organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Benzo­thia­zole–oxalic acid (2/1)

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 8 August 2011; accepted 9 August 2011; online 17 August 2011)

The asymmetric unit of the title compound, C7H5NS·0.5C2H2O4, contains one benzothia­zole mol­ecule and half an oxalic acid mol­ecule, the complete mol­ecule being generated by inversion symmetry. The benzothia­zole mol­ecule is essentially planar, with a maximum deviation of 0.007 (1) Å. In the crystal, the benzothia­zole mol­ecules inter­act with the oxalic acid mol­ecules via O—H⋯N and C—H⋯O hydrogen bonds generating R22(8) (× 2) and R44(10) motifs, thereby forming supra­molecular ribbons along [101].

Related literature

For background to the biological activity of benzothia­zoles, see: Bradshaw et al. (1998[Bradshaw, T. D., Wrigley, S., Shi, D. F., Schultz, R. J., Paull, K. D. & Stevens, M. F. (1998). Br. J. Cancer, 77, 745-752.]); Dögruer et al. (1998[Dögruer, D. S., Unlii, S., Sahin, M. F. & Ye Silada, E. (1998). Farmaco, 53, 80-84.]); Dash et al. (1980[Dash, B., Patra, M. & Praharaj, S. (1980). Indian J. Chem. Sect. B, 19, 894-897.]); Cox et al. (1982[Cox, O., Jackson, H., Vargas, V., Baez, A., Colon, J. I., Gonzaiez, B. C. & De Leon, M. (1982). J. Med. Chem. 25, 1378-1381.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5NS·0.5C2H2O4

  • Mr = 180.20

  • Monoclinic, P 21 /c

  • a = 4.0231 (3) Å

  • b = 26.039 (2) Å

  • c = 8.5605 (6) Å

  • β = 116.064 (3)°

  • V = 805.58 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.62 × 0.40 × 0.04 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.811, Tmax = 0.985

  • 10970 measured reflections

  • 3204 independent reflections

  • 2417 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.114

  • S = 1.04

  • 3204 reflections

  • 112 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N1 0.89 (2) 1.80 (2) 2.6663 (15) 166 (2)
C5—H5A⋯O1 0.93 2.48 3.3263 (17) 151
C7—H7A⋯O2i 0.93 2.48 3.4029 (18) 170
Symmetry code: (i) -x+3, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzothiazoles are used as anti-neoplastic agents and show anti-nociceptive, anti-inflammatory and anti-tumour activities (Bradshaw et al., 1998; Dögruer et al., 1998). Some Schiff bases derived from thiazole and benzothiazoles (Dash et al., 1980) and several derivatives of the styryl-benzothiazoles have also shown biological activity (Cox et al., 1982). In view of the above biological activities associated with the benzothiazole, herein, we present the title compound (I), extracted from the juice of Guava (Psidium guajava).

The asymmetric unit of the title compound, (I), contains one benzothiazole molecule and a half of an oxalic acid molecule (which lies on an inversion centre) as detailed in Fig. 1. The benzothiazole (N1/S1/C1–C7) molecule is essentially planar, with a maximum deviation of 0.007 (1) Å for atom C6.

In the crystal structure, Fig. 2, the benzothiazole molecules interact with the oxalic acid molecules via O—H···N and C—H···O hydrogen bonds (Table 1) generating R22(8) and R44(10) motifs and forming supramolecular ribbons along the [1 0 1] direction.

Related literature top

For background to the biological activity of benzothiazoles, see: Bradshaw et al. (1998); Dögruer et al. (1998); Dash et al. (1980); Cox et al. (1982).

Experimental top

The juice of Guava (Psidium guajava) was extracted using soxhlet extraction method with methanol as solvent. After 24 hours at room temperature, a precipitate was formed and the filtrate removed. The precipitate was washed by using a mixture (90–100) ml of n-hexane-ethyl acetate. It was recrystallized by dissolving in methanol. Brown crystals were formed which melted at M.pt 323 K.

Refinement top

Atom H1O2 was located from a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O) [O—H = 0.89 (2) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Contents of (I) showing the molecule of benzothiazole and the full molecule of oxalic acid after the application of inversion symmetry (A: -x+2, -y+2, -z+1). The atoms are displayed with 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Partial crystal packing in (I) with dashed lines representing hydrogen bonding.
1,3-benzothiazole–oxalic acid (2/1) top
Crystal data top
C7H5NS·0.5C2H2O4F(000) = 372
Mr = 180.20Dx = 1.486 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3803 reflections
a = 4.0231 (3) Åθ = 2.8–32.6°
b = 26.039 (2) ŵ = 0.35 mm1
c = 8.5605 (6) ÅT = 296 K
β = 116.064 (3)°Plate, brown
V = 805.58 (10) Å30.62 × 0.40 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3204 independent reflections
Radiation source: fine-focus sealed tube2417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 33.9°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.811, Tmax = 0.985k = 4040
10970 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.1124P]
where P = (Fo2 + 2Fc2)/3
3204 reflections(Δ/σ)max = 0.001
112 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C7H5NS·0.5C2H2O4V = 805.58 (10) Å3
Mr = 180.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.0231 (3) ŵ = 0.35 mm1
b = 26.039 (2) ÅT = 296 K
c = 8.5605 (6) Å0.62 × 0.40 × 0.04 mm
β = 116.064 (3)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3204 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2417 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.985Rint = 0.026
10970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.36 e Å3
3204 reflectionsΔρmin = 0.23 e Å3
112 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.14317 (9)0.875823 (14)1.21487 (4)0.04461 (11)
N11.0034 (3)0.91965 (4)0.92292 (13)0.0385 (2)
C10.8353 (3)0.84567 (4)1.02665 (14)0.0350 (2)
C20.6466 (4)0.79950 (5)1.00741 (19)0.0448 (3)
H2A0.67630.78001.10370.054*
C30.4144 (4)0.78360 (5)0.8411 (2)0.0493 (3)
H3A0.28810.75270.82520.059*
C40.3652 (4)0.81302 (5)0.69656 (18)0.0468 (3)
H4A0.20350.80170.58610.056*
C50.5516 (4)0.85854 (5)0.71444 (15)0.0412 (3)
H5A0.51870.87800.61760.049*
C60.7919 (3)0.87487 (4)0.88198 (14)0.0329 (2)
C71.1947 (4)0.92418 (5)1.09000 (16)0.0408 (3)
H7A1.35100.95201.13950.049*
O10.7128 (3)0.94803 (4)0.47893 (12)0.0584 (3)
O21.1410 (3)0.98494 (4)0.71853 (11)0.0468 (2)
H1O21.064 (6)0.9617 (8)0.771 (3)0.070*
C80.9467 (3)0.97976 (4)0.55062 (14)0.0363 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.04724 (18)0.0555 (2)0.02518 (14)0.00784 (13)0.01050 (12)0.00106 (11)
N10.0444 (5)0.0389 (5)0.0286 (4)0.0058 (4)0.0128 (4)0.0010 (3)
C10.0333 (5)0.0404 (5)0.0298 (5)0.0001 (4)0.0123 (4)0.0004 (4)
C20.0428 (6)0.0456 (6)0.0446 (6)0.0034 (5)0.0179 (5)0.0069 (5)
C30.0464 (7)0.0420 (6)0.0565 (8)0.0098 (5)0.0199 (6)0.0064 (6)
C40.0442 (6)0.0515 (7)0.0390 (6)0.0080 (5)0.0131 (5)0.0136 (5)
C50.0447 (6)0.0465 (6)0.0281 (5)0.0032 (5)0.0121 (5)0.0042 (4)
C60.0349 (5)0.0351 (5)0.0275 (5)0.0006 (4)0.0126 (4)0.0019 (4)
C70.0442 (6)0.0426 (6)0.0315 (5)0.0082 (5)0.0129 (5)0.0038 (4)
O10.0705 (7)0.0600 (6)0.0318 (4)0.0320 (5)0.0108 (4)0.0010 (4)
O20.0557 (5)0.0486 (5)0.0255 (4)0.0169 (4)0.0081 (4)0.0029 (3)
C80.0400 (5)0.0365 (5)0.0265 (5)0.0049 (4)0.0092 (4)0.0009 (4)
Geometric parameters (Å, º) top
S1—C71.7222 (13)C4—C51.3748 (19)
S1—C11.7300 (12)C4—H4A0.9300
N1—C71.2979 (15)C5—C61.3979 (15)
N1—C61.3944 (14)C5—H5A0.9300
C1—C21.3926 (17)C7—H7A0.9300
C1—C61.3972 (15)O1—C81.1989 (14)
C2—C31.379 (2)O2—C81.3068 (13)
C2—H2A0.9300O2—H1O20.89 (2)
C3—C41.394 (2)C8—C8i1.540 (2)
C3—H3A0.9300
C7—S1—C189.19 (6)C4—C5—C6118.30 (12)
C7—N1—C6110.72 (10)C4—C5—H5A120.9
C2—C1—C6121.04 (11)C6—C5—H5A120.9
C2—C1—S1129.19 (10)N1—C6—C1114.05 (10)
C6—C1—S1109.76 (8)N1—C6—C5125.65 (10)
C3—C2—C1117.92 (12)C1—C6—C5120.30 (11)
C3—C2—H2A121.0N1—C7—S1116.28 (9)
C1—C2—H2A121.0N1—C7—H7A121.9
C2—C3—C4121.26 (12)S1—C7—H7A121.9
C2—C3—H3A119.4C8—O2—H1O2108.3 (15)
C4—C3—H3A119.4O1—C8—O2126.13 (11)
C5—C4—C3121.16 (12)O1—C8—C8i122.24 (12)
C5—C4—H4A119.4O2—C8—C8i111.63 (12)
C3—C4—H4A119.4
C7—S1—C1—C2179.27 (13)C2—C1—C6—N1179.17 (11)
C7—S1—C1—C60.42 (9)S1—C1—C6—N10.55 (13)
C6—C1—C2—C30.3 (2)C2—C1—C6—C51.12 (18)
S1—C1—C2—C3179.91 (11)S1—C1—C6—C5179.16 (9)
C1—C2—C3—C40.9 (2)C4—C5—C6—N1179.48 (12)
C2—C3—C4—C51.1 (2)C4—C5—C6—C10.85 (19)
C3—C4—C5—C60.3 (2)C6—N1—C7—S10.05 (15)
C7—N1—C6—C10.39 (15)C1—S1—C7—N10.22 (11)
C7—N1—C6—C5179.30 (12)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N10.89 (2)1.80 (2)2.6663 (15)166 (2)
C5—H5A···O10.932.483.3263 (17)151
C7—H7A···O2ii0.932.483.4029 (18)170
Symmetry code: (ii) x+3, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC7H5NS·0.5C2H2O4
Mr180.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.0231 (3), 26.039 (2), 8.5605 (6)
β (°) 116.064 (3)
V3)805.58 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.62 × 0.40 × 0.04
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.811, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
10970, 3204, 2417
Rint0.026
(sin θ/λ)max1)0.785
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.114, 1.04
No. of reflections3204
No. of parameters112
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N10.89 (2)1.80 (2)2.6663 (15)166 (2)
C5—H5A···O10.932.48003.3263 (17)151
C7—H7A···O2i0.932.48003.4029 (18)170
Symmetry code: (i) x+3, y+2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NM gratefully acknowledges funding from the Malaysian Ministry of Science, Technology and Innovation through the Malaysian Institute of Pharmaceutical and Nutraceutical R&D Initiative Grant (grant No. 09-05-IFN-MEB 004). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBradshaw, T. D., Wrigley, S., Shi, D. F., Schultz, R. J., Paull, K. D. & Stevens, M. F. (1998). Br. J. Cancer, 77, 745–752.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, O., Jackson, H., Vargas, V., Baez, A., Colon, J. I., Gonzaiez, B. C. & De Leon, M. (1982). J. Med. Chem. 25, 1378–1381.  Google Scholar
First citationDash, B., Patra, M. & Praharaj, S. (1980). Indian J. Chem. Sect. B, 19, 894–897.  Google Scholar
First citationDögruer, D. S., Unlii, S., Sahin, M. F. & Ye Silada, E. (1998). Farmaco, 53, 80–84.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds