organic compounds
(E)-4-Phenylbutan-2-one oxime
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSequent Scientific Limited, Baikampady, New Mangalore, India, and cDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, C10H13NO, the C—C—C—C torsion angle formed between the benzene ring and the butan-2-one oxime unit is 73.7 (2)°, with the latter lying above the plane through the benzene ring. In the crystal, intermolecular O—H⋯N hydrogen bonds link pairs of molecules into dimers, forming R22(6) ring motifs which are stacked along the a axis.
Related literature
For background to et al. (1990); El-Sayed et al. (1996); Althuis et al. (1979); Nargund et al. (1992); Srivastava et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995).
and their microbial activity, see: El-SabbaghExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811031928/tk2777sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811031928/tk2777Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811031928/tk2777Isup3.cml
A mixture of 5-phenylpentan-2-one (2 g, 0.012 mole) and hydroxylamine HCl (1.25 g 0.0184 mole) in ethanol was refluxed for 4 h, during which white crystals separated out. After cooling to room temperature, the resulting (E)-4-phenylbutan-2-one oxime was filtered-off, dried and recrystallized from ethanol. Yield, 1.8 g (90%). Crystals suitable for X-ray analysis were obtained from its acetone solution by slow evaporation.
H1O1 was located from the difference Fourier map and was fixed at this position with Uiso(H) = 1.5 Ueq(O) [O–H = 0.8540 Å]. The remaining H atoms were positioned geometrically and refined using the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.93 to 0.97 Å]. A rotating group model was applied to the methyl group.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C10H13NO | F(000) = 352 |
Mr = 163.21 | Dx = 1.114 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1653 reflections |
a = 5.450 (3) Å | θ = 3.8–22.7° |
b = 9.698 (6) Å | µ = 0.07 mm−1 |
c = 18.455 (12) Å | T = 297 K |
β = 93.888 (13)° | Needle, colourless |
V = 973.1 (11) Å3 | 0.67 × 0.15 × 0.12 mm |
Z = 4 |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 2808 independent reflections |
Radiation source: fine-focus sealed tube | 1448 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 30.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −7→7 |
Tmin = 0.953, Tmax = 0.992 | k = −13→13 |
10336 measured reflections | l = −18→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.183 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0833P)2 + 0.063P] where P = (Fo2 + 2Fc2)/3 |
2808 reflections | (Δ/σ)max < 0.001 |
110 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
C10H13NO | V = 973.1 (11) Å3 |
Mr = 163.21 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.450 (3) Å | µ = 0.07 mm−1 |
b = 9.698 (6) Å | T = 297 K |
c = 18.455 (12) Å | 0.67 × 0.15 × 0.12 mm |
β = 93.888 (13)° |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 2808 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1448 reflections with I > 2σ(I) |
Tmin = 0.953, Tmax = 0.992 | Rint = 0.033 |
10336 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.183 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.18 e Å−3 |
2808 reflections | Δρmin = −0.14 e Å−3 |
110 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.0482 (2) | 0.64909 (13) | 0.46391 (6) | 0.0829 (4) | |
H1O1 | −0.0382 | 0.5764 | 0.4564 | 0.124* | |
N1 | 0.1886 (2) | 0.60421 (14) | 0.52725 (7) | 0.0663 (4) | |
C1 | 0.8076 (3) | 0.3977 (2) | 0.72018 (9) | 0.0761 (5) | |
H1A | 0.8150 | 0.3423 | 0.6793 | 0.091* | |
C2 | 0.9742 (4) | 0.3766 (3) | 0.77902 (11) | 0.0949 (6) | |
H2A | 1.0896 | 0.3062 | 0.7775 | 0.114* | |
C3 | 0.9709 (4) | 0.4577 (3) | 0.83903 (11) | 0.0972 (7) | |
H3A | 1.0844 | 0.4433 | 0.8783 | 0.117* | |
C4 | 0.8004 (4) | 0.5602 (3) | 0.84143 (10) | 0.0977 (7) | |
H4A | 0.7989 | 0.6169 | 0.8821 | 0.117* | |
C5 | 0.6284 (4) | 0.5800 (2) | 0.78301 (10) | 0.0871 (6) | |
H5A | 0.5100 | 0.6486 | 0.7856 | 0.104* | |
C6 | 0.6307 (3) | 0.49911 (17) | 0.72088 (8) | 0.0644 (4) | |
C7 | 0.4539 (3) | 0.52421 (19) | 0.65522 (9) | 0.0771 (5) | |
H7A | 0.2888 | 0.5351 | 0.6710 | 0.093* | |
H7B | 0.4542 | 0.4447 | 0.6233 | 0.093* | |
C8 | 0.5231 (3) | 0.65179 (17) | 0.61365 (9) | 0.0691 (5) | |
H8A | 0.5223 | 0.7300 | 0.6464 | 0.083* | |
H8B | 0.6904 | 0.6404 | 0.5997 | 0.083* | |
C9 | 0.3630 (3) | 0.68632 (15) | 0.54665 (8) | 0.0621 (4) | |
C10 | 0.4212 (4) | 0.8158 (2) | 0.50706 (11) | 0.0922 (6) | |
H10D | 0.4040 | 0.7993 | 0.4557 | 0.138* | |
H10A | 0.5870 | 0.8435 | 0.5207 | 0.138* | |
H10B | 0.3098 | 0.8874 | 0.5194 | 0.138* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0914 (9) | 0.0805 (8) | 0.0714 (7) | −0.0160 (6) | −0.0336 (6) | 0.0219 (6) |
N1 | 0.0682 (8) | 0.0669 (8) | 0.0603 (7) | −0.0095 (6) | −0.0206 (6) | 0.0125 (6) |
C1 | 0.0762 (11) | 0.0854 (11) | 0.0650 (10) | 0.0016 (10) | −0.0076 (8) | 0.0009 (8) |
C2 | 0.0778 (12) | 0.1242 (17) | 0.0802 (12) | 0.0272 (12) | −0.0129 (10) | 0.0050 (11) |
C3 | 0.0823 (13) | 0.1379 (18) | 0.0681 (11) | 0.0064 (13) | −0.0184 (9) | 0.0096 (12) |
C4 | 0.1167 (17) | 0.1168 (16) | 0.0582 (10) | 0.0051 (14) | −0.0042 (10) | −0.0083 (10) |
C5 | 0.0883 (13) | 0.0952 (13) | 0.0767 (11) | 0.0192 (11) | −0.0007 (10) | 0.0041 (10) |
C6 | 0.0567 (9) | 0.0725 (10) | 0.0622 (9) | −0.0149 (8) | −0.0088 (7) | 0.0149 (7) |
C7 | 0.0691 (10) | 0.0795 (11) | 0.0787 (11) | −0.0199 (9) | −0.0238 (8) | 0.0216 (8) |
C8 | 0.0655 (9) | 0.0738 (10) | 0.0654 (9) | −0.0189 (8) | −0.0160 (8) | 0.0101 (7) |
C9 | 0.0658 (9) | 0.0599 (8) | 0.0591 (8) | −0.0107 (7) | −0.0068 (7) | 0.0047 (6) |
C10 | 0.1152 (16) | 0.0778 (12) | 0.0808 (12) | −0.0301 (11) | −0.0151 (11) | 0.0204 (9) |
O1—N1 | 1.4212 (17) | C5—H5A | 0.9300 |
O1—H1O1 | 0.8540 | C6—C7 | 1.516 (2) |
N1—C9 | 1.273 (2) | C7—C8 | 1.517 (2) |
C1—C6 | 1.378 (3) | C7—H7A | 0.9700 |
C1—C2 | 1.383 (3) | C7—H7B | 0.9700 |
C1—H1A | 0.9300 | C8—C9 | 1.502 (2) |
C2—C3 | 1.360 (3) | C8—H8A | 0.9700 |
C2—H2A | 0.9300 | C8—H8B | 0.9700 |
C3—C4 | 1.364 (3) | C9—C10 | 1.497 (2) |
C3—H3A | 0.9300 | C10—H10D | 0.9600 |
C4—C5 | 1.393 (3) | C10—H10A | 0.9600 |
C4—H4A | 0.9300 | C10—H10B | 0.9600 |
C5—C6 | 1.390 (3) | ||
N1—O1—H1O1 | 98.1 | C6—C7—H7A | 109.3 |
C9—N1—O1 | 112.95 (12) | C8—C7—H7A | 109.3 |
C6—C1—C2 | 121.40 (18) | C6—C7—H7B | 109.3 |
C6—C1—H1A | 119.3 | C8—C7—H7B | 109.3 |
C2—C1—H1A | 119.3 | H7A—C7—H7B | 108.0 |
C3—C2—C1 | 120.6 (2) | C9—C8—C7 | 116.60 (13) |
C3—C2—H2A | 119.7 | C9—C8—H8A | 108.1 |
C1—C2—H2A | 119.7 | C7—C8—H8A | 108.1 |
C2—C3—C4 | 119.67 (19) | C9—C8—H8B | 108.1 |
C2—C3—H3A | 120.2 | C7—C8—H8B | 108.1 |
C4—C3—H3A | 120.2 | H8A—C8—H8B | 107.3 |
C3—C4—C5 | 119.97 (19) | N1—C9—C10 | 124.47 (15) |
C3—C4—H4A | 120.0 | N1—C9—C8 | 118.24 (13) |
C5—C4—H4A | 120.0 | C10—C9—C8 | 117.29 (14) |
C6—C5—C4 | 121.15 (19) | C9—C10—H10D | 109.5 |
C6—C5—H5A | 119.4 | C9—C10—H10A | 109.5 |
C4—C5—H5A | 119.4 | H10D—C10—H10A | 109.5 |
C1—C6—C5 | 117.14 (16) | C9—C10—H10B | 109.5 |
C1—C6—C7 | 120.95 (16) | H10D—C10—H10B | 109.5 |
C5—C6—C7 | 121.86 (17) | H10A—C10—H10B | 109.5 |
C6—C7—C8 | 111.64 (13) | ||
C6—C1—C2—C3 | −1.3 (3) | C1—C6—C7—C8 | −103.8 (2) |
C1—C2—C3—C4 | 0.5 (3) | C5—C6—C7—C8 | 73.7 (2) |
C2—C3—C4—C5 | 1.0 (3) | C6—C7—C8—C9 | 179.16 (15) |
C3—C4—C5—C6 | −1.7 (3) | O1—N1—C9—C10 | −1.1 (2) |
C2—C1—C6—C5 | 0.5 (3) | O1—N1—C9—C8 | 179.05 (13) |
C2—C1—C6—C7 | 178.14 (17) | C7—C8—C9—N1 | −3.1 (2) |
C4—C5—C6—C1 | 0.9 (3) | C7—C8—C9—C10 | 177.02 (17) |
C4—C5—C6—C7 | −176.64 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···N1i | 0.85 | 1.97 | 2.785 (3) | 160 |
Symmetry code: (i) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C10H13NO |
Mr | 163.21 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 297 |
a, b, c (Å) | 5.450 (3), 9.698 (6), 18.455 (12) |
β (°) | 93.888 (13) |
V (Å3) | 973.1 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.67 × 0.15 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.953, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10336, 2808, 1448 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.702 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.183, 1.04 |
No. of reflections | 2808 |
No. of parameters | 110 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.14 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···N1i | 0.85 | 1.97 | 2.785 (3) | 160 |
Symmetry code: (i) −x, −y+1, −z+1. |
Acknowledgements
HKF and WSL thank Universiti Sains Malaysia (USM) for a Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship.
References
Althuis, T. H., Moore, P. F. & Hess, H. J. (1979). J. Med. Chem. 22, 44–48. CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El-Sabbagh, Abadi, H. I., Al-Khawad, A. H. & Al-Rashood, I. E. K. A. (1990). Arch. Pharm. Pharm. Med. Chem. 333, 19–24. Google Scholar
El-Sayed, O. A., El-Semary, M. & Khalid, M. A. (1996). Alex. J. Pharm. Sci. 10, 43–46. CAS Google Scholar
Nargund, L. V. G., Badiger, V. V. & Yarnal, S. M. (1992). J. Pharm. Sci. 81, 365–366. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srivastava, S. K., Yadav, R. & Srivastava, S. D. (2004). J. Indian Chem. Soc. 81, 342–343. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oximes are important intermediates for the preparation of primary amines by reduction. The primary amine generated can be used for the preparation of many heterocycles like quinoline, azetidinone, 1,2,4-triazole and 1,3,4-thiadiazole, benzothiazipines and thiazolidinone. These heterocycles show various biological activities such as anti-cancer (El-Sabbagh et al., 1990), anti-inflammatory (El-Sayed et al., 1996), anti-allergics (Althuis et al., 1979) anti-microbial (Nargund et al., 1992) and anthelmintic activities (Srivastava et al., 2004). The above motivated us to synthesize the title compound, (E)-4-phenylbutan-2-one oxime.
In the title compound (Fig. 1), the torsion angle, C5–C6–C7–C8, formed between the benzene ring (C1–C6) and the butan-2-one oxime (C7–C10/N1/O1) unit is 73.7 (2)°.
In the crystal packing (Fig. 2), pairs of intermolecular O1—H1O1···N1 hydrogen bonds (Table 1) link the molecules into dimers forming R22(6) ring motifs (Bernstein et al., 1995) which are stacked along the a axis.