organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Phenyl­butan-2-one oxime

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSequent Scientific Limited, Baikampady, New Mangalore, India, and cDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 6 August 2011; accepted 7 August 2011; online 11 August 2011)

In the title compound, C10H13NO, the C—C—C—C torsion angle formed between the benzene ring and the butan-2-one oxime unit is 73.7 (2)°, with the latter lying above the plane through the benzene ring. In the crystal, inter­molecular O—H⋯N hydrogen bonds link pairs of mol­ecules into dimers, forming R22(6) ring motifs which are stacked along the a axis.

Related literature

For background to oximes and their microbial activity, see: El-Sabbagh et al. (1990[El-Sabbagh, Abadi, H. I., Al-Khawad, A. H. & Al-Rashood, I. E. K. A. (1990). Arch. Pharm. Pharm. Med. Chem. 333, 19-24.]); El-Sayed et al. (1996[El-Sayed, O. A., El-Semary, M. & Khalid, M. A. (1996). Alex. J. Pharm. Sci. 10, 43-46.]); Althuis et al. (1979[Althuis, T. H., Moore, P. F. & Hess, H. J. (1979). J. Med. Chem. 22, 44-48.]); Nargund et al. (1992[Nargund, L. V. G., Badiger, V. V. & Yarnal, S. M. (1992). J. Pharm. Sci. 81, 365-366.]); Srivastava et al. (2004[Srivastava, S. K., Yadav, R. & Srivastava, S. D. (2004). J. Indian Chem. Soc. 81, 342-343.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13NO

  • Mr = 163.21

  • Monoclinic, P 21 /c

  • a = 5.450 (3) Å

  • b = 9.698 (6) Å

  • c = 18.455 (12) Å

  • β = 93.888 (13)°

  • V = 973.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 297 K

  • 0.67 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.992

  • 10336 measured reflections

  • 2808 independent reflections

  • 1448 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.183

  • S = 1.04

  • 2808 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1i 0.85 1.97 2.785 (3) 160
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Oximes are important intermediates for the preparation of primary amines by reduction. The primary amine generated can be used for the preparation of many heterocycles like quinoline, azetidinone, 1,2,4-triazole and 1,3,4-thiadiazole, benzothiazipines and thiazolidinone. These heterocycles show various biological activities such as anti-cancer (El-Sabbagh et al., 1990), anti-inflammatory (El-Sayed et al., 1996), anti-allergics (Althuis et al., 1979) anti-microbial (Nargund et al., 1992) and anthelmintic activities (Srivastava et al., 2004). The above motivated us to synthesize the title compound, (E)-4-phenylbutan-2-one oxime.

In the title compound (Fig. 1), the torsion angle, C5–C6–C7–C8, formed between the benzene ring (C1–C6) and the butan-2-one oxime (C7–C10/N1/O1) unit is 73.7 (2)°.

In the crystal packing (Fig. 2), pairs of intermolecular O1—H1O1···N1 hydrogen bonds (Table 1) link the molecules into dimers forming R22(6) ring motifs (Bernstein et al., 1995) which are stacked along the a axis.

Related literature top

For background to oximes and their microbial activity, see: El-Sabbagh et al. (1990); El-Sayed et al. (1996); Althuis et al. (1979); Nargund et al. (1992); Srivastava et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 5-phenylpentan-2-one (2 g, 0.012 mole) and hydroxylamine HCl (1.25 g 0.0184 mole) in ethanol was refluxed for 4 h, during which white crystals separated out. After cooling to room temperature, the resulting (E)-4-phenylbutan-2-one oxime was filtered-off, dried and recrystallized from ethanol. Yield, 1.8 g (90%). Crystals suitable for X-ray analysis were obtained from its acetone solution by slow evaporation.

Refinement top

H1O1 was located from the difference Fourier map and was fixed at this position with Uiso(H) = 1.5 Ueq(O) [O–H = 0.8540 Å]. The remaining H atoms were positioned geometrically and refined using the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.93 to 0.97 Å]. A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis.
(E)-4-Phenylbutan-2-one oxime top
Crystal data top
C10H13NOF(000) = 352
Mr = 163.21Dx = 1.114 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1653 reflections
a = 5.450 (3) Åθ = 3.8–22.7°
b = 9.698 (6) ŵ = 0.07 mm1
c = 18.455 (12) ÅT = 297 K
β = 93.888 (13)°Needle, colourless
V = 973.1 (11) Å30.67 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2808 independent reflections
Radiation source: fine-focus sealed tube1448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.953, Tmax = 0.992k = 1313
10336 measured reflectionsl = 1825
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0833P)2 + 0.063P]
where P = (Fo2 + 2Fc2)/3
2808 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C10H13NOV = 973.1 (11) Å3
Mr = 163.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.450 (3) ŵ = 0.07 mm1
b = 9.698 (6) ÅT = 297 K
c = 18.455 (12) Å0.67 × 0.15 × 0.12 mm
β = 93.888 (13)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2808 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1448 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.992Rint = 0.033
10336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
2808 reflectionsΔρmin = 0.14 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0482 (2)0.64909 (13)0.46391 (6)0.0829 (4)
H1O10.03820.57640.45640.124*
N10.1886 (2)0.60421 (14)0.52725 (7)0.0663 (4)
C10.8076 (3)0.3977 (2)0.72018 (9)0.0761 (5)
H1A0.81500.34230.67930.091*
C20.9742 (4)0.3766 (3)0.77902 (11)0.0949 (6)
H2A1.08960.30620.77750.114*
C30.9709 (4)0.4577 (3)0.83903 (11)0.0972 (7)
H3A1.08440.44330.87830.117*
C40.8004 (4)0.5602 (3)0.84143 (10)0.0977 (7)
H4A0.79890.61690.88210.117*
C50.6284 (4)0.5800 (2)0.78301 (10)0.0871 (6)
H5A0.51000.64860.78560.104*
C60.6307 (3)0.49911 (17)0.72088 (8)0.0644 (4)
C70.4539 (3)0.52421 (19)0.65522 (9)0.0771 (5)
H7A0.28880.53510.67100.093*
H7B0.45420.44470.62330.093*
C80.5231 (3)0.65179 (17)0.61365 (9)0.0691 (5)
H8A0.52230.73000.64640.083*
H8B0.69040.64040.59970.083*
C90.3630 (3)0.68632 (15)0.54665 (8)0.0621 (4)
C100.4212 (4)0.8158 (2)0.50706 (11)0.0922 (6)
H10D0.40400.79930.45570.138*
H10A0.58700.84350.52070.138*
H10B0.30980.88740.51940.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0914 (9)0.0805 (8)0.0714 (7)0.0160 (6)0.0336 (6)0.0219 (6)
N10.0682 (8)0.0669 (8)0.0603 (7)0.0095 (6)0.0206 (6)0.0125 (6)
C10.0762 (11)0.0854 (11)0.0650 (10)0.0016 (10)0.0076 (8)0.0009 (8)
C20.0778 (12)0.1242 (17)0.0802 (12)0.0272 (12)0.0129 (10)0.0050 (11)
C30.0823 (13)0.1379 (18)0.0681 (11)0.0064 (13)0.0184 (9)0.0096 (12)
C40.1167 (17)0.1168 (16)0.0582 (10)0.0051 (14)0.0042 (10)0.0083 (10)
C50.0883 (13)0.0952 (13)0.0767 (11)0.0192 (11)0.0007 (10)0.0041 (10)
C60.0567 (9)0.0725 (10)0.0622 (9)0.0149 (8)0.0088 (7)0.0149 (7)
C70.0691 (10)0.0795 (11)0.0787 (11)0.0199 (9)0.0238 (8)0.0216 (8)
C80.0655 (9)0.0738 (10)0.0654 (9)0.0189 (8)0.0160 (8)0.0101 (7)
C90.0658 (9)0.0599 (8)0.0591 (8)0.0107 (7)0.0068 (7)0.0047 (6)
C100.1152 (16)0.0778 (12)0.0808 (12)0.0301 (11)0.0151 (11)0.0204 (9)
Geometric parameters (Å, º) top
O1—N11.4212 (17)C5—H5A0.9300
O1—H1O10.8540C6—C71.516 (2)
N1—C91.273 (2)C7—C81.517 (2)
C1—C61.378 (3)C7—H7A0.9700
C1—C21.383 (3)C7—H7B0.9700
C1—H1A0.9300C8—C91.502 (2)
C2—C31.360 (3)C8—H8A0.9700
C2—H2A0.9300C8—H8B0.9700
C3—C41.364 (3)C9—C101.497 (2)
C3—H3A0.9300C10—H10D0.9600
C4—C51.393 (3)C10—H10A0.9600
C4—H4A0.9300C10—H10B0.9600
C5—C61.390 (3)
N1—O1—H1O198.1C6—C7—H7A109.3
C9—N1—O1112.95 (12)C8—C7—H7A109.3
C6—C1—C2121.40 (18)C6—C7—H7B109.3
C6—C1—H1A119.3C8—C7—H7B109.3
C2—C1—H1A119.3H7A—C7—H7B108.0
C3—C2—C1120.6 (2)C9—C8—C7116.60 (13)
C3—C2—H2A119.7C9—C8—H8A108.1
C1—C2—H2A119.7C7—C8—H8A108.1
C2—C3—C4119.67 (19)C9—C8—H8B108.1
C2—C3—H3A120.2C7—C8—H8B108.1
C4—C3—H3A120.2H8A—C8—H8B107.3
C3—C4—C5119.97 (19)N1—C9—C10124.47 (15)
C3—C4—H4A120.0N1—C9—C8118.24 (13)
C5—C4—H4A120.0C10—C9—C8117.29 (14)
C6—C5—C4121.15 (19)C9—C10—H10D109.5
C6—C5—H5A119.4C9—C10—H10A109.5
C4—C5—H5A119.4H10D—C10—H10A109.5
C1—C6—C5117.14 (16)C9—C10—H10B109.5
C1—C6—C7120.95 (16)H10D—C10—H10B109.5
C5—C6—C7121.86 (17)H10A—C10—H10B109.5
C6—C7—C8111.64 (13)
C6—C1—C2—C31.3 (3)C1—C6—C7—C8103.8 (2)
C1—C2—C3—C40.5 (3)C5—C6—C7—C873.7 (2)
C2—C3—C4—C51.0 (3)C6—C7—C8—C9179.16 (15)
C3—C4—C5—C61.7 (3)O1—N1—C9—C101.1 (2)
C2—C1—C6—C50.5 (3)O1—N1—C9—C8179.05 (13)
C2—C1—C6—C7178.14 (17)C7—C8—C9—N13.1 (2)
C4—C5—C6—C10.9 (3)C7—C8—C9—C10177.02 (17)
C4—C5—C6—C7176.64 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i0.851.972.785 (3)160
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H13NO
Mr163.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)5.450 (3), 9.698 (6), 18.455 (12)
β (°) 93.888 (13)
V3)973.1 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.67 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.953, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
10336, 2808, 1448
Rint0.033
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.183, 1.04
No. of reflections2808
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i0.851.972.785 (3)160
Symmetry code: (i) x, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for a Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship.

References

First citationAlthuis, T. H., Moore, P. F. & Hess, H. J. (1979). J. Med. Chem. 22, 44–48.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Sabbagh, Abadi, H. I., Al-Khawad, A. H. & Al-Rashood, I. E. K. A. (1990). Arch. Pharm. Pharm. Med. Chem. 333, 19–24.  Google Scholar
First citationEl-Sayed, O. A., El-Semary, M. & Khalid, M. A. (1996). Alex. J. Pharm. Sci. 10, 43–46.  CAS Google Scholar
First citationNargund, L. V. G., Badiger, V. V. & Yarnal, S. M. (1992). J. Pharm. Sci. 81, 365–366.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, S. K., Yadav, R. & Srivastava, S. D. (2004). J. Indian Chem. Soc. 81, 342–343.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds