organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-N-(4-methyl­phen­yl)benzamide

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 25 July 2011; accepted 30 July 2011; online 6 August 2011)

In the crystal structure of the title compound, C14H13NO2, the mol­ecules are approximately planar, the r.m.s. deviation for all non-H atoms being 0.0435 Å; the dihedral angle between the two rings is 3.45 (12)°. The planarity is accounted for in terms of the presence of intra­molecular N—H⋯O and C—H⋯O hydrogen bonding, each of which completes an S(6) ring motif. The mol­ecules are stabilized in the form of supra­molecular chains extending along the crystallographic c axis due to inter­molecular O—H⋯O and C—H⋯O hydrogen bonding; each type leads to an R21(6) ring motif.

Related literature

For related benzamide structures, see: Raza et al. (2010a[Raza, A. R., Nisar, B. & Tahir, M. N. (2010a). Acta Cryst. E66, o2435.],b[Raza, A. R., Nisar, B., Tahir, M. N. & Shamshad, S. (2010b). Acta Cryst. E66, o2922.],c[Raza, A. R., Nisar, B., Tahir, M. N. & Shamshad, S. (2010c). Acta Cryst. E66, o3100.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO2

  • Mr = 227.25

  • Monoclinic, P 21 /c

  • a = 19.4067 (17) Å

  • b = 4.9122 (5) Å

  • c = 12.7261 (11) Å

  • β = 104.793 (4)°

  • V = 1172.96 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.34 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.988

  • 10416 measured reflections

  • 2771 independent reflections

  • 1243 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.159

  • S = 0.96

  • 2771 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.78 2.596 (2) 179
N1—H1A⋯O1 0.86 1.92 2.647 (2) 141
C3—H3⋯O2i 0.93 2.51 3.179 (3) 129
C9—H9⋯O2 0.93 2.25 2.840 (3) 121
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported the crystal structures of (II) i.e. 2-hydroxy-N-(3-nitrophenyl)benzamide (Raza et al., 2010a), (III) i.e. N-(4-chlorophenyl)-2-hydroxybenzamide (Raza et al., 2010b) and (IV) i.e. N-(3-chlorophenyl)-2 -hydroxybenzamide (Raza et al., 2010c). In this connection, the title compound (I, Fig. 1) has been prepared as a precursor for the synthesis of symmetric as well as asymmetric benzoxazepines.

In (I), the 2-hydroxyphenyl group A (C1–C6/O1) and 4-methylanilinic group B (C8—C14/N1) are planar with r.m.s. deviations of 0.0048 and 0.0086 Å, respectively. The dihedral angle between A/B is 3.45 (12) °. There is intramolecular H-bonding of the type N—H···O and C—H···O types (Table 1, Fig. 1), each of which completes a S(6) ring motif (Bernstein et al., 1995). There is also intermolecular H-bonding of the type C—H···O and O—H···O (Table 1). These lead to the formation of two R21(6) ring motifs and to supramolecular chains extending along the crystallographic c-axis (Fig. 2).

Related literature top

For related benzamide structures, see: Raza et al. (2010a,b,c). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a well stirred solution of 2-hydroxy benzoic acid (2.76 g, 0.02 mol, 1 equiv.) and SOCl2 (1.74 mL, 2.84 g, 0.024 mol, 1.2 equiv.) in dry CHCl3, 4-metylaniline (2.14 g, 0.02 mol, 1 equiv.) and Et3N (4.16 mL, 3 g, 0.03 mol, 1.5 equiv.) were added slowly at room temperature followed by 3 h reflux. After completion of reaction, the reaction mixture was cooled to room temperature, neutralized with aqueous NaHCO3 (10 %) and extracted with CHCl3 (3×25 mL). The organic layers were combined, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford a brown solid. The column chromatographic purification with 1%, 2% and 3% CHCl3 in petrol (300 mL each) over a silica gel packed column (of 25.5 cm length) afforded white needles of (I) in the 96th-280th fractions (50 mL each).

Refinement top

Although H atoms appeared in difference Fourier maps they were positioned geometrically with (O–H = 0.82, N–H = 0.86 and C–H = 0.93-0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for hydroxy- & methyl-H atoms and x = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted line indicate the intramolecular H-bonding.
[Figure 2] Fig. 2. The partial packing diagram which shows that molecules form supramolecular chains extending along the c-axis. The dotted line indicate the intramolecular H-bonding.
2-Hydroxy-N-(4-methylphenyl)benzamide top
Crystal data top
C14H13NO2F(000) = 480
Mr = 227.25Dx = 1.287 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1243 reflections
a = 19.4067 (17) Åθ = 1.1–27.9°
b = 4.9122 (5) ŵ = 0.09 mm1
c = 12.7261 (11) ÅT = 296 K
β = 104.793 (4)°Needle, colorless
V = 1172.96 (19) Å30.34 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2771 independent reflections
Radiation source: fine-focus sealed tube1243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 7.6 pixels mm-1θmax = 27.9°, θmin = 1.1°
ω scansh = 2525
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 46
Tmin = 0.979, Tmax = 0.988l = 1616
10416 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0648P)2]
where P = (Fo2 + 2Fc2)/3
2771 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C14H13NO2V = 1172.96 (19) Å3
Mr = 227.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.4067 (17) ŵ = 0.09 mm1
b = 4.9122 (5) ÅT = 296 K
c = 12.7261 (11) Å0.34 × 0.14 × 0.12 mm
β = 104.793 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2771 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1243 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.988Rint = 0.060
10416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.96Δρmax = 0.19 e Å3
2771 reflectionsΔρmin = 0.16 e Å3
156 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29367 (9)0.2157 (4)0.22720 (13)0.0599 (7)
O20.29429 (9)0.0348 (3)0.09273 (12)0.0598 (7)
N10.24804 (9)0.0722 (4)0.04697 (14)0.0438 (7)
C10.33925 (11)0.2782 (5)0.07185 (18)0.0407 (8)
C20.33876 (12)0.3489 (5)0.17802 (18)0.0438 (8)
C30.38382 (13)0.5515 (5)0.2327 (2)0.0516 (9)
C40.42941 (13)0.6849 (5)0.1833 (2)0.0596 (11)
C50.43143 (13)0.6168 (6)0.0796 (2)0.0615 (11)
C60.38654 (13)0.4161 (5)0.0249 (2)0.0539 (10)
C70.29213 (12)0.0712 (5)0.00262 (18)0.0416 (8)
C80.19724 (12)0.2725 (5)0.00178 (18)0.0428 (8)
C90.18909 (14)0.3743 (5)0.1055 (2)0.0564 (10)
C100.13704 (14)0.5697 (6)0.1449 (2)0.0605 (11)
C110.09251 (13)0.6670 (5)0.0859 (2)0.0544 (10)
C120.10233 (14)0.5654 (5)0.0186 (2)0.0592 (10)
C130.15368 (13)0.3727 (5)0.06023 (19)0.0524 (9)
C140.03636 (15)0.8783 (5)0.1313 (2)0.0751 (11)
H10.293140.293640.283960.0899*
H1A0.250910.038120.114240.0525*
H30.383150.597360.303290.0619*
H40.458960.821740.220360.0714*
H50.462730.704940.046480.0739*
H60.387940.371650.045560.0647*
H90.218100.312750.148480.0677*
H100.132290.637280.214610.0726*
H120.073550.628830.061580.0711*
H130.159150.309190.130740.0628*
H14A0.030080.892810.208390.1127*
H14B0.051141.051040.097820.1127*
H14C0.007870.825370.116550.1127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0753 (12)0.0677 (13)0.0429 (11)0.0164 (10)0.0262 (9)0.0130 (9)
O20.0889 (13)0.0586 (13)0.0371 (10)0.0035 (10)0.0256 (9)0.0009 (8)
N10.0496 (12)0.0504 (14)0.0318 (10)0.0029 (10)0.0111 (9)0.0039 (9)
C10.0437 (13)0.0379 (15)0.0409 (14)0.0064 (11)0.0117 (11)0.0060 (11)
C20.0449 (14)0.0444 (16)0.0438 (14)0.0034 (12)0.0147 (12)0.0036 (12)
C30.0500 (14)0.0479 (18)0.0534 (16)0.0010 (13)0.0070 (12)0.0053 (13)
C40.0506 (16)0.0481 (19)0.077 (2)0.0041 (13)0.0109 (15)0.0031 (14)
C50.0525 (16)0.061 (2)0.076 (2)0.0033 (15)0.0257 (15)0.0090 (16)
C60.0557 (16)0.0571 (19)0.0522 (16)0.0014 (14)0.0197 (13)0.0048 (14)
C70.0494 (14)0.0400 (16)0.0365 (14)0.0101 (12)0.0132 (11)0.0050 (11)
C80.0474 (14)0.0383 (15)0.0400 (14)0.0038 (12)0.0062 (11)0.0006 (11)
C90.0608 (16)0.0616 (19)0.0465 (16)0.0014 (15)0.0130 (13)0.0051 (14)
C100.0673 (18)0.056 (2)0.0515 (17)0.0024 (15)0.0028 (14)0.0110 (14)
C110.0544 (16)0.0360 (16)0.0628 (19)0.0060 (13)0.0031 (14)0.0021 (13)
C120.0613 (17)0.0524 (19)0.0615 (18)0.0060 (14)0.0112 (14)0.0038 (14)
C130.0599 (16)0.0563 (18)0.0397 (14)0.0043 (14)0.0105 (12)0.0046 (12)
C140.0718 (19)0.0511 (19)0.086 (2)0.0023 (16)0.0097 (16)0.0010 (16)
Geometric parameters (Å, º) top
O1—C21.366 (3)C10—C111.368 (4)
O2—C71.238 (3)C11—C121.387 (3)
O1—H10.8200C11—C141.509 (4)
N1—C71.339 (3)C12—C131.379 (4)
N1—C81.419 (3)C3—H30.9300
N1—H1A0.8600C4—H40.9300
C1—C71.495 (3)C5—H50.9300
C1—C61.392 (3)C6—H60.9300
C1—C21.397 (3)C9—H90.9300
C2—C31.389 (3)C10—H100.9300
C3—C41.375 (4)C12—H120.9300
C4—C51.372 (4)C13—H130.9300
C5—C61.381 (4)C14—H14A0.9600
C8—C131.386 (3)C14—H14B0.9600
C8—C91.382 (3)C14—H14C0.9600
C9—C101.391 (4)
C2—O1—H1109.00C11—C12—C13121.6 (2)
C7—N1—C8128.90 (19)C8—C13—C12120.8 (2)
C8—N1—H1A116.00C2—C3—H3120.00
C7—N1—H1A116.00C4—C3—H3120.00
C2—C1—C6117.5 (2)C3—C4—H4120.00
C2—C1—C7125.8 (2)C5—C4—H4120.00
C6—C1—C7116.7 (2)C4—C5—H5120.00
O1—C2—C3120.6 (2)C6—C5—H5120.00
O1—C2—C1119.2 (2)C1—C6—H6119.00
C1—C2—C3120.3 (2)C5—C6—H6119.00
C2—C3—C4120.6 (2)C8—C9—H9120.00
C3—C4—C5120.2 (2)C10—C9—H9120.00
C4—C5—C6119.3 (2)C9—C10—H10118.00
C1—C6—C5122.1 (2)C11—C10—H10118.00
N1—C7—C1118.03 (19)C11—C12—H12119.00
O2—C7—C1120.5 (2)C13—C12—H12119.00
O2—C7—N1121.5 (2)C8—C13—H13120.00
N1—C8—C9124.5 (2)C12—C13—H13120.00
N1—C8—C13117.0 (2)C11—C14—H14A109.00
C9—C8—C13118.5 (2)C11—C14—H14B109.00
C8—C9—C10119.3 (2)C11—C14—H14C109.00
C9—C10—C11123.1 (2)H14A—C14—H14B109.00
C10—C11—C14121.7 (2)H14A—C14—H14C109.00
C10—C11—C12116.7 (2)H14B—C14—H14C109.00
C12—C11—C14121.6 (2)
C8—N1—C7—O22.0 (4)C1—C2—C3—C40.0 (4)
C8—N1—C7—C1178.1 (2)C2—C3—C4—C50.8 (4)
C7—N1—C8—C96.3 (4)C3—C4—C5—C61.0 (4)
C7—N1—C8—C13174.3 (2)C4—C5—C6—C10.4 (4)
C6—C1—C2—O1179.2 (2)N1—C8—C9—C10179.6 (2)
C6—C1—C2—C30.5 (4)C13—C8—C9—C101.0 (4)
C7—C1—C2—O12.3 (4)N1—C8—C13—C12179.2 (2)
C7—C1—C2—C3177.9 (2)C9—C8—C13—C121.4 (4)
C2—C1—C6—C50.3 (4)C8—C9—C10—C110.4 (4)
C7—C1—C6—C5178.3 (2)C9—C10—C11—C121.4 (4)
C2—C1—C7—O2176.0 (2)C9—C10—C11—C14179.7 (2)
C2—C1—C7—N14.1 (4)C10—C11—C12—C131.0 (4)
C6—C1—C7—O22.5 (3)C14—C11—C12—C13179.9 (2)
C6—C1—C7—N1177.5 (2)C11—C12—C13—C80.4 (4)
O1—C2—C3—C4179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.782.596 (2)179
N1—H1A···O10.861.922.647 (2)141
C3—H3···O2i0.932.513.179 (3)129
C9—H9···O20.932.252.840 (3)121
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13NO2
Mr227.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)19.4067 (17), 4.9122 (5), 12.7261 (11)
β (°) 104.793 (4)
V3)1172.96 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.979, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10416, 2771, 1243
Rint0.060
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.159, 0.96
No. of reflections2771
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.782.596 (2)179
N1—H1A···O10.861.922.647 (2)141
C3—H3···O2i0.932.513.179 (3)129
C9—H9···O20.932.252.840 (3)121
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Ex-Vice Chancellor, University of Sargodha, Pakistan. ARR also acknowledges the Higher Education Commission, Government of Pakistan, for generous support of a research project (20-819).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRaza, A. R., Nisar, B. & Tahir, M. N. (2010a). Acta Cryst. E66, o2435.  CrossRef IUCr Journals Google Scholar
First citationRaza, A. R., Nisar, B., Tahir, M. N. & Shamshad, S. (2010b). Acta Cryst. E66, o2922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaza, A. R., Nisar, B., Tahir, M. N. & Shamshad, S. (2010c). Acta Cryst. E66, o3100.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds