metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­magnesium bis­­(3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate) dihydrate

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 24 July 2011; accepted 31 July 2011; online 6 August 2011)

In the crystal structure of the title compound, [Mg(H2O)6](C7H5O6S)2·2H2O, the octa­hedral complex cation lies on an inversion centre and is hydrogen bonded through the coordinated water molecules to the substituted benzene­sulfonate monoanions and the water mol­ecules of solvation. These inter­actions together with a carb­oxy­lic acid O—H⋯O(sulfonate) association give a three-dimensional structure.

Related literature

For the structure of the isotypic MnII, CuII and CoII dihydrate complexes, see: Ma et al. (2003a[Ma, J.-F., Yang, J. & Liu, J.-F. (2003a). Acta Cryst. E59, m478-m480.],d[Ma, J.-F., Yang, J. & Liu, J.-F. (2003d). Acta Cryst. E59, m485-m486.]); Abdelhak et al. (2005[Abdelhak, J., Cherni, S. N. & Jouini, T. (2005). Z. Kristallogr. New Cryst. Struct. 220, 183-184.]). For the structures of the analogous CoII, NiII and ZnII tetra­hydrate complexes, see: Ma et al. (2003b[Ma, J.-F., Yang, J. & Liu, J.-F. (2003b). Acta Cryst. E59, m481-m482.],c[Ma, J.-F., Yang, J. & Liu, J.-F. (2003c). Acta Cryst. E59, m483-m484.],e[Ma, J.-F., Yang, J. & Liu, J.-F. (2003e). Acta Cryst. E59, m487-m488.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(H2O)6](C7H5O6S)2·2H2O

  • Mr = 602.78

  • Triclinic, [P \overline 1]

  • a = 6.8694 (4) Å

  • b = 6.9069 (4) Å

  • c = 14.3950 (8) Å

  • α = 77.472 (5)°

  • β = 78.120 (4)°

  • γ = 70.131 (5)°

  • V = 620.51 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 200 K

  • 0.40 × 0.12 × 0.10 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.96, Tmax = 0.99

  • 8134 measured reflections

  • 2899 independent reflections

  • 2553 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.14

  • 2899 reflections

  • 209 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O12 0.85 (2) 1.87 (2) 2.632 (2) 149 (2)
O11—H11⋯O53i 0.79 (3) 1.92 (3) 2.678 (2) 161 (3)
O1W—H11W⋯O12ii 0.85 (2) 1.93 (2) 2.779 (2) 175 (2)
O1W—H12W⋯O51 0.82 (3) 2.00 (3) 2.824 (2) 175 (2)
O2W—H21W⋯O4Wiii 0.82 (3) 1.91 (3) 2.728 (3) 173 (3)
O3W—H31W⋯O51iv 0.75 (3) 2.10 (3) 2.850 (2) 171 (3)
O3W—H32W⋯O4Wv 0.89 (3) 1.87 (3) 2.748 (3) 167 (2)
O4W—H41W⋯O53vi 0.79 (3) 2.04 (3) 2.803 (2) 162 (3)
O4W—H42W⋯O52 0.84 (3) 1.88 (3) 2.717 (2) 178 (3)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1; (iii) x, y-1, z; (iv) -x, -y+1, -z; (v) -x+1, -y+1, -z; (vi) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound, [Mg(H2O)6]2+ 2(C7H5O6S-). 2(H2O) was obtained from the reaction of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA) with MgCO3 and the structure is reported here In the structure of this compound (Fig. 1), the octahedral cationic Mg complex cations lie on crystallographic inversion centres [Mg—O, 2.0396 (17)–2.0664 (19) Å]. This complex is isomorphous with other divalent first transition metal–5-SSA complexes with the same basic dihydrate formula [M(H2O)6] 2(5-SSA-). 2(H2O), [M = Mn (Ma et al., 2003a); Co (Abdelhak et al., 2005); Cu (Ma et al., 2003d)]. These complexes are also similar to the tetrahydrate analogues {[M(H2O)6] 2(5-SSA-). 4(H2O)}, having triclinic unit cells with comparable cell parameters e.g. CoII (Ma et al., 2003b) and Ni (Ma et al., 2003c) and Zn (Ma et al., 2003e).

The coordinated water molecules are involved in a number of O—H···O hydrogen-bonding interactions with sulfonate and carboxylate O acceptors of the uncoordinated 5-SSA monoanions and the water molecules of solvation (Table 1) and together with a carboxylic acid OH···Osulfonate hydrogen bond form a three-dimensional structure (Fig. 2). In the anion there is the intramolecular cyclic phenol OH···Ocarboxyl hydrogen bond which is invariably present in this monoanion (Ma et al., 2003a). One H of one of the coordinated water molecules (H22W) has no reasonable acceptor in the structure.

Related literature top

For the structure of the isotypic MnII, CuII and CoII dihydrate complexes, see: Ma et al. (2003a,d); Abdelhak et al. (2005). For the structures of the analogous CoII, NiII and ZnII tetrahydrate complexes, see: Ma et al. (2003b,c,e).

Experimental top

The title compound was synthesized by heating 218 mg (1 mmol) of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid) with an excess of MgCO3 in 50 ml of 1:1 ethanol–water under reflux for 10 min. After completion of the reaction, the unreacted MgCO3 was removed by filtration and the solution was allowed evaporate to incipient dryness at room temperature, giving small colourless prisms of the title compound from which a specimen was cleaved for the X-ray analysis.

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the refinement at calculated positions [C–H = 0.93 Å and with Uiso(H) = 1.2Ueq(C), using a riding-model approximation.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the cation, anion and water species in the asymmetric unit of the title compound. Inter-species hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 50% probability level. For symmetry code (i): -x, -y, -z.
[Figure 2] Fig. 2. The hydrogen-bonding interactions in the title compound viewed down a. For symmetry codes, see Table 1.
Hexaaquamagnesium bis(3-carboxy-4-hydroxybenzenesulfonate) dihydrate top
Crystal data top
[Mg(H2O)6](C7H5O6S)2·2H2OZ = 1
Mr = 602.78F(000) = 314
Triclinic, P1Dx = 1.613 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8694 (4) ÅCell parameters from 4714 reflections
b = 6.9069 (4) Åθ = 3.2–28.9°
c = 14.3950 (8) ŵ = 0.33 mm1
α = 77.472 (5)°T = 200 K
β = 78.120 (4)°Prism, colourless
γ = 70.131 (5)°0.40 × 0.12 × 0.10 mm
V = 620.51 (6) Å3
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2899 independent reflections
Radiation source: Enhance (Mo) X-ray source2553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 28.8°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 99
Tmin = 0.96, Tmax = 0.99k = 98
8134 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.10P]
where P = (Fo2 + 2Fc2)/3
2899 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Mg(H2O)6](C7H5O6S)2·2H2Oγ = 70.131 (5)°
Mr = 602.78V = 620.51 (6) Å3
Triclinic, P1Z = 1
a = 6.8694 (4) ÅMo Kα radiation
b = 6.9069 (4) ŵ = 0.33 mm1
c = 14.3950 (8) ÅT = 200 K
α = 77.472 (5)°0.40 × 0.12 × 0.10 mm
β = 78.120 (4)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2899 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2553 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.99Rint = 0.023
8134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.34 e Å3
2899 reflectionsΔρmin = 0.43 e Å3
209 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S50.32291 (6)0.27288 (6)0.24107 (3)0.0205 (1)
O20.30636 (17)0.30257 (19)0.58938 (9)0.0293 (4)
O110.33290 (17)0.10533 (19)0.60809 (9)0.0282 (4)
O120.00797 (17)0.16915 (18)0.68922 (8)0.0285 (3)
O510.21125 (18)0.34405 (17)0.15798 (8)0.0282 (3)
O520.4428 (2)0.4036 (2)0.24880 (9)0.0358 (4)
O530.45513 (17)0.05481 (18)0.24189 (8)0.0288 (3)
C10.0565 (2)0.2280 (2)0.51806 (10)0.0168 (4)
C20.1584 (2)0.2911 (2)0.51141 (11)0.0198 (4)
C30.2240 (2)0.3455 (2)0.42131 (12)0.0235 (5)
C40.0799 (2)0.3391 (2)0.33881 (11)0.0223 (4)
C50.1338 (2)0.2784 (2)0.34503 (11)0.0182 (4)
C60.2005 (2)0.2238 (2)0.43408 (11)0.0176 (4)
C110.1284 (2)0.1655 (2)0.61309 (11)0.0193 (4)
Mg10.000000.000000.000000.0200 (2)
O1W0.0127 (2)0.0693 (2)0.12890 (9)0.0323 (4)
O2W0.3193 (2)0.1459 (2)0.01676 (11)0.0338 (4)
O3W0.0515 (2)0.27534 (19)0.06749 (9)0.0307 (4)
O4W0.5409 (2)0.7353 (2)0.13401 (10)0.0313 (4)
H20.244 (3)0.264 (3)0.6383 (17)0.045 (6)*
H30.365800.386400.416800.0280*
H40.124900.375100.278900.0270*
H60.342600.183900.438000.0210*
H110.369 (4)0.070 (3)0.6595 (18)0.049 (7)*
H11W0.002 (3)0.002 (3)0.1845 (18)0.049 (6)*
H12W0.067 (4)0.155 (4)0.1343 (17)0.050 (7)*
H21W0.395 (4)0.180 (4)0.025 (2)0.061 (8)*
H22W0.383 (5)0.180 (4)0.068 (2)0.083 (10)*
H31W0.028 (4)0.370 (4)0.0898 (17)0.044 (7)*
H32W0.177 (4)0.293 (4)0.0885 (17)0.055 (7)*
H41W0.490 (4)0.826 (4)0.1655 (18)0.058 (8)*
H42W0.514 (4)0.631 (4)0.1686 (18)0.055 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S50.0224 (2)0.0251 (2)0.0139 (2)0.0083 (2)0.0034 (1)0.0009 (1)
O20.0175 (6)0.0402 (7)0.0254 (7)0.0054 (5)0.0016 (5)0.0055 (5)
O110.0199 (6)0.0418 (7)0.0185 (6)0.0022 (5)0.0075 (5)0.0035 (5)
O120.0263 (6)0.0358 (6)0.0176 (6)0.0060 (5)0.0002 (5)0.0007 (5)
O510.0354 (6)0.0288 (6)0.0177 (6)0.0063 (5)0.0106 (5)0.0022 (4)
O520.0433 (7)0.0494 (8)0.0254 (6)0.0322 (6)0.0010 (6)0.0027 (5)
O530.0267 (6)0.0321 (6)0.0212 (6)0.0025 (5)0.0061 (5)0.0074 (5)
C10.0171 (7)0.0134 (6)0.0189 (7)0.0034 (5)0.0042 (6)0.0014 (5)
C20.0177 (7)0.0166 (7)0.0237 (8)0.0040 (6)0.0007 (6)0.0048 (6)
C30.0154 (7)0.0246 (8)0.0301 (9)0.0028 (6)0.0067 (6)0.0058 (6)
C40.0218 (7)0.0224 (7)0.0223 (8)0.0029 (6)0.0105 (6)0.0025 (6)
C50.0192 (7)0.0174 (7)0.0173 (7)0.0052 (6)0.0030 (6)0.0017 (5)
C60.0152 (7)0.0177 (7)0.0192 (7)0.0038 (5)0.0044 (6)0.0016 (5)
C110.0206 (7)0.0168 (7)0.0190 (7)0.0033 (6)0.0036 (6)0.0029 (6)
Mg10.0227 (4)0.0233 (4)0.0142 (4)0.0084 (3)0.0045 (3)0.0007 (3)
O1W0.0492 (8)0.0395 (7)0.0156 (6)0.0245 (6)0.0067 (5)0.0005 (5)
O2W0.0254 (6)0.0455 (8)0.0245 (7)0.0053 (6)0.0017 (6)0.0042 (6)
O3W0.0247 (6)0.0250 (6)0.0371 (7)0.0078 (5)0.0063 (6)0.0079 (5)
O4W0.0300 (7)0.0287 (7)0.0357 (7)0.0114 (6)0.0048 (6)0.0022 (6)
Geometric parameters (Å, º) top
S5—O511.4584 (15)O2W—H21W0.82 (3)
S5—O521.4466 (17)O2W—H22W0.82 (3)
S5—O531.4699 (15)O3W—H32W0.89 (3)
S5—C51.7661 (19)O3W—H31W0.75 (3)
Mg1—O1W2.0396 (17)O4W—H42W0.84 (3)
Mg1—O2W2.0664 (19)O4W—H41W0.79 (3)
Mg1—O3W2.0494 (17)C1—C111.476 (2)
Mg1—O1Wi2.0396 (17)C1—C61.394 (2)
Mg1—O2Wi2.0664 (19)C1—C21.408 (2)
Mg1—O3Wi2.0494 (17)C2—C31.393 (2)
O2—C21.347 (2)C3—C41.379 (2)
O11—C111.314 (2)C4—C51.399 (2)
O12—C111.229 (2)C5—C61.382 (2)
O2—H20.85 (2)C3—H30.9300
O11—H110.79 (3)C4—H40.9300
O1W—H11W0.85 (2)C6—H60.9300
O1W—H12W0.82 (3)
S5···H12W2.96 (3)O1W···H22Wi2.83 (4)
S5···H42W3.08 (3)O2···H3v2.5300
S5···H11ii2.92 (2)O2W···H32W2.87 (3)
S5···H22Wiii2.91 (3)O3W···H12W2.86 (2)
O1W···O2W2.907 (3)O4W···H32Wx1.87 (3)
O1W···O3W2.879 (2)O4W···H21Wxi1.91 (3)
O1W···O512.824 (2)O11···H62.3800
O1W···O12iv2.779 (2)O11···H6ii2.5200
O1W···O2Wi2.900 (3)O12···H11Wiv1.93 (2)
O1W···O3Wi2.903 (2)O12···H21.87 (2)
O2···C3v3.324 (3)O51···H42.5600
O2···O11vi3.151 (3)O51···H31Wix2.10 (3)
O2···O122.632 (2)O51···H22Wiii2.78 (3)
O2···O52vii3.207 (3)O51···H12W2.00 (3)
O2W···O3Wi2.926 (3)O52···H62.8900
O2W···O1W2.907 (3)O52···H2vii2.89 (2)
O2W···O3W2.894 (2)O52···H42W1.88 (3)
O2W···O1Wi2.900 (3)O53···H11ii1.92 (3)
O2W···O4Wviii2.728 (3)O53···H22Wiii2.61 (3)
O3W···O2W2.894 (2)O53···H41Wviii2.04 (3)
O3W···O1W2.879 (2)C1···C2iv3.515 (3)
O3W···O51ix2.850 (2)C1···C1vii3.511 (3)
O3W···O1Wi2.903 (2)C1···C2vii3.543 (3)
O3W···O2Wi2.926 (3)C2···C1vii3.543 (3)
O3W···O4Wx2.748 (3)C2···C6iv3.570 (3)
O4W···O2Wxi2.728 (3)C2···C6vii3.509 (3)
O4W···O53xi2.803 (2)C2···C1iv3.515 (3)
O4W···O522.717 (2)C3···C11vii3.568 (3)
O4W···O3Wx2.748 (3)C3···C11iv3.490 (3)
O11···O2xii3.151 (3)C3···O2v3.324 (3)
O11···O53ii2.678 (2)C4···C11vii3.529 (3)
O11···C6ii3.264 (3)C4···C11iv3.519 (3)
O12···O1Wiv2.779 (2)C6···C2iv3.570 (3)
O12···O22.632 (2)C6···C2vii3.509 (3)
O51···O1W2.824 (2)C6···O11ii3.264 (3)
O51···O3Wix2.850 (2)C11···C4vii3.529 (3)
O52···O4W2.717 (2)C11···C3iv3.490 (3)
O52···O2vii3.207 (3)C11···C3vii3.568 (3)
O53···O4Wviii2.803 (2)C11···C4iv3.519 (3)
O53···O11ii2.678 (2)C11···H22.38 (2)
O1W···H21W2.92 (3)
O51—S5—O52114.10 (7)Mg1—O2W—H21W126.5 (19)
O51—S5—O53110.20 (7)H21W—O2W—H22W113 (3)
O51—S5—C5107.36 (7)Mg1—O3W—H32W125.3 (17)
O52—S5—O53111.08 (8)Mg1—O3W—H31W126 (2)
O52—S5—C5106.81 (7)H31W—O3W—H32W107 (3)
O53—S5—C5106.91 (7)H41W—O4W—H42W105 (3)
O2W—Mg1—O3Wi90.64 (6)C2—C1—C11120.22 (13)
O1Wi—Mg1—O3W90.48 (5)C6—C1—C11120.43 (13)
O2Wi—Mg1—O3W90.64 (6)C2—C1—C6119.35 (13)
O3W—Mg1—O3Wi180.00O2—C2—C1122.58 (14)
O1Wi—Mg1—O2Wi90.12 (6)C1—C2—C3119.67 (14)
O1Wi—Mg1—O3Wi89.53 (5)O2—C2—C3117.75 (13)
O2Wi—Mg1—O3Wi89.36 (6)C2—C3—C4120.41 (14)
O1Wi—Mg1—O2W89.88 (6)C3—C4—C5120.14 (14)
O1W—Mg1—O2W90.12 (6)C4—C5—C6119.90 (14)
O1W—Mg1—O3W89.53 (5)S5—C5—C6118.58 (11)
O1W—Mg1—O1Wi180.00S5—C5—C4121.52 (12)
O1W—Mg1—O2Wi89.88 (6)C1—C6—C5120.53 (14)
O1W—Mg1—O3Wi90.48 (5)O11—C11—O12123.56 (14)
O2W—Mg1—O3W89.36 (6)O11—C11—C1113.42 (13)
O2W—Mg1—O2Wi180.00O12—C11—C1123.02 (14)
C2—O2—H2107.2 (15)C2—C3—H3120.00
C11—O11—H11112 (2)C4—C3—H3120.00
Mg1—O1W—H11W128.1 (14)C3—C4—H4120.00
Mg1—O1W—H12W123.6 (17)C5—C4—H4120.00
H11W—O1W—H12W106 (2)C1—C6—H6120.00
Mg1—O2W—H22W121 (2)C5—C6—H6120.00
O51—S5—C5—C41.22 (13)C2—C1—C11—O11178.30 (13)
O51—S5—C5—C6177.90 (11)C2—C1—C11—O121.5 (2)
O52—S5—C5—C4124.00 (12)C6—C1—C11—O111.25 (19)
O52—S5—C5—C655.12 (13)C6—C1—C11—O12178.95 (13)
O53—S5—C5—C4117.02 (12)O2—C2—C3—C4179.28 (13)
O53—S5—C5—C663.86 (13)C1—C2—C3—C40.4 (2)
C6—C1—C2—O2178.76 (13)C2—C3—C4—C50.2 (2)
C6—C1—C2—C30.9 (2)C3—C4—C5—S5178.80 (11)
C11—C1—C2—O21.7 (2)C3—C4—C5—C60.3 (2)
C11—C1—C2—C3178.65 (12)S5—C5—C6—C1179.34 (10)
C2—C1—C6—C50.8 (2)C4—C5—C6—C10.2 (2)
C11—C1—C6—C5178.75 (12)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y, z+1; (v) x1, y+1, z+1; (vi) x1, y, z; (vii) x, y+1, z+1; (viii) x, y1, z; (ix) x, y+1, z; (x) x+1, y+1, z; (xi) x, y+1, z; (xii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O120.85 (2)1.87 (2)2.632 (2)149 (2)
O11—H11···O53ii0.79 (3)1.92 (3)2.678 (2)161 (3)
O1W—H11W···O12iv0.85 (2)1.93 (2)2.779 (2)175 (2)
O1W—H12W···O510.82 (3)2.00 (3)2.824 (2)175 (2)
O2W—H21W···O4Wviii0.82 (3)1.91 (3)2.728 (3)173 (3)
O3W—H31W···O51ix0.75 (3)2.10 (3)2.850 (2)171 (3)
O3W—H32W···O4Wx0.89 (3)1.87 (3)2.748 (3)167 (2)
O4W—H41W···O53xi0.79 (3)2.04 (3)2.803 (2)162 (3)
O4W—H42W···O520.84 (3)1.88 (3)2.717 (2)178 (3)
C3—H3···O2v0.932.533.324 (3)144
C4—H4···O510.932.562.940 (3)105
C6—H6···O110.932.382.705 (2)100
C6—H6···O11ii0.932.523.264 (3)137
Symmetry codes: (ii) x+1, y, z+1; (iv) x, y, z+1; (v) x1, y+1, z+1; (viii) x, y1, z; (ix) x, y+1, z; (x) x+1, y+1, z; (xi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mg(H2O)6](C7H5O6S)2·2H2O
Mr602.78
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)6.8694 (4), 6.9069 (4), 14.3950 (8)
α, β, γ (°)77.472 (5), 78.120 (4), 70.131 (5)
V3)620.51 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.40 × 0.12 × 0.10
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.96, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
8134, 2899, 2553
Rint0.023
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.14
No. of reflections2899
No. of parameters209
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.43

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O120.85 (2)1.87 (2)2.632 (2)149 (2)
O11—H11···O53i0.79 (3)1.92 (3)2.678 (2)161 (3)
O1W—H11W···O12ii0.85 (2)1.93 (2)2.779 (2)175 (2)
O1W—H12W···O510.82 (3)2.00 (3)2.824 (2)175 (2)
O2W—H21W···O4Wiii0.82 (3)1.91 (3)2.728 (3)173 (3)
O3W—H31W···O51iv0.75 (3)2.10 (3)2.850 (2)171 (3)
O3W—H32W···O4Wv0.89 (3)1.87 (3)2.748 (3)167 (2)
O4W—H41W···O53vi0.79 (3)2.04 (3)2.803 (2)162 (3)
O4W—H42W···O520.84 (3)1.88 (3)2.717 (2)178 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology, and Griffith University.

References

First citationAbdelhak, J., Cherni, S. N. & Jouini, T. (2005). Z. Kristallogr. New Cryst. Struct. 220, 183–184.  CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMa, J.-F., Yang, J. & Liu, J.-F. (2003a). Acta Cryst. E59, m478–m480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-F., Yang, J. & Liu, J.-F. (2003b). Acta Cryst. E59, m481–m482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-F., Yang, J. & Liu, J.-F. (2003c). Acta Cryst. E59, m483–m484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-F., Yang, J. & Liu, J.-F. (2003d). Acta Cryst. E59, m485–m486.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-F., Yang, J. & Liu, J.-F. (2003e). Acta Cryst. E59, m487–m488.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds