishefsky (2003[Coltart, D. M. & Danishefsky, S. J. (2003). Org. Lett. 5, 1289-1292.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18O3

  • Mr = 222.27

  • Triclinic, [P \overline 1]

  • a = 9.6841 (15) Å

  • b = 10.5515 (14) Å

  • c = 12.8717 (19) Å

  • α = 102.493 (4)°

  • β = 111.938 (4)°

  • γ = 98.665 (4)°

  • V = 1151.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.60 × 0.40 × 0.40 mm

Data collection
  • Bruker SMART X2S diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.948, Tmax = 0.965

  • 11107 measured reflections

  • 4037 independent reflections

  • 3265 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.05

  • 4037 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C213—H2KC⋯O21i 0.99 2.52 3.450 (2) 156
C16—H16⋯O11ii 0.95 2.62 3.547 (2) 166
C17—H17A⋯O21iii 0.99 2.65 3.441 (2) 137
C113—H1KC⋯O11iv 0.99 2.70 3.515 (3) 140
Symmetry codes: (i) x+1, y, z; (ii) -x-1, -y, -z+1; (iii) -x, -y+1, -z+2; (iv) -x, -y, -z+1.

Data collection: GIS (Bruker, 2010[Bruker (2010). GIS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and VESTA (Momma & Izumi, 2008[Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound crystallized at 200 K with two formula units (1 and 2), of the same handedness, in the asymmetric unit (Fig. 1). The conformation of the two molecules is nearly identical, apart from the dioxolane rings which are of opposite twist (see Inset in Fig. 1). In molecule 1 the dioxalane ring has an envelope conformation on atom O12, while in molecule 2 the envelope conformation is on atom C213. In both molecules the cyclohexane rings adopt chair conformations, while the cyclohexanone rings are somewhat flattened due to the presence of the carbonylic carbon and the double bond.

In the crystal molecules are linked by four different sets of rather weak C—H···O contacts (Fig. 2, Table 1). This results in the formation of triple-chains running along the a axis, with central strands of molecules of conformation 1 flanked by molecules of conformation 2 (Figs. 2 and 3).

Related literature top

For the synthesis of the title compound, see: Smith et al. (2007). For the crystal structure of the educt, 9-methyl-Δ5,10-decalin-1,6-dione, see: Jones et al. (1973). For application of the title compound as a precursor in the synthesis of terpenes, see: Foot et al. (2006); Hatzellis et al. (2004); Coltart & Danishefsky (2003).

Experimental top

The title compound was prepared from racemic Wieland–Miescher ketone according to a described procedure (Smith et al., 2007), with a minor modification to the purification method. After extraction the raw product was purified by flash chromatography (2% i-PrOH in petroleum ether) and the solvent of the so obtained fractions was distilled off. The portion containing a mixture of the title compound and ethylene glycol was kept at room temperature for several weeks, whereupon colourless acicular crystals developed.

Refinement top

Except for the H atoms of the methyl groups, whose positions were determined from a difference Fourier map, H atoms were included in calculated positions and treated as riding: C—H = 0.98 (CH3), 0.99 (CH2), and 0.95 Å (CH) with Uiso(H) = kUeq(C), where k = 1.5 for CH3 H atoms and k = 1.2 for all other H atoms.

Computing details top

Data collection: GIS (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008), Olex2 (Dolomanov et al., 2009) and VESTA (Momma & Izumi, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the two independent molecules (1 and 2) of the title compound, with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Inset: Overlay of the two symmetry-independent molecules (H atoms have been omitted here; Molecule 1 (orange): C11, C12, ···; Molecule 2 (green): C21, C22, ···).
[Figure 2] Fig. 2. Weak C—H···O contacts in the crystal structure of the title compound [see Table 1 for details; Molecule 1 (orange), Molecule 2 (green): H atoms, except for contact atoms, have been omitted for clarity; Symmetry codes: (i) -x, -y, 1 - z; (ii) 1 + x, y, z; (iii) x, y, z; (iv) x, -1 + y, -1 + z; (v) -1 + x, -1 + y, -1 + z].
[Figure 3] Fig. 3. Perspective view of the crystal packing of the title compound along the a axis [Molecule 1 (orange), Molecule 2 (green)]. The orientation of the triple-chains, formed by weak C—H···O contacts, with respect to the unit cell is indicated by a red plane. H atoms have been omitted for clarity.
rac-8a'-Methyl-3',4',8',8a'-tetrahydro-2'H-spiro[[1,3]dioxolane- 2,1'-naphthalen]-6'(7'H)-one top
Crystal data top
C13H18O3Z = 4
Mr = 222.27F(000) = 480
Triclinic, P1Dx = 1.282 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6841 (15) ÅCell parameters from 4738 reflections
b = 10.5515 (14) Åθ = 2.3–25.0°
c = 12.8717 (19) ŵ = 0.09 mm1
α = 102.493 (4)°T = 200 K
β = 111.938 (4)°Needle, colourless
γ = 98.665 (4)°0.60 × 0.40 × 0.40 mm
V = 1151.6 (3) Å3
Data collection top
Bruker SMART X2S
diffractometer
4037 independent reflections
Radiation source: XOS X-beam microfocus source3265 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.032
ω scansθmax = 25.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.948, Tmax = 0.965k = 1212
11107 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.2344P]
where P = (Fo2 + 2Fc2)/3
4037 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H18O3γ = 98.665 (4)°
Mr = 222.27V = 1151.6 (3) Å3
Triclinic, P1Z = 4
a = 9.6841 (15) ÅMo Kα radiation
b = 10.5515 (14) ŵ = 0.09 mm1
c = 12.8717 (19) ÅT = 200 K
α = 102.493 (4)°0.60 × 0.40 × 0.40 mm
β = 111.938 (4)°
Data collection top
Bruker SMART X2S
diffractometer
4037 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3265 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.965Rint = 0.032
11107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
4037 reflectionsΔρmin = 0.19 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.36579 (13)0.13960 (12)0.44218 (10)0.0515 (3)
C110.26520 (17)0.07427 (15)0.53959 (13)0.0353 (4)
C120.11911 (18)0.11449 (16)0.59416 (15)0.0419 (4)
H12A0.09640.16700.53160.050*
H12B0.13250.17260.64250.050*
C130.01603 (17)0.00794 (16)0.67085 (14)0.0391 (4)
H13A0.03690.05980.62040.047*
H13B0.10890.02280.70880.047*
C140.01326 (16)0.10053 (15)0.76622 (12)0.0322 (3)
C150.17489 (16)0.11996 (14)0.71628 (12)0.0303 (3)
C160.28429 (16)0.04332 (15)0.61172 (13)0.0328 (3)
H160.37960.06670.58280.039*
C170.21067 (18)0.22780 (17)0.79299 (14)0.0413 (4)
H17A0.21960.19670.85800.050*
H17B0.31150.24170.74610.050*
C180.08923 (19)0.36159 (17)0.84445 (14)0.0447 (4)
H18A0.09670.40380.78160.054*
H18B0.10910.42260.90440.054*
C190.07257 (18)0.34259 (16)0.90015 (13)0.0414 (4)
H19A0.14930.42960.92670.050*
H19B0.08460.31170.96960.050*
C1100.10215 (16)0.24032 (16)0.81303 (12)0.0340 (3)
C1110.0068 (2)0.03947 (18)0.86826 (15)0.0474 (4)
H1MA0.02140.09460.92500.071*
H1MB0.11440.03700.90700.071*
H1MC0.05980.05200.83740.071*
O120.09080 (12)0.28742 (11)0.71548 (9)0.0387 (3)
O130.25563 (12)0.22675 (12)0.86454 (10)0.0466 (3)
C1120.24137 (19)0.35950 (18)0.74068 (16)0.0481 (4)
H1KA0.25940.45600.77980.058*
H1KB0.25700.35020.66790.058*
C1130.3463 (2)0.2976 (2)0.82021 (19)0.0609 (5)
H1KC0.38670.23540.77650.073*
H1KD0.43430.36760.88500.073*
O210.11049 (14)0.70843 (14)0.91102 (11)0.0569 (4)
C210.19562 (17)0.73622 (16)0.86470 (13)0.0361 (4)
C220.35845 (18)0.81980 (18)0.93451 (13)0.0422 (4)
H22A0.39720.81071.01470.051*
H22B0.36130.91550.94100.051*
C230.46228 (17)0.77619 (16)0.87668 (13)0.0362 (4)
H23A0.46760.68350.87800.043*
H23B0.56760.83560.92270.043*
C240.40501 (16)0.78078 (14)0.74922 (13)0.0303 (3)
C250.23169 (16)0.71959 (14)0.68281 (12)0.0293 (3)
C260.14168 (16)0.69527 (15)0.73754 (13)0.0319 (3)
H260.03660.64870.69090.038*
C270.16356 (19)0.68995 (19)0.55151 (13)0.0424 (4)
H27A0.16370.77560.53180.051*
H27B0.05520.63700.51810.051*
C280.25155 (19)0.6126 (2)0.49578 (14)0.0478 (4)
H28A0.21150.60630.41140.057*
H28B0.23550.52020.50240.057*
C290.42334 (19)0.68194 (18)0.55581 (14)0.0432 (4)
H29A0.47900.62830.52060.052*
H29B0.44040.77150.54370.052*
C2100.48576 (16)0.69737 (14)0.68634 (13)0.0307 (3)
C2110.4437 (2)0.92774 (16)0.74809 (17)0.0474 (4)
H2MA0.39940.93130.66710.071*
H2MB0.55580.96330.78250.071*
H2MC0.40060.98190.79400.071*
O220.46457 (11)0.56518 (10)0.69896 (9)0.0342 (3)
O230.64712 (11)0.75715 (11)0.74433 (10)0.0404 (3)
C2120.61156 (18)0.54166 (18)0.75591 (16)0.0450 (4)
H2KA0.61520.45130.71670.054*
H2KB0.63630.54970.83940.054*
C2130.72049 (19)0.64914 (19)0.74471 (17)0.0504 (5)
H2KC0.82290.67570.81190.061*
H2KD0.73250.61910.67090.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0446 (7)0.0560 (8)0.0396 (6)0.0102 (6)0.0118 (5)0.0010 (6)
C110.0356 (8)0.0356 (8)0.0373 (8)0.0059 (7)0.0185 (7)0.0120 (7)
C120.0409 (9)0.0356 (9)0.0503 (10)0.0126 (7)0.0197 (8)0.0121 (7)
C130.0312 (8)0.0383 (9)0.0489 (9)0.0115 (7)0.0173 (7)0.0126 (7)
C140.0288 (7)0.0356 (8)0.0339 (8)0.0068 (6)0.0124 (6)0.0157 (6)
C150.0318 (8)0.0333 (8)0.0323 (7)0.0078 (6)0.0173 (6)0.0159 (6)
C160.0278 (7)0.0368 (8)0.0351 (8)0.0094 (6)0.0129 (6)0.0132 (7)
C170.0393 (9)0.0487 (10)0.0374 (8)0.0138 (7)0.0184 (7)0.0093 (7)
C180.0508 (10)0.0426 (10)0.0354 (8)0.0139 (8)0.0164 (7)0.0035 (7)
C190.0431 (9)0.0406 (9)0.0308 (8)0.0023 (7)0.0100 (7)0.0072 (7)
C1100.0289 (8)0.0416 (9)0.0305 (8)0.0059 (7)0.0087 (6)0.0180 (7)
C1110.0452 (10)0.0507 (10)0.0469 (10)0.0079 (8)0.0134 (8)0.0297 (8)
O120.0366 (6)0.0430 (6)0.0369 (6)0.0022 (5)0.0142 (5)0.0208 (5)
O130.0284 (6)0.0571 (7)0.0505 (7)0.0056 (5)0.0091 (5)0.0259 (6)
C1120.0457 (10)0.0418 (10)0.0585 (11)0.0007 (8)0.0275 (8)0.0162 (8)
C1130.0383 (10)0.0721 (14)0.0739 (13)0.0040 (9)0.0248 (9)0.0291 (11)
O210.0482 (7)0.0828 (9)0.0488 (7)0.0105 (7)0.0316 (6)0.0214 (7)
C210.0356 (8)0.0407 (9)0.0388 (8)0.0134 (7)0.0199 (7)0.0144 (7)
C220.0397 (9)0.0511 (10)0.0296 (8)0.0078 (8)0.0147 (7)0.0024 (7)
C230.0278 (8)0.0430 (9)0.0304 (8)0.0041 (7)0.0096 (6)0.0045 (7)
C240.0291 (7)0.0288 (8)0.0342 (8)0.0053 (6)0.0152 (6)0.0098 (6)
C250.0300 (7)0.0275 (7)0.0316 (7)0.0116 (6)0.0116 (6)0.0107 (6)
C260.0256 (7)0.0333 (8)0.0349 (8)0.0068 (6)0.0112 (6)0.0093 (6)
C270.0386 (9)0.0596 (11)0.0319 (8)0.0185 (8)0.0134 (7)0.0174 (7)
C280.0480 (10)0.0699 (12)0.0254 (8)0.0208 (9)0.0148 (7)0.0113 (8)
C290.0492 (10)0.0544 (10)0.0416 (9)0.0204 (8)0.0292 (8)0.0213 (8)
C2100.0283 (7)0.0313 (8)0.0369 (8)0.0054 (6)0.0175 (6)0.0129 (6)
C2110.0495 (10)0.0315 (9)0.0670 (12)0.0072 (7)0.0319 (9)0.0147 (8)
O220.0310 (5)0.0301 (6)0.0454 (6)0.0088 (4)0.0180 (5)0.0144 (5)
O230.0283 (5)0.0391 (6)0.0552 (7)0.0036 (5)0.0222 (5)0.0120 (5)
C2120.0372 (9)0.0516 (10)0.0562 (10)0.0202 (8)0.0222 (8)0.0243 (8)
C2130.0349 (9)0.0589 (11)0.0648 (12)0.0165 (8)0.0245 (8)0.0228 (9)
Geometric parameters (Å, º) top
O11—C111.2277 (18)O21—C211.2211 (18)
C11—C161.461 (2)C21—C261.458 (2)
C11—C121.497 (2)C21—C221.500 (2)
C12—C131.526 (2)C22—C231.526 (2)
C12—H12A0.9900C22—H22A0.9900
C12—H12B0.9900C22—H22B0.9900
C13—C141.538 (2)C23—C241.538 (2)
C13—H13A0.9900C23—H23A0.9900
C13—H13B0.9900C23—H23B0.9900
C14—C151.519 (2)C24—C251.526 (2)
C14—C1111.546 (2)C24—C2111.544 (2)
C14—C1101.550 (2)C24—C2101.553 (2)
C15—C161.339 (2)C25—C261.338 (2)
C15—C171.509 (2)C25—C271.505 (2)
C16—H160.9500C26—H260.9500
C17—C181.526 (2)C27—C281.523 (2)
C17—H17A0.9900C27—H27A0.9900
C17—H17B0.9900C27—H27B0.9900
C18—C191.525 (2)C28—C291.526 (2)
C18—H18A0.9900C28—H28A0.9900
C18—H18B0.9900C28—H28B0.9900
C19—C1101.521 (2)C29—C2101.519 (2)
C19—H19A0.9900C29—H29A0.9900
C19—H19B0.9900C29—H29B0.9900
C110—O121.4209 (17)C210—O231.4229 (17)
C110—O131.4276 (18)C210—O221.4320 (18)
C111—H1MA0.9800C211—H2MA0.9800
C111—H1MB0.9800C211—H2MB0.9800
C111—H1MC0.9800C211—H2MC0.9800
O12—C1121.4197 (19)O22—C2121.4250 (18)
O13—C1131.420 (2)O23—C2131.431 (2)
C112—C1131.490 (3)C212—C2131.498 (2)
C112—H1KA0.9900C212—H2KA0.9900
C112—H1KB0.9900C212—H2KB0.9900
C113—H1KC0.9900C213—H2KC0.9900
C113—H1KD0.9900C213—H2KD0.9900
O11—C11—C16121.98 (14)O21—C21—C26121.53 (14)
O11—C11—C12121.98 (14)O21—C21—C22122.15 (14)
C16—C11—C12115.96 (13)C26—C21—C22116.25 (13)
C11—C12—C13111.41 (13)C21—C22—C23110.97 (12)
C11—C12—H12A109.3C21—C22—H22A109.4
C13—C12—H12A109.3C23—C22—H22A109.4
C11—C12—H12B109.3C21—C22—H22B109.4
C13—C12—H12B109.3C23—C22—H22B109.4
H12A—C12—H12B108.0H22A—C22—H22B108.0
C12—C13—C14113.01 (12)C22—C23—C24112.62 (13)
C12—C13—H13A109.0C22—C23—H23A109.1
C14—C13—H13A109.0C24—C23—H23A109.1
C12—C13—H13B109.0C22—C23—H23B109.1
C14—C13—H13B109.0C24—C23—H23B109.1
H13A—C13—H13B107.8H23A—C23—H23B107.8
C15—C14—C13110.68 (12)C25—C24—C23110.83 (11)
C15—C14—C111109.19 (12)C25—C24—C211109.70 (13)
C13—C14—C111110.03 (13)C23—C24—C211109.57 (13)
C15—C14—C110107.85 (12)C25—C24—C210108.00 (11)
C13—C14—C110109.46 (12)C23—C24—C210109.07 (12)
C111—C14—C110109.59 (12)C211—C24—C210109.64 (12)
C16—C15—C17120.37 (13)C26—C25—C27120.58 (13)
C16—C15—C14122.92 (13)C26—C25—C24122.30 (13)
C17—C15—C14116.66 (13)C27—C25—C24117.11 (12)
C15—C16—C11123.62 (14)C25—C26—C21123.76 (13)
C15—C16—H16118.2C25—C26—H26118.1
C11—C16—H16118.2C21—C26—H26118.1
C15—C17—C18113.34 (13)C25—C27—C28112.53 (13)
C15—C17—H17A108.9C25—C27—H27A109.1
C18—C17—H17A108.9C28—C27—H27A109.1
C15—C17—H17B108.9C25—C27—H27B109.1
C18—C17—H17B108.9C28—C27—H27B109.1
H17A—C17—H17B107.7H27A—C27—H27B107.8
C19—C18—C17111.26 (14)C27—C28—C29110.82 (14)
C19—C18—H18A109.4C27—C28—H28A109.5
C17—C18—H18A109.4C29—C28—H28A109.5
C19—C18—H18B109.4C27—C28—H28B109.5
C17—C18—H18B109.4C29—C28—H28B109.5
H18A—C18—H18B108.0H28A—C28—H28B108.1
C110—C19—C18110.78 (12)C210—C29—C28110.28 (12)
C110—C19—H19A109.5C210—C29—H29A109.6
C18—C19—H19A109.5C28—C29—H29A109.6
C110—C19—H19B109.5C210—C29—H29B109.6
C18—C19—H19B109.5C28—C29—H29B109.6
H19A—C19—H19B108.1H29A—C29—H29B108.1
O12—C110—O13106.21 (11)O23—C210—O22106.12 (11)
O12—C110—C19109.37 (13)O23—C210—C29111.74 (12)
O13—C110—C19110.38 (12)O22—C210—C29107.31 (12)
O12—C110—C14107.96 (11)O23—C210—C24108.53 (11)
O13—C110—C14109.50 (12)O22—C210—C24109.70 (11)
C19—C110—C14113.15 (12)C29—C210—C24113.19 (13)
C14—C111—H1MA109.5C24—C211—H2MA109.5
C14—C111—H1MB109.5C24—C211—H2MB109.5
H1MA—C111—H1MB109.5H2MA—C211—H2MB109.5
C14—C111—H1MC109.5C24—C211—H2MC109.5
H1MA—C111—H1MC109.5H2MA—C211—H2MC109.5
H1MB—C111—H1MC109.5H2MB—C211—H2MC109.5
C112—O12—C110106.80 (11)C212—O22—C210109.00 (11)
C113—O13—C110108.60 (13)C210—O23—C213106.50 (12)
O12—C112—C113104.81 (13)O22—C212—C213103.85 (13)
O12—C112—H1KA110.8O22—C212—H2KA111.0
C113—C112—H1KA110.8C213—C212—H2KA111.0
O12—C112—H1KB110.8O22—C212—H2KB111.0
C113—C112—H1KB110.8C213—C212—H2KB111.0
H1KA—C112—H1KB108.9H2KA—C212—H2KB109.0
O13—C113—C112105.70 (14)O23—C213—C212103.06 (13)
O13—C113—H1KC110.6O23—C213—H2KC111.2
C112—C113—H1KC110.6C212—C213—H2KC111.2
O13—C113—H1KD110.6O23—C213—H2KD111.2
C112—C113—H1KD110.6C212—C213—H2KD111.2
H1KC—C113—H1KD108.7H2KC—C213—H2KD109.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C213—H2KC···O21i0.992.523.450 (2)156
C16—H16···O11ii0.952.623.547 (2)166
C17—H17A···O21iii0.992.653.441 (2)137
C113—H1KC···O11iv0.992.703.515 (3)140
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z+1; (iii) x, y+1, z+2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H18O3
Mr222.27
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.6841 (15), 10.5515 (14), 12.8717 (19)
α, β, γ (°)102.493 (4), 111.938 (4), 98.665 (4)
V3)1151.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.40 × 0.40
Data collection
DiffractometerBruker SMART X2S
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.948, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
11107, 4037, 3265
Rint0.032
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.05
No. of reflections4037
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: GIS (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), Olex2 (Dolomanov et al., 2009) and VESTA (Momma & Izumi, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C213—H2KC···O21i0.992.523.450 (2)155.8
C16—H16···O11ii0.952.623.547 (2)165.5
C17—H17A···O21iii0.992.653.441 (2)137.4
C113—H1KC···O11iv0.992.703.515 (3)140.2
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z+1; (iii) x, y+1, z+2; (iv) x, y, z+1.
 

Acknowledgements

This study was financially supported by Grant Agreement No. 229830 IC-UP2 under the Seventh Framework Programme of the European Commission, the EU European Regional Development Fund (grant No. 3.2.0101.08–0017), the Estonian Science Foundation (grant No. 8698) and the Ministry of Education and Research (grant No. 0142725 s06).

References

First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). GIS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColtart, D. M. & Danishefsky, S. J. (2003). Org. Lett. 5, 1289–1292.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFoot, J. S., Phillis, A. T., Sharp, P. P., Willis, A. C. & Banwell, M. G. (2006). Tetrahedron Lett. 47, 6817–6820.  Web of Science CSD CrossRef CAS Google Scholar
First citationHatzellis, K., Pagona, G., Spyros, A., Demetzos, C. & Katerinopoulos, H. E. (2004). J. Nat. Prod. 67, 1996–2001.  CrossRef CAS Google Scholar
First citationJones, C. R., Kearns, D. R. & Wing, R. M. (1973). J. Chem. Phys. 58, 1370–1383.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMomma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, A. B. III, Kürti, L., Davulcu, A. H. & Cho, Y. S. (2007). Org. Process Res. Dev. 11, 19–24.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds