organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A centrosymmetric monoclinic polymorph of N1,N4-bis­­(pyridin-3-yl­methyl­­idene)benzene-1,4-di­amine

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 26 July 2011; accepted 31 July 2011; online 6 August 2011)

The complete molecule of the title compound, C18H14N4, is generated by the application of a centre of inversion. The dihedral angle between the central benzene ring and the pyridine ring is 31.88 (7)°. In the crystal, mol­ecules are stacked in columns along the c axis and several inter­molecular ππ inter­actions are present between the six-membered rings, the shortest centroid–centroid distance being 3.937 (2) Å. The structure reported herein represents a centrosymmetric polymorph of the previously reported non-centrosymmetric (P21) form [Kim et al. (2005[Kim, H. N., Lee, H. K. & Lee, S. W. (2005). Bull. Korean Chem. Soc. 26, 892-898.]). Bull. Korean Chem. Soc. 26, 892–898].

Related literature

For the crystal structure of N1,N4-bis­(pyridin-3-yl­methyl­ene)benzene-1,4-diamine, see: Kim et al. (2005[Kim, H. N., Lee, H. K. & Lee, S. W. (2005). Bull. Korean Chem. Soc. 26, 892-898.]). For the crystal structure of N1,N4-bis­(pyridin-2-yl­methyl­ene)benzene-1,4-diamine, see: Chanda et al. (2002[Chanda, N., Mondal, B., Puranik, V. G. & Lahiri, G. K. (2002). Polyhedron, 21, 2033-2043.]); Ball et al. (2004[Ball, P. J., Shtoyko, T. R., Bauer, J. A. K., Oldham, W. J. & Connick, W. B. (2004). Inorg. Chem. 43, 622-632.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N4

  • Mr = 286.33

  • Monoclinic, P 21 /c

  • a = 16.622 (6) Å

  • b = 6.171 (2) Å

  • c = 7.159 (2) Å

  • β = 95.732 (8)°

  • V = 730.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.22 × 0.14 × 0.11 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 1.000

  • 5128 measured reflections

  • 1790 independent reflections

  • 1027 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.152

  • S = 1.03

  • 1790 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is a polydentate Schiff-base (Fig. 1), which can act as a monodentate or bis(monodentate) ligand, that is, one N atom or two N atoms of the pyridyl groups can coordinate to a metal ion or metal ions. The crystal structure of the this compound was previously reported in the non-centrosymmetric space group P21 (Kim et al., 2005). The centrosymmetric structure presented here is essentially the same as the published structure and represents a new monoclinic polymorph. In the present study the compound is isomorphous with the analogous compound N1,N4-bis(pyridin-2-ylmethylene)benzene-1,4-diamine (Chanda et al., 2002; Ball et al., 2004).

The asymmetric unit of the title molecule contains one half of the formula unit (Fig. 1); a centre of inversion is located in the midpoint of the compound, and therefore the two pyridyl rings are exactly parallel. The dihedral angle between the central benzene ring and the pyridine ring is 31.88 (7) °. The N2—C6/7 bond lengths and the C6—N2—C7 bond angle indicate that the imino N2 atom is sp2-hybridized [d(N2C6) = 1.283 (2) Å and d(N2—C7) = 1.429 (2) Å; <C6—N2—C7 = 119.0 (2) °]. In the crystal structure, the molecules are stacked in columns along the c axis and several intermolecular π-π interactions are present between the six-membered rings, with a shortest centroid-centroid distance being 3.937 (2) Å (Fig. 2).

Related literature top

For the crystal structure of N1,N4-bis(pyridin-3-ylmethylene)benzene-1,4-diamine, see: Kim et al. (2005). For the crystal structure of N1,N4-bis(pyridin-2-ylmethylene)benzene-1,4-diamine, see: Chanda et al. (2002); Ball et al. (2004).

Experimental top

1,4-Phenylenediamine (1.0812 g, 9.998 mmol) and 3-pyridinecarboxaldehyde (2.1447 g, 20.023 mmol) in CH3CN (30 ml) were stirred for 3 h at room temperature. The precipitate was then separated by filtration, washed with CH3CN and ether, and dried under vacuum, to give a yellow powder (1.8899 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from its ethylacetate solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level; H atoms are shown as small circles of arbitrary radius. Unlabelled atoms are related by the symmetry transformation: -x, -y, 1 - z.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound.
N1,N4-bis(pyridin-3-ylmethylidene)benzene-1,4-diamine top
Crystal data top
C18H14N4F(000) = 300
Mr = 286.33Dx = 1.301 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1327 reflections
a = 16.622 (6) Åθ = 2.5–28.2°
b = 6.171 (2) ŵ = 0.08 mm1
c = 7.159 (2) ÅT = 200 K
β = 95.732 (8)°Plate, yellow
V = 730.6 (4) Å30.22 × 0.14 × 0.11 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
1790 independent reflections
Radiation source: fine-focus sealed tube1027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2219
Tmin = 0.825, Tmax = 1.000k = 88
5128 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.064P)2 + 0.0036P]
where P = (Fo2 + 2Fc2)/3
1790 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H14N4V = 730.6 (4) Å3
Mr = 286.33Z = 2
Monoclinic, P21/cMo Kα radiation
a = 16.622 (6) ŵ = 0.08 mm1
b = 6.171 (2) ÅT = 200 K
c = 7.159 (2) Å0.22 × 0.14 × 0.11 mm
β = 95.732 (8)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1790 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1027 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 1.000Rint = 0.049
5128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
1790 reflectionsΔρmin = 0.24 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.40327 (10)0.2126 (3)0.3182 (2)0.0434 (5)
N20.16109 (9)0.0893 (2)0.4230 (2)0.0296 (4)
C10.32643 (12)0.1772 (3)0.3548 (3)0.0374 (5)
H10.30910.03100.36220.045*
C20.27031 (11)0.3394 (3)0.3825 (3)0.0298 (5)
C30.29604 (12)0.5530 (3)0.3732 (3)0.0426 (6)
H30.26020.66900.39220.051*
C40.37490 (13)0.5940 (3)0.3356 (3)0.0501 (6)
H40.39380.73870.32820.060*
C50.42572 (13)0.4208 (3)0.3092 (3)0.0439 (6)
H50.47950.45140.28310.053*
C60.18734 (11)0.2849 (3)0.4232 (3)0.0300 (5)
H60.15200.39900.45070.036*
C70.07963 (11)0.0508 (3)0.4617 (2)0.0264 (4)
C80.06382 (11)0.1381 (3)0.5601 (2)0.0293 (5)
H80.10700.23330.60060.035*
C90.01465 (11)0.1882 (3)0.4004 (2)0.0286 (4)
H90.02430.31580.33180.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0308 (10)0.0441 (11)0.0568 (12)0.0014 (8)0.0123 (8)0.0005 (8)
N20.0263 (9)0.0297 (9)0.0338 (8)0.0027 (7)0.0080 (6)0.0001 (7)
C10.0320 (12)0.0327 (11)0.0488 (12)0.0006 (8)0.0108 (9)0.0010 (9)
C20.0266 (10)0.0296 (10)0.0337 (10)0.0018 (8)0.0057 (8)0.0005 (8)
C30.0331 (12)0.0279 (11)0.0688 (14)0.0000 (9)0.0149 (10)0.0012 (10)
C40.0388 (13)0.0348 (12)0.0790 (17)0.0103 (10)0.0176 (11)0.0000 (11)
C50.0288 (11)0.0456 (13)0.0586 (13)0.0069 (10)0.0113 (10)0.0003 (10)
C60.0261 (10)0.0307 (11)0.0338 (10)0.0001 (8)0.0060 (8)0.0016 (8)
C70.0248 (10)0.0278 (10)0.0274 (9)0.0017 (7)0.0063 (7)0.0026 (7)
C80.0273 (10)0.0284 (10)0.0325 (10)0.0003 (8)0.0038 (8)0.0007 (8)
C90.0310 (11)0.0264 (10)0.0288 (9)0.0011 (8)0.0048 (8)0.0018 (7)
Geometric parameters (Å, º) top
N1—C51.341 (3)C4—C51.387 (3)
N1—C11.347 (2)C4—H40.9500
N2—C61.283 (2)C5—H50.9500
N2—C71.429 (2)C6—H60.9500
C1—C21.396 (3)C7—C81.401 (2)
C1—H10.9500C7—C91.408 (3)
C2—C31.389 (3)C8—C9i1.396 (3)
C2—C61.476 (3)C8—H80.9500
C3—C41.387 (3)C9—C8i1.396 (3)
C3—H30.9500C9—H90.9500
C5—N1—C1116.01 (18)N1—C5—H5118.1
C6—N2—C7118.98 (16)C4—C5—H5118.1
N1—C1—C2124.86 (18)N2—C6—C2122.54 (17)
N1—C1—H1117.6N2—C6—H6118.7
C2—C1—H1117.6C2—C6—H6118.7
C3—C2—C1117.39 (18)C8—C7—C9118.75 (16)
C3—C2—C6121.57 (17)C8—C7—N2117.70 (16)
C1—C2—C6121.03 (17)C9—C7—N2123.50 (16)
C4—C3—C2118.94 (19)C9i—C8—C7120.79 (16)
C4—C3—H3120.5C9i—C8—H8119.6
C2—C3—H3120.5C7—C8—H8119.6
C5—C4—C3119.1 (2)C8i—C9—C7120.45 (17)
C5—C4—H4120.5C8i—C9—H9119.8
C3—C4—H4120.5C7—C9—H9119.8
N1—C5—C4123.7 (2)
C5—N1—C1—C20.2 (3)C3—C2—C6—N2176.31 (18)
N1—C1—C2—C30.5 (3)C1—C2—C6—N24.7 (3)
N1—C1—C2—C6179.58 (18)C6—N2—C7—C8145.41 (17)
C1—C2—C3—C40.5 (3)C6—N2—C7—C937.0 (2)
C6—C2—C3—C4179.57 (19)C9—C7—C8—C9i1.0 (3)
C2—C3—C4—C50.2 (3)N2—C7—C8—C9i178.72 (16)
C1—N1—C5—C40.2 (3)C8—C7—C9—C8i1.0 (3)
C3—C4—C5—N10.2 (4)N2—C7—C9—C8i178.58 (16)
C7—N2—C6—C2179.26 (16)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H14N4
Mr286.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)16.622 (6), 6.171 (2), 7.159 (2)
β (°) 95.732 (8)
V3)730.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.14 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.825, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5128, 1790, 1027
Rint0.049
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.152, 1.03
No. of reflections1790
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBall, P. J., Shtoyko, T. R., Bauer, J. A. K., Oldham, W. J. & Connick, W. B. (2004). Inorg. Chem. 43, 622–632.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanda, N., Mondal, B., Puranik, V. G. & Lahiri, G. K. (2002). Polyhedron, 21, 2033–2043.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKim, H. N., Lee, H. K. & Lee, S. W. (2005). Bull. Korean Chem. Soc. 26, 892–898.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds