metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ6-6-oxidopyridinium-2-carboxyl­ato)caesium]

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 6 August 2011; accepted 6 August 2011; online 17 August 2011)

The asymmetric unit of the polymeric title salt, [Cs(C6H4NO3)]n, comprises a Cs+ cation and a 6-oxidopyridinium-2-carboxyl­ate anion. The Cs+ cation is six-coordinated by O atoms derived from two oxido and four carboxyl­ate O atoms; each O atom in the anion bridges two Cs+ cations. In the crystal, inter­molecular N—H⋯O hydrogen bonding is present and contributes to the stability of the three-dimensional network generated by the bridging O atoms.

Related literature

For general background to pyridine carb­oxy­lic complexes, see: Kang (2011[Kang, S. K. (2011). Bull. Korean Chem. Soc. 32, 1745-1747.]); Lee & Kang (2010[Lee, T. & Kang, S. K. (2010). Acta Cryst. E66, m1347-m1348.]); Hong et al. (2008[Hong, J. H., Oh, Y., Kim, Y., Kang, S. K., Choi, J., Kim, W. S., Lee, J. I., Kim, S. & Hur, N. H. (2008). Cryst. Growth Des. 8, 1364-1371.]). For the Cs—O bond lengths in caesium aryl­oxide complexes, see: Ungaro et al. (1994[Ungaro, R., Casnati, A., Ugozzoli, F., Pochini, A., Dozol, J.-F., Hill, C. & Rouquette, H. (1994). Angew. Chem. Int. Ed. Engl. 33, 1506-1509.]); Clark et al. (1998[Clark, D. L., Click, D. R., Hollis, R. V., Scott, B. L. & Watkin, J. G. (1998). Inorg. Chem. 37, 5700-5703.]); Weinert et al. (2003[Weinert, C. S., Fanwick, P. E. & Rothwell, I. P. (2003). Inorg. Chem. 42, 6089-6094.]).

[Scheme 1]

Experimental

Crystal data
  • [Cs(C6H4NO3)]

  • Mr = 271.01

  • Monoclinic, P 21 /c

  • a = 8.1746 (3) Å

  • b = 7.5513 (2) Å

  • c = 12.3843 (4) Å

  • β = 91.889 (1)°

  • V = 764.05 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.8 mm−1

  • T = 296 K

  • 0.10 × 0.07 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.654, Tmax = 0.745

  • 6897 measured reflections

  • 1822 independent reflections

  • 1592 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.00

  • 1822 reflections

  • 104 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.19 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Selected bond lengths (Å)

Cs1—O9i 2.938 (2)
Cs1—O10ii 2.991 (3)
Cs1—O9 3.070 (3)
Cs1—O10iii 3.105 (3)
Cs1—O11iv 3.147 (2)
Cs1—O11v 3.317 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O11vi 0.78 (3) 2.15 (3) 2.915 (4) 168 (3)
Symmetry code: (vi) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.])'; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

During studies of lanthanide complexes of picolinic acid and their derivatives due to their interesting photoluminescent properties (Kang, 2011; Lee & Kang, 2010; Hong et al., 2008), the title compound was obtained as a side-product.

The asymmetric unit of the title compound, [Cs(C6H4NO3)]n, comprises a Cs+ cation and a carboxylatooxidopyridinium anion. The Cs+ cation is coordinated to the two oxide O atoms and four carboxylate-O atoms (Fig. 1). The Cs—O bond distances lie within the range 2.938 (2) - 3.317 (2) Å (Table 1). The observed Cs—O distances are a little longer than those observed in caesium picrate complexes and caesium phenoxide complexes (Ungaro et al., 1994: Clark et al., 1998; Weinert et al., 2003). The dihedral angle between the pyridine ring and the carboxylate group is 6.95 (19) °. In the crystal structure, the Cs atoms are linked by O atoms of the anionic ligands to form a three-dimensional network (Fig. 2) with additional stability provided by intermolecular N—H···O hydrogen bonding (Table 2).

Related literature top

For general background to pyridine carboxylic complexes, see: Kang (2011); Lee & Kang (2010); Hong et al. (2008). For the Cs—O bond distances in caesium aryloxide complexes, see: Ungaro et al. (1994); Clark et al. (1998); Weinert et al. (2003).

Experimental top

Europium trichloride solution was prepared by dissolving EuCl3 6H2O (0.37 g, 1.0 mmol; Aldrich) in absolute ethanol (20 ml) at room temperature with stirring. The ligand solution was prepared by dissolving 6-hydroxypicolinic acid (0.56 g, 4.0 mmol; Aldrich) in absolute ethanol (30 ml) at room temperature. The pH of the ligand solution was adjusted to about 6 with 2 N CsOH solution. The Eu solution was added drop wise and slowly to the ligand solution. The reaction mixture was stirred for 2 h at room temperature. Colourless crystals of (I) were obtained at room temperature over a period of a few weeks. The complex was recrystallized from distilled water.

Refinement top

The N—H atom was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq (C). The maximum and minimum residual electron density peaks of 1.19 and -1.14 e Å-3, respectively, were located 0.83 Å and 0.71 Å from the Cs1 atom, respectively.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2010)'; software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (l), showing the atom-numbering scheme and 20% probability ellipsoids. [Symmetry code: (i) -x + 1, y + 1/2, -z + 1/2; (ii) -x + 1, y - 1/2, -z + 1/2; (iii) x, -y + 1/2, z - 1/2; (iv) x + 1, -y + 1/2, z - 1/2; (v) -x, y - 1/2, -z + 1/2].
[Figure 2] Fig. 2. The three-dimensional framework of (I).
Poly[(µ6-6-oxidopyridinium-2-carboxylato)caesium] top
Crystal data top
[Cs(C6H4NO3)]F(000) = 504
Mr = 271.01Dx = 2.356 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3429 reflections
a = 8.1746 (3) Åθ = 2.5–28.3°
b = 7.5513 (2) ŵ = 4.8 mm1
c = 12.3843 (4) ÅT = 296 K
β = 91.889 (1)°Block, colourless
V = 764.05 (4) Å30.1 × 0.07 × 0.06 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1592 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.072
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 28.3°, θmin = 2.5°
Tmin = 0.654, Tmax = 0.745h = 310
6897 measured reflectionsk = 107
1822 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0401P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.001
S = 1.00Δρmax = 1.19 e Å3
1822 reflectionsΔρmin = 1.14 e Å3
104 parameters
Crystal data top
[Cs(C6H4NO3)]V = 764.05 (4) Å3
Mr = 271.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1746 (3) ŵ = 4.8 mm1
b = 7.5513 (2) ÅT = 296 K
c = 12.3843 (4) Å0.1 × 0.07 × 0.06 mm
β = 91.889 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1822 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1592 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.745Rint = 0.072
6897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.19 e Å3
1822 reflectionsΔρmin = 1.14 e Å3
104 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.51201 (2)0.14792 (3)0.127051 (18)0.04196 (11)
N20.0320 (3)0.2743 (4)0.4216 (2)0.0304 (5)
H20.088 (4)0.348 (4)0.446 (3)0.028 (9)*
C30.1062 (3)0.1326 (4)0.3746 (3)0.0291 (6)
C40.0159 (4)0.0019 (5)0.3335 (3)0.0402 (8)
H40.06550.09920.30230.048*
C50.1567 (4)0.0085 (5)0.3391 (3)0.0474 (9)
H50.2210.08260.31020.057*
C60.2296 (4)0.1484 (5)0.3857 (3)0.0444 (9)
H60.3430.1520.38880.053*
C70.1347 (3)0.2903 (5)0.4302 (3)0.0334 (7)
C80.2926 (3)0.1403 (4)0.3700 (3)0.0298 (6)
O90.3603 (3)0.0066 (3)0.3335 (2)0.0487 (6)
O100.3588 (2)0.2803 (4)0.3984 (2)0.0536 (7)
O110.1942 (2)0.4235 (3)0.4750 (2)0.0498 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.03869 (13)0.03507 (16)0.05252 (19)0.00018 (7)0.00759 (9)0.00010 (9)
N20.0203 (10)0.0308 (14)0.0402 (16)0.0019 (10)0.0026 (9)0.0062 (12)
C30.0234 (12)0.0316 (16)0.0324 (17)0.0012 (10)0.0034 (10)0.0006 (12)
C40.0313 (14)0.0409 (19)0.049 (2)0.0026 (12)0.0044 (12)0.0145 (16)
C50.0316 (15)0.049 (2)0.061 (3)0.0137 (14)0.0003 (14)0.0201 (18)
C60.0216 (13)0.056 (2)0.055 (2)0.0055 (12)0.0003 (13)0.0125 (17)
C70.0209 (11)0.0393 (17)0.0401 (19)0.0013 (11)0.0030 (10)0.0036 (15)
C80.0226 (12)0.0325 (17)0.0346 (18)0.0020 (10)0.0045 (10)0.0017 (12)
O90.0321 (11)0.0421 (14)0.0725 (19)0.0074 (10)0.0112 (10)0.0090 (13)
O100.0235 (9)0.0383 (14)0.099 (2)0.0025 (9)0.0070 (11)0.0189 (15)
O110.0244 (10)0.0483 (15)0.0772 (19)0.0022 (10)0.0070 (10)0.0231 (14)
Geometric parameters (Å, º) top
Cs1—O9i2.938 (2)C5—C61.352 (5)
Cs1—O10ii2.991 (3)C5—H50.93
Cs1—O93.070 (3)C6—C71.423 (4)
Cs1—O10iii3.105 (3)C6—H60.93
Cs1—O11iv3.147 (2)C7—O111.254 (4)
Cs1—O11v3.317 (2)C8—O101.234 (4)
N2—C31.370 (4)C8—O91.244 (4)
N2—C71.376 (3)O9—Cs1ii2.938 (2)
N2—H20.78 (3)O10—Cs1i2.991 (3)
C3—C41.345 (4)O10—Cs1vi3.105 (3)
C3—C81.527 (4)O11—Cs1vii3.147 (2)
C4—C51.418 (4)O11—Cs1viii3.317 (2)
C4—H40.93
O9i—Cs1—O10ii138.47 (6)C3—N2—C7123.8 (3)
O9i—Cs1—O9109.46 (5)C3—N2—H2118 (3)
O10ii—Cs1—O985.35 (7)C7—N2—H2119 (3)
O9i—Cs1—O10iii96.96 (7)C4—C3—N2120.3 (3)
O10ii—Cs1—O10iii101.48 (6)C4—C3—C8123.4 (3)
O9—Cs1—O10iii131.16 (6)N2—C3—C8116.3 (2)
O9i—Cs1—O11iv89.05 (7)C3—C4—C5118.3 (3)
O10ii—Cs1—O11iv59.91 (6)C3—C4—H4120.8
O9—Cs1—O11iv140.90 (6)C5—C4—H4120.8
O10iii—Cs1—O11iv77.13 (6)C6—C5—C4121.1 (3)
O9i—Cs1—O11v143.52 (6)C6—C5—H5119.4
O10ii—Cs1—O11v76.13 (6)C4—C5—H5119.4
O9—Cs1—O11v78.86 (6)C5—C6—C7120.8 (3)
O10iii—Cs1—O11v56.95 (6)C5—C6—H6119.6
O11iv—Cs1—O11v106.75 (4)C7—C6—H6119.6
O9i—Cs1—O1074.53 (6)O11—C7—N2120.3 (3)
O10ii—Cs1—O10118.05 (6)O11—C7—C6124.1 (3)
O9—Cs1—O1036.14 (6)N2—C7—C6115.6 (3)
O10iii—Cs1—O10129.22 (5)O10—C8—O9127.1 (3)
O11iv—Cs1—O10149.72 (6)O10—C8—C3116.8 (3)
O11v—Cs1—O10101.34 (6)O9—C8—C3116.0 (3)
O9i—Cs1—C7iv74.04 (7)Cs1ii—O9—Cs1107.94 (7)
O10ii—Cs1—C7iv76.81 (7)Cs1i—O10—Cs1vi78.52 (6)
O9—Cs1—C7iv153.81 (6)Cs1i—O10—Cs191.33 (7)
O10iii—Cs1—C7iv72.02 (6)Cs1vi—O10—Cs1136.48 (6)
O11iv—Cs1—C7iv16.91 (7)Cs1vii—O11—Cs1viii73.25 (4)
O11v—Cs1—C7iv114.40 (7)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z1/2; (v) x, y1/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x1, y+1/2, z+1/2; (viii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O11ix0.78 (3)2.15 (3)2.915 (4)168 (3)
Symmetry code: (ix) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cs(C6H4NO3)]
Mr271.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.1746 (3), 7.5513 (2), 12.3843 (4)
β (°) 91.889 (1)
V3)764.05 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.8
Crystal size (mm)0.1 × 0.07 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.654, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
6897, 1822, 1592
Rint0.072
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.00
No. of reflections1822
No. of parameters104
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.19, 1.14

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2010)', WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cs1—O9i2.938 (2)Cs1—O11iv3.147 (2)
Cs1—O10ii2.991 (3)Cs1—O11v3.317 (2)
Cs1—O93.070 (3)C7—O111.254 (4)
Cs1—O10iii3.105 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z1/2; (v) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O11vi0.78 (3)2.15 (3)2.915 (4)168 (3)
Symmetry code: (vi) x, y+1, z+1.
 

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, D. L., Click, D. R., Hollis, R. V., Scott, B. L. & Watkin, J. G. (1998). Inorg. Chem. 37, 5700–5703.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHong, J. H., Oh, Y., Kim, Y., Kang, S. K., Choi, J., Kim, W. S., Lee, J. I., Kim, S. & Hur, N. H. (2008). Cryst. Growth Des. 8, 1364–1371.  Google Scholar
First citationKang, S. K. (2011). Bull. Korean Chem. Soc. 32, 1745–1747.  Google Scholar
First citationLee, T. & Kang, S. K. (2010). Acta Cryst. E66, m1347–m1348.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUngaro, R., Casnati, A., Ugozzoli, F., Pochini, A., Dozol, J.-F., Hill, C. & Rouquette, H. (1994). Angew. Chem. Int. Ed. Engl. 33, 1506–1509.  Google Scholar
First citationWeinert, C. S., Fanwick, P. E. & Rothwell, I. P. (2003). Inorg. Chem. 42, 6089–6094.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds