metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1199-m1200

Bis[3,5-di­fluoro-2-(4-methyl­pyridin-2-yl)phenyl-κ2C1,N](picolinato-κ2N,O)iridium(III) chloro­form monosolvate

aDepartment of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University, Busan 609-735, Republic of Korea, bDepartment of Chemistry, Pusan National University, Busan 609-735, Republic of Korea, and cDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 26 July 2011; accepted 1 August 2011; online 6 August 2011)

In the title complex, [Ir(C12H8F2N)2(C6H4NO2)]·CHCl3, two similar mol­ecules of each component comprise the asymmetric unit. The independent complex mol­ecules are linked by inter­molecular ππ inter­actions [centroid–centroid distance = 3.830 (4) Å]. The IrIII ion adopts a distorted octa­hedral geometry, being coordinated by three N atoms, two C atoms, and one O atom of three bidentate ligands, with the N atoms arranged meridionally.

Related literature

For general background to luminescent Ir complexes, see: Ulbricht et al. (2009[Ulbricht, C., Beyer, B., Friebe, C., Winter, A. & Schubert, U. S. (2009). Adv. Mater. 21, 4418-4441.]); Chi & Chou (2010[Chi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638-655.]). For phenyl­pyridine Ir complexes, see: Lyu et al. (2006[Lyu, Y.-Y., Byun, Y., Kwon, O., Han, E., Jeon, W. S., Das, R. R. & Char, K. (2006). J. Phys. Chem. B, 110, 10303-10314.]); Nazeeruddin et al. (2003[Nazeeruddin, M. K., Humphy-Baker, R., Berner, D., Rivier, S., Zuppiroli, L. & Graetzel, M. (2003). J. Am. Chem. Soc. 125, 8790-8797.]); Seo et al. (2010[Seo, H.-J., Heo, Y.-M., Jin, S. H., Yook, K.-S., Lee, J.-Y., Kang, S. K. & Kim, Y.-I. (2010). J. Lumin. 130, 1694-1701.]); Sasabe & Kido (2011[Sasabe, H. & Kido, J. (2011). Chem. Mater. 23, 621-630.]); Aoki et al. (2011[Aoki, S., Matsuo, Y., Ogura, S., Ohwada, H., Hisamatsu, Y., Moromizato, S., Shiro, M. & Kitamura, M. (2011). Inorg. Chem. 50, 806-818.]). For phospho­rescent Ir complexes, see: Takizawa et al. (2006[Takizawa, S., Echizen, H., Nishida, J., Tsuzuki, T., Tokito, T. & Yamashita, Y. (2006). Chem. Lett. 35, 748-749.]); Xu et al. (2009[Xu, M., Zhou, R., Wang, G. & Yu, J. (2009). Inorg. Chim. Acta, 362, 2183-2188.]). For the Suzuki coupling reaction, see: Miyaura & Suzuki (1995[Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C12H8F2N)2(C6H4NO2)]·CHCl3

  • Mr = 842.06

  • Triclinic, [P \overline 1]

  • a = 13.421 (2) Å

  • b = 15.020 (5) Å

  • c = 16.291 (5) Å

  • α = 85.61 (4)°

  • β = 68.85 (5)°

  • γ = 89.26 (3)°

  • V = 3053.6 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.69 mm−1

  • T = 170 K

  • 0.14 × 0.13 × 0.09 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.502, Tmax = 0.665

  • 54485 measured reflections

  • 11349 independent reflections

  • 9557 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.03

  • 11349 reflections

  • 797 parameters

  • H-atom parameters constrained

  • Δρmax = 2.76 e Å−3

  • Δρmin = −1.28 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ir1—C23 1.987 (5)
Ir1—C8 1.995 (6)
Ir1—N16 2.027 (5)
Ir1—N1 2.040 (4)
Ir1—N31 2.123 (5)
Ir1—O38 2.153 (4)
Ir2—C62 1.979 (5)
Ir2—C47 1.991 (5)
Ir2—N55 2.019 (4)
Ir2—N40 2.046 (4)
Ir2—N70 2.125 (5)
Ir2—O77 2.148 (4)
C23—Ir1—N16 80.4 (2)
C8—Ir1—N1 80.2 (2)
C23—Ir1—N31 97.73 (19)
C8—Ir1—O38 99.14 (19)
N31—Ir1—O38 76.70 (16)
C62—Ir2—N55 80.3 (2)
C47—Ir2—N40 79.8 (2)
N40—Ir2—N70 97.20 (17)
C47—Ir2—O77 98.49 (18)
N70—Ir2—O77 76.80 (16)

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There has been a growing interest in luminescent iridium complexes (Ulbricht et al., 2009) because of their high quantum efficiency and tunable emission energy (Chi & Chou, 2010). Especially, 2-phenylpyridine-based cyclometallated iridium(III) complexes have been reported (Lyu et al., 2006; Nazeeruddin et al., 2003; Seo et al., 2010; Sasabe et al., 2011; Aoki et al., 2011) and proved to be excellent candidates for organic light-emitting diodes (OLEDs) in full color display by doping red, green to blue iridium(III) phosphors in host matrix. But pure blue emissive materials with high phosphorescence efficiency are still rare comparing to red and green ones. Recently, blue phosphorescent iridium(III) complexes bearing 2-(fluoro substituted phenyl)-4-methylpyridine were reported (Takizawa et al., 2006; Xu et al., 2009) and their photophysical properties were discussed. Herein, we prepared a blue emissive titled complex and its structure is reported.

In (I), two similar complex molecules and two chloroform comprise the asymmetric unit, which are linked by the intermolecular π-π interactions (centroid-centroid distance = 3.830 (4) Å) between the aromatic rings of the discrete units (Fig. 1 and Table 1). The IrIII ion adopts a distorted octahedral geometry, being coordinated by three N atoms, two C atoms, and one O atom of three bidentate ligands. The angles around Ir atoms are in the range of 76.70 (16) – 99.14 (19) °. The Ir—C bond distances of 1.979 (5) – 1.995 (6) Å are shorter than the Ir—N distances of 2.019 (4) -2.125 (5) Å due to the stronger trans influence of the phenyl ring compared to the pyridine ring (Table 1). The N atoms of each dfpmpy ligand adopt a meridional arrangement.

Related literature top

For general background to luminescent Ir complexes, see: Ulbricht et al. (2009); Chi & Chou (2010). For phenylpyridine Ir complexes, see: Lyu et al. (2006); Nazeeruddin et al. (2003); Seo et al. (2010); Sasabe & Kido (2011); Aoki et al. (2011). For phosphorescent Ir complexes, see: Takizawa et al. (2006); Xu et al. (2009). For the Suzuki coupling reaction, see: Miyaura & Suzuki (1995).

Experimental top

Synthesis of 2-(2,4-difluorophenyl)-4-methylpyridine (dfpmpy): dfpmpy was prepared by Suzuki coupling reaction using 2,4-difluorophenylboronic acid and the appropriate 2-bromo-4-methylpyridine(Miyaura & Suzuki, 1995). 2-Bromo-4-methylpyridine, 2,4-difluorophenylboronic acid and tetrakis(triphenylphosphine)palladium(0) were dissolved to 50 ml of THF. After 30 ml of aqueous 2M Na2CO3 was delivered, the reaction mixture was heated at 343 K for 24 h. The crude product was flash chromatographed on silica gel using n-hexane/ethyl acetate as an eluent.

Synthesis of title complex: Cyclometallated iridium(III) µ-chloro-bridged dimer, [(dfpmpy)2Ir(µ-Cl)]2, was prepared from the reaction of IrCl3 3H2O with dfpmpy in a 3:1 mixture of 2-ethoxyethanol and water at 398 K for 24 h. The dimeric iridium(III) complex, sodium carbonate and picolinic acid were dissolved 2-ethoxyethanol, and the mixture was heated at 403 K for 24 h. The mixture extracted with dichloromethane and dried over anhydrous magnesium sulfate. The crude product was flash chromatographed on silica gel using dichloromethane/methanol as an eluent. The yellow crystals were grown from its ethanol/chloroform solution by slow evaporation at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.98 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic- and chloroform-H atoms, and 1.5Ueq(C) for methyl-H atoms. The maximum and minimum residual electron density peaks were located at 0.84 and 0.87 Å from the Ir2 and Cl1 atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structures of the four independent molecules in (I), showing the atom-numbering scheme and 30% probability ellipsoids. The complex molecules are linked by π-π interactions (dashed lines). H atoms have been omitted for clarity.
Bis[3,5-difluoro-2-(4-methylpyridin-2-yl)phenyl- κ2C1,N](picolinato-κ2N,O)iridium(III) chloroform monosolvate top
Crystal data top
[Ir(C12H8F2N)2(C6H4NO2)]·CHCl3Z = 4
Mr = 842.06F(000) = 1632
Triclinic, P1Dx = 1.832 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.421 (2) ÅCell parameters from 8556 reflections
b = 15.020 (5) Åθ = 2.4–28.2°
c = 16.291 (5) ŵ = 4.69 mm1
α = 85.61 (4)°T = 170 K
β = 68.85 (5)°Block, yellow
γ = 89.26 (3)°0.14 × 0.13 × 0.09 mm
V = 3053.6 (18) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
9557 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 25.5°, θmin = 1.6°
Tmin = 0.502, Tmax = 0.665h = 1616
54485 measured reflectionsk = 1818
11349 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0433P)2 + 10.7327P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max = 0.002
S = 1.03Δρmax = 2.76 e Å3
11349 reflectionsΔρmin = 1.28 e Å3
797 parameters
Crystal data top
[Ir(C12H8F2N)2(C6H4NO2)]·CHCl3γ = 89.26 (3)°
Mr = 842.06V = 3053.6 (18) Å3
Triclinic, P1Z = 4
a = 13.421 (2) ÅMo Kα radiation
b = 15.020 (5) ŵ = 4.69 mm1
c = 16.291 (5) ÅT = 170 K
α = 85.61 (4)°0.14 × 0.13 × 0.09 mm
β = 68.85 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
11349 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
9557 reflections with I > 2σ(I)
Tmin = 0.502, Tmax = 0.665Rint = 0.038
54485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0433P)2 + 10.7327P]
where P = (Fo2 + 2Fc2)/3
11349 reflectionsΔρmax = 2.76 e Å3
797 parametersΔρmin = 1.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.401921 (17)0.127006 (13)0.272846 (13)0.03178 (7)
N10.2687 (3)0.1283 (3)0.3844 (3)0.0308 (9)
C20.2679 (4)0.1269 (4)0.4673 (4)0.0362 (12)
H20.3330.12650.47550.043*
C30.1764 (5)0.1260 (4)0.5397 (4)0.0410 (13)
H30.17970.12380.59590.049*
C40.0787 (5)0.1285 (4)0.5295 (4)0.0435 (14)
C50.0793 (5)0.1313 (4)0.4446 (4)0.0442 (14)
H50.01460.13320.43570.053*
C60.1727 (4)0.1316 (4)0.3727 (4)0.0349 (12)
C70.1850 (5)0.1371 (4)0.2791 (4)0.0385 (13)
C80.2903 (5)0.1417 (4)0.2189 (4)0.0376 (13)
C90.3059 (6)0.1527 (4)0.1297 (4)0.0522 (17)
H90.37470.15850.08790.063*
C100.2206 (7)0.1552 (5)0.1035 (5)0.064 (2)
C110.1183 (7)0.1485 (5)0.1598 (5)0.065 (2)
H110.06150.14970.13990.078*
C120.1027 (5)0.1400 (5)0.2474 (5)0.0528 (17)
C130.0236 (5)0.1297 (5)0.6073 (5)0.0603 (19)
H13A0.07790.15720.5890.09*
H13B0.01310.16320.65150.09*
H13C0.04520.06970.63120.09*
F140.0006 (3)0.1328 (3)0.3045 (3)0.0715 (12)
F150.2387 (4)0.1630 (4)0.0157 (3)0.0980 (19)
N160.5221 (4)0.1191 (3)0.1547 (3)0.0371 (11)
C170.5798 (6)0.1900 (4)0.1074 (4)0.0537 (17)
H170.56730.24540.13080.064*
C180.6564 (6)0.1834 (4)0.0259 (4)0.0582 (19)
H180.69660.23350.00460.07*
C190.6744 (5)0.1021 (5)0.0113 (4)0.0497 (16)
C200.6134 (5)0.0297 (4)0.0377 (4)0.0441 (14)
H200.62320.02570.01420.053*
C210.5383 (5)0.0381 (4)0.1208 (4)0.0361 (12)
C220.4690 (4)0.0320 (4)0.1802 (4)0.0343 (12)
C230.3943 (4)0.0029 (3)0.2598 (4)0.0317 (11)
C240.3277 (4)0.0667 (4)0.3210 (4)0.0347 (12)
H240.27790.04970.37370.042*
C250.3361 (4)0.1545 (4)0.3030 (4)0.0377 (13)
C260.4064 (5)0.1847 (4)0.2266 (4)0.0457 (15)
H260.40930.24480.21580.055*
C270.4721 (5)0.1219 (4)0.1668 (4)0.0433 (14)
C280.7599 (6)0.0929 (5)0.1003 (4)0.0618 (19)
H28A0.77880.15080.13130.093*
H28B0.73370.05570.13370.093*
H28C0.82180.06630.09280.093*
F290.5416 (3)0.1517 (2)0.0920 (3)0.0639 (11)
F300.2726 (3)0.2159 (2)0.3643 (3)0.0501 (9)
N310.5127 (3)0.1215 (3)0.3388 (3)0.0306 (10)
C320.5541 (4)0.0478 (4)0.3645 (4)0.0368 (13)
H320.53670.00760.35110.044*
C330.6221 (5)0.0523 (4)0.4105 (4)0.0450 (14)
H330.650.00030.42790.054*
C340.6486 (5)0.1338 (4)0.4307 (5)0.0468 (15)
H340.69310.13770.46280.056*
C350.6076 (4)0.2094 (4)0.4025 (4)0.0422 (14)
H350.62560.26540.41410.051*
C360.5403 (4)0.2019 (4)0.3572 (4)0.0349 (12)
C370.4926 (4)0.2819 (4)0.3238 (4)0.0368 (13)
O380.4333 (3)0.2655 (2)0.2815 (3)0.0375 (9)
O390.5156 (3)0.3572 (3)0.3383 (3)0.0510 (11)
Ir20.178581 (16)0.386356 (13)0.679992 (13)0.02913 (7)
N400.1713 (3)0.3834 (3)0.5569 (3)0.0268 (9)
C410.2550 (4)0.3808 (4)0.4814 (3)0.0335 (12)
H410.3230.37980.48420.04*
C420.2466 (4)0.3797 (4)0.4009 (4)0.0346 (12)
H420.30780.37860.35040.042*
C430.1472 (4)0.3803 (4)0.3943 (4)0.0336 (12)
C440.0600 (4)0.3812 (4)0.4718 (3)0.0328 (12)
H440.00840.38070.46980.039*
C450.0721 (4)0.3830 (3)0.5524 (3)0.0291 (11)
C460.0133 (4)0.3818 (3)0.6390 (3)0.0310 (11)
C470.0211 (4)0.3779 (3)0.7112 (3)0.0320 (11)
C480.0575 (5)0.3710 (4)0.7972 (4)0.0379 (13)
H480.0380.36740.84660.045*
C490.1628 (5)0.3698 (4)0.8062 (4)0.0435 (15)
C500.1982 (5)0.3752 (4)0.7375 (4)0.0421 (14)
H500.27070.37460.74650.051*
C510.1219 (4)0.3814 (4)0.6550 (4)0.0356 (12)
C520.1340 (5)0.3769 (4)0.3067 (3)0.0411 (13)
H52A0.11720.43530.28750.062*
H52B0.07710.33590.31280.062*
H52C0.19930.35750.2640.062*
F530.1575 (2)0.3876 (3)0.5867 (2)0.0478 (9)
F540.2367 (3)0.3645 (3)0.8902 (2)0.0608 (11)
N550.1675 (4)0.3956 (3)0.8060 (3)0.0356 (10)
C560.1626 (6)0.3235 (4)0.8620 (4)0.0542 (18)
H560.16840.26690.84150.065*
C570.1492 (7)0.3319 (5)0.9481 (4)0.061 (2)
H570.14670.28090.9850.073*
C580.1394 (5)0.4150 (4)0.9813 (4)0.0456 (15)
C590.1410 (5)0.4881 (4)0.9246 (4)0.0419 (14)
H590.1330.54490.94510.05*
C600.1545 (4)0.4783 (4)0.8368 (4)0.0347 (12)
C610.1553 (4)0.5487 (3)0.7692 (3)0.0317 (11)
C620.1638 (4)0.5172 (3)0.6865 (3)0.0283 (11)
C630.1660 (4)0.5807 (3)0.6188 (3)0.0307 (11)
H630.17370.56290.56340.037*
C640.1567 (4)0.6694 (4)0.6339 (4)0.0357 (12)
C650.1465 (4)0.7018 (4)0.7143 (4)0.0383 (13)
H650.13950.76240.72320.046*
C660.1475 (5)0.6394 (4)0.7791 (4)0.0385 (13)
C670.1316 (6)0.4252 (5)1.0748 (4)0.0583 (18)
H67A0.20060.4411.0750.088*
H67B0.10750.36981.10960.088*
H67C0.08180.47121.09920.088*
F680.1375 (3)0.6708 (2)0.8579 (2)0.0564 (10)
F690.1581 (3)0.7303 (2)0.5682 (2)0.0477 (8)
N700.3477 (4)0.3839 (3)0.6406 (3)0.0310 (10)
C710.4140 (5)0.4543 (4)0.6265 (4)0.0366 (12)
H710.38590.51140.63190.044*
C720.5216 (5)0.4444 (4)0.6044 (4)0.0420 (14)
H720.56570.49440.59530.05*
C730.5651 (5)0.3603 (4)0.5958 (4)0.0425 (14)
H730.63830.35280.58010.051*
C740.4968 (5)0.2875 (4)0.6110 (4)0.0420 (14)
H740.52360.230.6060.05*
C750.3891 (4)0.3013 (4)0.6337 (3)0.0331 (12)
C760.3098 (5)0.2256 (4)0.6528 (4)0.0387 (13)
O770.2124 (3)0.2462 (2)0.6793 (3)0.0362 (9)
O780.3444 (4)0.1485 (3)0.6427 (3)0.0525 (12)
C790.8189 (8)0.0330 (6)0.1973 (6)0.081 (3)
H790.76830.05320.25610.097*
Cl10.9438 (3)0.0490 (3)0.1971 (3)0.185 (2)
Cl20.7860 (4)0.0820 (2)0.1244 (3)0.1664 (19)
Cl30.8030 (2)0.08722 (18)0.1801 (2)0.1093 (9)
C830.4763 (7)0.5241 (6)0.8416 (5)0.074 (2)
H830.47980.55490.78540.089*
Cl40.4398 (3)0.41077 (18)0.84317 (19)0.1220 (12)
Cl50.5977 (2)0.5333 (3)0.8509 (3)0.1506 (16)
Cl60.37928 (17)0.57276 (14)0.92568 (17)0.0890 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.03765 (12)0.02222 (11)0.03306 (12)0.00448 (8)0.00911 (9)0.00650 (8)
N10.032 (2)0.025 (2)0.036 (2)0.0037 (18)0.0122 (19)0.0071 (18)
C20.031 (3)0.037 (3)0.042 (3)0.001 (2)0.013 (2)0.012 (2)
C30.040 (3)0.045 (3)0.037 (3)0.001 (3)0.011 (3)0.013 (3)
C40.036 (3)0.042 (3)0.049 (4)0.001 (3)0.009 (3)0.011 (3)
C50.038 (3)0.043 (4)0.053 (4)0.009 (3)0.018 (3)0.011 (3)
C60.038 (3)0.026 (3)0.044 (3)0.010 (2)0.018 (3)0.012 (2)
C70.050 (3)0.032 (3)0.042 (3)0.016 (3)0.026 (3)0.008 (2)
C80.048 (3)0.027 (3)0.040 (3)0.012 (2)0.017 (3)0.010 (2)
C90.067 (4)0.047 (4)0.044 (4)0.026 (3)0.022 (3)0.006 (3)
C100.090 (6)0.067 (5)0.044 (4)0.050 (4)0.034 (4)0.013 (3)
C110.080 (5)0.072 (5)0.062 (5)0.041 (4)0.046 (4)0.019 (4)
C120.050 (4)0.052 (4)0.063 (4)0.021 (3)0.028 (3)0.010 (3)
C130.043 (4)0.081 (5)0.050 (4)0.004 (3)0.006 (3)0.016 (4)
F140.054 (2)0.099 (4)0.076 (3)0.026 (2)0.039 (2)0.019 (2)
F150.120 (4)0.141 (5)0.047 (2)0.079 (4)0.048 (3)0.020 (3)
N160.045 (3)0.026 (2)0.033 (2)0.005 (2)0.005 (2)0.0022 (19)
C170.073 (5)0.026 (3)0.048 (4)0.000 (3)0.003 (3)0.005 (3)
C180.073 (5)0.033 (3)0.046 (4)0.003 (3)0.003 (3)0.004 (3)
C190.054 (4)0.049 (4)0.038 (3)0.012 (3)0.007 (3)0.003 (3)
C200.050 (4)0.036 (3)0.043 (3)0.010 (3)0.012 (3)0.010 (3)
C210.044 (3)0.028 (3)0.035 (3)0.007 (2)0.013 (2)0.004 (2)
C220.042 (3)0.026 (3)0.036 (3)0.006 (2)0.014 (2)0.008 (2)
C230.035 (3)0.025 (3)0.039 (3)0.006 (2)0.018 (2)0.005 (2)
C240.033 (3)0.033 (3)0.041 (3)0.003 (2)0.017 (2)0.003 (2)
C250.036 (3)0.029 (3)0.050 (3)0.001 (2)0.018 (3)0.002 (2)
C260.056 (4)0.027 (3)0.059 (4)0.001 (3)0.026 (3)0.006 (3)
C270.051 (4)0.034 (3)0.042 (3)0.007 (3)0.012 (3)0.013 (3)
C280.058 (4)0.069 (5)0.042 (4)0.013 (4)0.002 (3)0.007 (3)
F290.085 (3)0.034 (2)0.054 (2)0.0088 (19)0.000 (2)0.0191 (17)
F300.0468 (19)0.0295 (18)0.067 (2)0.0055 (15)0.0135 (18)0.0043 (16)
N310.026 (2)0.026 (2)0.036 (2)0.0017 (17)0.0054 (19)0.0080 (18)
C320.033 (3)0.027 (3)0.046 (3)0.000 (2)0.008 (2)0.005 (2)
C330.044 (3)0.033 (3)0.059 (4)0.003 (3)0.020 (3)0.007 (3)
C340.043 (3)0.041 (4)0.063 (4)0.000 (3)0.025 (3)0.007 (3)
C350.035 (3)0.035 (3)0.055 (4)0.003 (2)0.013 (3)0.013 (3)
C360.032 (3)0.027 (3)0.038 (3)0.002 (2)0.002 (2)0.008 (2)
C370.036 (3)0.028 (3)0.039 (3)0.001 (2)0.003 (2)0.006 (2)
O380.045 (2)0.0223 (19)0.044 (2)0.0054 (16)0.0135 (19)0.0068 (16)
O390.054 (3)0.025 (2)0.075 (3)0.0007 (18)0.023 (2)0.013 (2)
Ir20.03736 (12)0.02252 (11)0.02688 (11)0.00286 (8)0.01019 (9)0.00546 (8)
N400.028 (2)0.024 (2)0.027 (2)0.0011 (17)0.0083 (18)0.0061 (17)
C410.027 (3)0.038 (3)0.033 (3)0.005 (2)0.007 (2)0.006 (2)
C420.034 (3)0.035 (3)0.030 (3)0.007 (2)0.006 (2)0.008 (2)
C430.037 (3)0.029 (3)0.033 (3)0.002 (2)0.009 (2)0.008 (2)
C440.028 (3)0.035 (3)0.034 (3)0.002 (2)0.009 (2)0.006 (2)
C450.033 (3)0.023 (3)0.031 (3)0.002 (2)0.009 (2)0.007 (2)
C460.033 (3)0.024 (3)0.033 (3)0.001 (2)0.006 (2)0.005 (2)
C470.037 (3)0.025 (3)0.030 (3)0.001 (2)0.007 (2)0.006 (2)
C480.046 (3)0.036 (3)0.024 (3)0.000 (2)0.004 (2)0.001 (2)
C490.046 (3)0.034 (3)0.033 (3)0.006 (3)0.006 (3)0.001 (2)
C500.032 (3)0.042 (3)0.041 (3)0.009 (2)0.000 (3)0.005 (3)
C510.037 (3)0.031 (3)0.036 (3)0.004 (2)0.008 (2)0.009 (2)
C520.044 (3)0.049 (4)0.029 (3)0.002 (3)0.012 (3)0.008 (3)
F530.0309 (17)0.065 (2)0.046 (2)0.0045 (16)0.0109 (15)0.0087 (17)
F540.052 (2)0.069 (3)0.037 (2)0.0077 (19)0.0119 (17)0.0018 (18)
N550.048 (3)0.030 (2)0.030 (2)0.002 (2)0.015 (2)0.0056 (19)
C560.092 (5)0.033 (3)0.042 (4)0.016 (3)0.029 (4)0.005 (3)
C570.107 (6)0.042 (4)0.033 (3)0.015 (4)0.027 (4)0.004 (3)
C580.057 (4)0.048 (4)0.035 (3)0.011 (3)0.020 (3)0.009 (3)
C590.051 (3)0.037 (3)0.038 (3)0.010 (3)0.016 (3)0.013 (3)
C600.038 (3)0.032 (3)0.034 (3)0.007 (2)0.014 (2)0.007 (2)
C610.038 (3)0.027 (3)0.031 (3)0.003 (2)0.014 (2)0.005 (2)
C620.025 (2)0.026 (3)0.033 (3)0.002 (2)0.010 (2)0.006 (2)
C630.031 (3)0.030 (3)0.033 (3)0.001 (2)0.013 (2)0.004 (2)
C640.034 (3)0.028 (3)0.047 (3)0.002 (2)0.019 (3)0.004 (2)
C650.041 (3)0.024 (3)0.049 (3)0.007 (2)0.013 (3)0.012 (2)
C660.046 (3)0.033 (3)0.039 (3)0.005 (2)0.018 (3)0.012 (2)
C670.076 (5)0.066 (5)0.034 (3)0.010 (4)0.021 (3)0.005 (3)
F680.097 (3)0.0344 (19)0.044 (2)0.0106 (19)0.031 (2)0.0183 (16)
F690.065 (2)0.0322 (18)0.049 (2)0.0002 (16)0.0263 (18)0.0072 (15)
N700.041 (2)0.025 (2)0.031 (2)0.0046 (19)0.017 (2)0.0096 (18)
C710.046 (3)0.029 (3)0.037 (3)0.003 (2)0.017 (3)0.005 (2)
C720.044 (3)0.037 (3)0.045 (3)0.001 (3)0.016 (3)0.004 (3)
C730.042 (3)0.039 (3)0.051 (4)0.006 (3)0.021 (3)0.009 (3)
C740.052 (4)0.036 (3)0.044 (3)0.011 (3)0.024 (3)0.011 (3)
C750.046 (3)0.028 (3)0.030 (3)0.008 (2)0.019 (2)0.007 (2)
C760.057 (4)0.025 (3)0.042 (3)0.005 (3)0.027 (3)0.007 (2)
O770.045 (2)0.0233 (19)0.043 (2)0.0042 (16)0.0189 (18)0.0066 (16)
O780.058 (3)0.022 (2)0.088 (3)0.0081 (19)0.038 (3)0.011 (2)
C790.091 (6)0.090 (7)0.063 (5)0.001 (5)0.031 (5)0.002 (5)
Cl10.087 (2)0.228 (5)0.236 (5)0.040 (2)0.076 (3)0.114 (4)
Cl20.284 (5)0.097 (2)0.201 (4)0.040 (3)0.184 (4)0.033 (2)
Cl30.110 (2)0.0724 (16)0.135 (2)0.0002 (14)0.0281 (18)0.0211 (16)
C830.078 (5)0.077 (6)0.052 (4)0.034 (4)0.009 (4)0.002 (4)
Cl40.196 (3)0.0697 (16)0.0861 (17)0.0454 (18)0.0315 (19)0.0221 (13)
Cl50.0673 (16)0.206 (4)0.156 (3)0.018 (2)0.0303 (18)0.067 (3)
Cl60.0665 (12)0.0554 (12)0.1098 (18)0.0003 (9)0.0135 (12)0.0212 (11)
Geometric parameters (Å, º) top
Ir1—C231.987 (5)Ir2—N702.125 (5)
Ir1—C81.995 (6)Ir2—O772.148 (4)
Ir1—N162.027 (5)N40—C411.336 (6)
Ir1—N12.040 (4)N40—C451.360 (7)
Ir1—N312.123 (5)C41—C421.358 (8)
Ir1—O382.153 (4)C41—H410.93
N1—C21.345 (7)C42—C431.377 (8)
N1—C61.369 (7)C42—H420.93
C2—C31.361 (8)C43—C441.378 (7)
C2—H20.93C43—C521.504 (8)
C3—C41.380 (8)C44—C451.383 (7)
C3—H30.93C44—H440.93
C4—C51.379 (9)C45—C461.460 (7)
C4—C131.495 (8)C46—C511.385 (8)
C5—C61.372 (8)C46—C471.407 (8)
C5—H50.93C47—C481.414 (7)
C6—C71.470 (8)C48—C491.367 (9)
C7—C121.377 (9)C48—H480.93
C7—C81.398 (8)C49—C501.361 (9)
C8—C91.389 (8)C49—F541.368 (6)
C9—C101.357 (10)C50—C511.362 (8)
C9—H90.93C50—H500.93
C10—C111.348 (11)C51—F531.357 (7)
C10—F151.357 (8)C52—H52A0.96
C11—C121.361 (10)C52—H52B0.96
C11—H110.93C52—H52C0.96
C12—F141.351 (8)N55—C561.347 (7)
C13—H13A0.96N55—C601.362 (7)
C13—H13B0.96C56—C571.364 (9)
C13—H13C0.96C56—H560.93
N16—C171.339 (7)C57—C581.385 (9)
N16—C211.356 (7)C57—H570.93
C17—C181.364 (9)C58—C591.375 (8)
C17—H170.93C58—C671.508 (8)
C18—C191.384 (9)C59—C601.395 (8)
C18—H180.93C59—H590.93
C19—C201.381 (9)C60—C611.464 (7)
C19—C281.506 (8)C61—C661.381 (8)
C20—C211.380 (8)C61—C621.429 (7)
C20—H200.93C62—C631.395 (7)
C21—C221.460 (8)C63—C641.369 (8)
C22—C271.382 (8)C63—H630.93
C22—C231.420 (8)C64—F691.347 (6)
C23—C241.394 (8)C64—C651.392 (8)
C24—C251.367 (8)C65—C661.361 (8)
C24—H240.93C65—H650.93
C25—F301.356 (6)C66—F681.362 (6)
C25—C261.369 (9)C67—H67A0.96
C26—C271.370 (9)C67—H67B0.96
C26—H260.93C67—H67C0.96
C27—F291.346 (7)N70—C711.343 (7)
C28—H28A0.96N70—C751.348 (7)
C28—H28B0.96C71—C721.366 (8)
C28—H28C0.96C71—H710.93
N31—C321.339 (7)C72—C731.380 (8)
N31—C361.354 (7)C72—H720.93
C32—C331.379 (8)C73—C741.384 (9)
C32—H320.93C73—H730.93
C33—C341.375 (8)C74—C751.375 (8)
C33—H330.93C74—H740.93
C34—C351.375 (9)C75—C761.504 (8)
C34—H340.93C76—O781.242 (7)
C35—C361.368 (8)C76—O771.263 (7)
C35—H350.93C79—Cl21.634 (10)
C36—C371.511 (8)C79—Cl11.690 (10)
C37—O391.237 (7)C79—Cl31.828 (10)
C37—O381.265 (7)C79—H790.98
Ir2—C621.979 (5)C83—Cl51.698 (10)
Ir2—C471.991 (5)C83—Cl61.716 (8)
Ir2—N552.019 (4)C83—Cl41.774 (10)
Ir2—N402.046 (4)C83—H830.98
C23—Ir1—C886.8 (2)C62—Ir2—N7096.78 (18)
C23—Ir1—N1680.4 (2)C47—Ir2—N70174.52 (18)
C8—Ir1—N1693.4 (2)N55—Ir2—N7089.37 (18)
C23—Ir1—N195.6 (2)N40—Ir2—N7097.20 (17)
C8—Ir1—N180.2 (2)C62—Ir2—O77172.13 (18)
N16—Ir1—N1172.69 (19)C47—Ir2—O7798.49 (18)
C23—Ir1—N3197.73 (19)N55—Ir2—O7794.91 (17)
C8—Ir1—N31174.22 (19)N40—Ir2—O7789.09 (16)
N16—Ir1—N3190.89 (18)N70—Ir2—O7776.80 (16)
N1—Ir1—N3195.75 (17)C41—N40—C45117.7 (4)
C23—Ir1—O38172.21 (18)C41—N40—Ir2125.8 (3)
C8—Ir1—O3899.14 (19)C45—N40—Ir2116.5 (3)
N16—Ir1—O3894.13 (17)N40—C41—C42123.9 (5)
N1—Ir1—O3890.39 (16)N40—C41—H41118.1
N31—Ir1—O3876.70 (16)C42—C41—H41118.1
C2—N1—C6118.1 (5)C41—C42—C43119.7 (5)
C2—N1—Ir1125.5 (4)C41—C42—H42120.2
C6—N1—Ir1116.4 (4)C43—C42—H42120.2
N1—C2—C3123.2 (5)C42—C43—C44117.1 (5)
N1—C2—H2118.4C42—C43—C52121.5 (5)
C3—C2—H2118.4C44—C43—C52121.4 (5)
C2—C3—C4119.8 (6)C43—C44—C45121.4 (5)
C2—C3—H3120.1C43—C44—H44119.3
C4—C3—H3120.1C45—C44—H44119.3
C5—C4—C3117.2 (6)N40—C45—C44120.3 (5)
C5—C4—C13121.4 (6)N40—C45—C46113.0 (5)
C3—C4—C13121.4 (6)C44—C45—C46126.7 (5)
C6—C5—C4121.8 (6)C51—C46—C47118.9 (5)
C6—C5—H5119.1C51—C46—C45126.0 (5)
C4—C5—H5119.1C47—C46—C45115.1 (5)
N1—C6—C5120.0 (5)C46—C47—C48118.1 (5)
N1—C6—C7112.5 (5)C46—C47—Ir2115.3 (4)
C5—C6—C7127.5 (5)C48—C47—Ir2126.6 (4)
C12—C7—C8118.9 (6)C49—C48—C47118.7 (5)
C12—C7—C6125.5 (6)C49—C48—H48120.7
C8—C7—C6115.6 (5)C47—C48—H48120.7
C9—C8—C7117.6 (6)C50—C49—C48124.4 (5)
C9—C8—Ir1127.4 (5)C50—C49—F54118.4 (6)
C7—C8—Ir1115.0 (4)C48—C49—F54117.1 (6)
C10—C9—C8120.0 (7)C49—C50—C51116.5 (5)
C10—C9—H9120C49—C50—H50121.8
C8—C9—H9120C51—C50—H50121.8
C11—C10—C9123.7 (7)F53—C51—C50116.3 (5)
C11—C10—F15117.7 (7)F53—C51—C46120.2 (5)
C9—C10—F15118.5 (7)C50—C51—C46123.4 (6)
C10—C11—C12116.4 (7)C43—C52—H52A109.5
C10—C11—H11121.8C43—C52—H52B109.5
C12—C11—H11121.8H52A—C52—H52B109.5
F14—C12—C11117.0 (6)C43—C52—H52C109.5
F14—C12—C7119.7 (6)H52A—C52—H52C109.5
C11—C12—C7123.3 (7)H52B—C52—H52C109.5
C4—C13—H13A109.5C56—N55—C60119.3 (5)
C4—C13—H13B109.5C56—N55—Ir2122.9 (4)
H13A—C13—H13B109.5C60—N55—Ir2117.5 (4)
C4—C13—H13C109.5N55—C56—C57121.5 (6)
H13A—C13—H13C109.5N55—C56—H56119.3
H13B—C13—H13C109.5C57—C56—H56119.3
C17—N16—C21119.6 (5)C56—C57—C58121.0 (6)
C17—N16—Ir1123.3 (4)C56—C57—H57119.5
C21—N16—Ir1116.9 (4)C58—C57—H57119.5
N16—C17—C18122.0 (6)C59—C58—C57117.3 (6)
N16—C17—H17119C59—C58—C67121.3 (6)
C18—C17—H17119C57—C58—C67121.3 (6)
C17—C18—C19120.0 (6)C58—C59—C60120.9 (6)
C17—C18—H18120C58—C59—H59119.6
C19—C18—H18120C60—C59—H59119.6
C20—C19—C18117.5 (6)N55—C60—C59119.9 (5)
C20—C19—C28121.6 (6)N55—C60—C61112.6 (5)
C18—C19—C28120.9 (6)C59—C60—C61127.5 (5)
C21—C20—C19121.1 (6)C66—C61—C62119.1 (5)
C21—C20—H20119.5C66—C61—C60126.4 (5)
C19—C20—H20119.5C62—C61—C60114.5 (5)
N16—C21—C20119.8 (5)C63—C62—C61117.5 (5)
N16—C21—C22112.9 (5)C63—C62—Ir2127.3 (4)
C20—C21—C22127.3 (5)C61—C62—Ir2115.1 (4)
C27—C22—C23118.6 (5)C64—C63—C62120.0 (5)
C27—C22—C21126.3 (5)C64—C63—H63120
C23—C22—C21115.1 (5)C62—C63—H63120
C24—C23—C22118.3 (5)F69—C64—C63119.5 (5)
C24—C23—Ir1127.1 (4)F69—C64—C65116.8 (5)
C22—C23—Ir1114.6 (4)C63—C64—C65123.6 (5)
C25—C24—C23119.6 (5)C66—C65—C64115.8 (5)
C25—C24—H24120.2C66—C65—H65122.1
C23—C24—H24120.2C64—C65—H65122.1
F30—C25—C24118.8 (5)C65—C66—F68116.0 (5)
F30—C25—C26117.5 (5)C65—C66—C61123.9 (5)
C24—C25—C26123.7 (5)F68—C66—C61120.1 (5)
C25—C26—C27116.5 (5)C58—C67—H67A109.5
C25—C26—H26121.7C58—C67—H67B109.5
C27—C26—H26121.7H67A—C67—H67B109.5
F29—C27—C26116.5 (5)C58—C67—H67C109.5
F29—C27—C22120.2 (5)H67A—C67—H67C109.5
C26—C27—C22123.3 (6)H67B—C67—H67C109.5
C19—C28—H28A109.5C71—N70—C75118.6 (5)
C19—C28—H28B109.5C71—N70—Ir2126.9 (4)
H28A—C28—H28B109.5C75—N70—Ir2114.4 (4)
C19—C28—H28C109.5N70—C71—C72121.8 (5)
H28A—C28—H28C109.5N70—C71—H71119.1
H28B—C28—H28C109.5C72—C71—H71119.1
C32—N31—C36118.8 (5)C71—C72—C73120.0 (6)
C32—N31—Ir1126.6 (4)C71—C72—H72120
C36—N31—Ir1114.6 (4)C73—C72—H72120
N31—C32—C33121.3 (5)C72—C73—C74118.3 (6)
N31—C32—H32119.3C72—C73—H73120.8
C33—C32—H32119.3C74—C73—H73120.8
C34—C33—C32119.9 (6)C75—C74—C73119.2 (5)
C34—C33—H33120C75—C74—H74120.4
C32—C33—H33120C73—C74—H74120.4
C33—C34—C35118.5 (6)N70—C75—C74122.0 (5)
C33—C34—H34120.8N70—C75—C76115.7 (5)
C35—C34—H34120.8C74—C75—C76122.3 (5)
C36—C35—C34119.7 (6)O78—C76—O77125.3 (6)
C36—C35—H35120.2O78—C76—C75118.2 (5)
C34—C35—H35120.2O77—C76—C75116.4 (5)
N31—C36—C35121.8 (5)C76—O77—Ir2116.4 (3)
N31—C36—C37115.6 (5)Cl2—C79—Cl1117.3 (6)
C35—C36—C37122.6 (5)Cl2—C79—Cl3108.0 (5)
O39—C37—O38125.5 (5)Cl1—C79—Cl3107.3 (5)
O39—C37—C36118.4 (5)Cl2—C79—H79108
O38—C37—C36116.1 (5)Cl1—C79—H79108
C37—O38—Ir1116.8 (3)Cl3—C79—H79108
C62—Ir2—C4788.1 (2)Cl5—C83—Cl6111.0 (5)
C62—Ir2—N5580.3 (2)Cl5—C83—Cl4111.4 (5)
C47—Ir2—N5593.9 (2)Cl6—C83—Cl4108.7 (5)
C62—Ir2—N4096.29 (19)Cl5—C83—H83108.6
C47—Ir2—N4079.8 (2)Cl6—C83—H83108.6
N55—Ir2—N40172.96 (17)Cl4—C83—H83108.6

Experimental details

Crystal data
Chemical formula[Ir(C12H8F2N)2(C6H4NO2)]·CHCl3
Mr842.06
Crystal system, space groupTriclinic, P1
Temperature (K)170
a, b, c (Å)13.421 (2), 15.020 (5), 16.291 (5)
α, β, γ (°)85.61 (4), 68.85 (5), 89.26 (3)
V3)3053.6 (18)
Z4
Radiation typeMo Kα
µ (mm1)4.69
Crystal size (mm)0.14 × 0.13 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.502, 0.665
No. of measured, independent and
observed [I > 2σ(I)] reflections
54485, 11349, 9557
Rint0.038
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.03
No. of reflections11349
No. of parameters797
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0433P)2 + 10.7327P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.76, 1.28

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ir1—C231.987 (5)Ir2—C621.979 (5)
Ir1—C81.995 (6)Ir2—C471.991 (5)
Ir1—N162.027 (5)Ir2—N552.019 (4)
Ir1—N12.040 (4)Ir2—N402.046 (4)
Ir1—N312.123 (5)Ir2—N702.125 (5)
Ir1—O382.153 (4)Ir2—O772.148 (4)
C23—Ir1—N1680.4 (2)C62—Ir2—N5580.3 (2)
C8—Ir1—N180.2 (2)C47—Ir2—N4079.8 (2)
C23—Ir1—N3197.73 (19)N40—Ir2—N7097.20 (17)
C8—Ir1—O3899.14 (19)C47—Ir2—O7798.49 (18)
N31—Ir1—O3876.70 (16)N70—Ir2—O7776.80 (16)
 

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education, Science and Technology (No. 2010–0017080).

References

First citationAoki, S., Matsuo, Y., Ogura, S., Ohwada, H., Hisamatsu, Y., Moromizato, S., Shiro, M. & Kitamura, M. (2011). Inorg. Chem. 50, 806–818.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638–655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLyu, Y.-Y., Byun, Y., Kwon, O., Han, E., Jeon, W. S., Das, R. R. & Char, K. (2006). J. Phys. Chem. B, 110, 10303–10314.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMiyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.  Web of Science CrossRef CAS Google Scholar
First citationNazeeruddin, M. K., Humphy-Baker, R., Berner, D., Rivier, S., Zuppiroli, L. & Graetzel, M. (2003). J. Am. Chem. Soc. 125, 8790–8797.  Web of Science CrossRef CAS Google Scholar
First citationSasabe, H. & Kido, J. (2011). Chem. Mater. 23, 621–630.  Web of Science CrossRef CAS Google Scholar
First citationSeo, H.-J., Heo, Y.-M., Jin, S. H., Yook, K.-S., Lee, J.-Y., Kang, S. K. & Kim, Y.-I. (2010). J. Lumin. 130, 1694–1701.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakizawa, S., Echizen, H., Nishida, J., Tsuzuki, T., Tokito, T. & Yamashita, Y. (2006). Chem. Lett. 35, 748–749.  Web of Science CrossRef CAS Google Scholar
First citationUlbricht, C., Beyer, B., Friebe, C., Winter, A. & Schubert, U. S. (2009). Adv. Mater. 21, 4418–4441.  Web of Science CrossRef CAS Google Scholar
First citationXu, M., Zhou, R., Wang, G. & Yu, J. (2009). Inorg. Chim. Acta, 362, 2183–2188.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1199-m1200
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds