organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2373-o2374

2-(5,6-Di­hydro­benzimidazo[1,2-c]quinazolin-6-yl)-5-methyl­phenol

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Pure and Applied Sciences, International University of Africa, Sudan, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 9 August 2011; accepted 11 August 2011; online 27 August 2011)

In the title compound, C21H17N3O, the imidazole ring is essentially planar, with a maximum deviation of 0.009 (1) Å. The mol­ecule is disordered over two sites corresponding to a rotation of approximately 180° with a refined occupancy ratio of 0.9180 (14):0.0820 (14). The central pyrim­idine ring makes dihedral angles of 5.02 (5), 3.97 (5) and 6.28 (5)°, respectively, with the planes of the imidazole and the terminal phenyl rings for the major component; the values for the minor component are 5.8 (7), 5.0 (6) and 8.5 (6)°, respectively. Part of the observed planarity is accounted for in terms of an intra­molecular N—H⋯O hydrogen bond. In the crystal, mol­ecules of the major component are connected by O—H⋯N hydrogen bonds, forming supra­molecular chains along the c axis.

Related literature

For applications of benzimidazoles, see: Sun et al. (2010[Sun, T., Li, K., Lai, Y., Chen, R. & Wu, H. (2010). Acta Cryst. E66, m1058.]); Harrell et al. (2004[Harrell, C. C., Kohli, P., Siwy, Z. & Martin, C. R. (2004). J. Am. Chem. Soc. 126, 15646-15647.]). For related structures, see: Eltayeb et al. (2007[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, o4141-o4142.], 2009[Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613-o1614.], 2011[Eltayeb, N. E., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1721-o1722.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17N3O

  • Mr = 327.38

  • Monoclinic, C 2/c

  • a = 15.1292 (3) Å

  • b = 12.2648 (2) Å

  • c = 17.1909 (3) Å

  • β = 96.233 (1)°

  • V = 3171.03 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.59 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.983

  • 24277 measured reflections

  • 6164 independent reflections

  • 4808 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.04

  • 6164 reflections

  • 296 parameters

  • 44 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O1 0.90 2.39 2.9655 (11) 123
O1—H1O1⋯N2i 0.919 (16) 1.830 (16) 2.7038 (10) 158.0 (15)
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazoles are known to be strong chelating agents coordinating through both the CN N atoms (Sun et al., 2010). The benzimidazole ring system is present in the clinically approved anthelmintics, anti-ulcer, anti-viral, and anti-histamine drugs (Harrell et al., 2004). As part of our on-going structural studies of benzimidazoles (Eltayeb et al., 2007, 2009, 2011), we now describe in this paper the single-crystal X-ray diffraction study of title compound (I).

The molecular structure of (I) is shown in Fig. 1. The 2-(5,6 dihydrobenzimidazo[1,2-c]quinazolin-6-yl) molecule is disordered over two sites corresponding to a rotation of approximately 180\% with a refined occupancy ratio of 0.9180 (14):0.0820 (14). The imidazole (N1/N2/C6/C7/C8) ring is essentially planar, with a maximum deviation of 0.009 (1) Å for atom C7. The central pyrimidine ring makes dihedral angles of 5.02 (5), 3.97 (5), 6.28 (5) ° for the major component, and 5.8 (7), 5.0 (6) and 8.5 (6) ° for the minor component, respectively, with the plane of the imidazole and with those through the terminal phenyl rings.

In the crystal structure (Fig. 2), the molecules of the major component are connected by O1—H1O1···N2 hydrogen bonds (Table 1) forming a supramolecular chain along the c-axis.

Related literature top

For applications of benzimidazoles, see: Sun et al. (2010); Harrell et al. (2004). For related structures, see: Eltayeb et al. (2007, 2009, 2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of 2-(2-aminophenyl)-1H-benzimidazole (0.418 g, 2.0 mmol) in ethanol (30 mL) was added 2-hydroxy-4-methylbenzaldehyde (0.272 g, 2.0 mmol). The mixture was refluxed with stirring for two hours after which the colour of the resulting solution turned pale-yellow. Colourless crystals were formed after several days of slow evaporation of its ethanol solution held at room temperature.

Refinement top

Atom H1O1 was located from a difference Fourier maps and refined freely [O—H = 0.919 (16) Å]. The N—H H atoms were located from a difference map and fixed at those positions and refined with Uiso(H) = 1.2 Ueq(N). The remaining H atoms were positioned geometrically [C—H = 0.95–1.00 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The molecule is disordered over two sites with a refined occupancy ratio of 0.9180 (14):0.0820 (14); the minor component was refined with isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008; software used to prepare material for publication: SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The minor component is shown with open bonds. H atoms omitted for clarity.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I), dashed lines represents hydrogen bonding.
2-(5,6-Dihydrobenzimidazo[1,2-c]quinazolin-6-yl)-5-methylphenol top
Crystal data top
C21H17N3OF(000) = 1376
Mr = 327.38Dx = 1.371 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7250 reflections
a = 15.1292 (3) Åθ = 2.4–33.4°
b = 12.2648 (2) ŵ = 0.09 mm1
c = 17.1909 (3) ÅT = 100 K
β = 96.233 (1)°Block, colourless
V = 3171.03 (10) Å30.59 × 0.21 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6164 independent reflections
Radiation source: fine-focus sealed tube4808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 33.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2321
Tmin = 0.951, Tmax = 0.983k = 1819
24277 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0635P)2 + 1.1622P]
where P = (Fo2 + 2Fc2)/3
6164 reflections(Δ/σ)max = 0.001
296 parametersΔρmax = 0.41 e Å3
44 restraintsΔρmin = 0.25 e Å3
Crystal data top
C21H17N3OV = 3171.03 (10) Å3
Mr = 327.38Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.1292 (3) ŵ = 0.09 mm1
b = 12.2648 (2) ÅT = 100 K
c = 17.1909 (3) Å0.59 × 0.21 × 0.20 mm
β = 96.233 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6164 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4808 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.983Rint = 0.029
24277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04544 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.41 e Å3
6164 reflectionsΔρmin = 0.25 e Å3
296 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.11427 (4)0.39987 (6)1.02884 (4)0.02061 (14)
C140.09940 (6)0.43709 (8)0.86934 (5)0.01907 (17)
H14A0.06000.37420.87900.023*0.9180 (14)
H14B0.05580.45510.90380.023*0.0820 (14)
C150.18959 (6)0.41867 (7)0.91603 (5)0.01793 (16)
C160.26904 (6)0.41994 (8)0.88195 (5)0.02215 (18)
H16A0.26750.43000.82700.027*
C170.35059 (6)0.40677 (8)0.92684 (5)0.02231 (18)
H17A0.40400.40830.90250.027*
C180.35418 (6)0.39130 (7)1.00739 (5)0.01832 (16)
C190.27492 (6)0.38872 (7)1.04197 (5)0.01798 (16)
H19A0.27660.37781.09680.022*
C200.19305 (5)0.40201 (7)0.99689 (5)0.01667 (15)
C210.44220 (6)0.37331 (8)1.05544 (5)0.02230 (18)
H21A0.44060.40571.10740.033*
H21B0.48950.40761.02940.033*
H21C0.45370.29491.06080.033*
N10.10675 (5)0.44305 (7)0.78585 (4)0.01890 (16)0.9180 (14)
N20.14473 (6)0.52085 (8)0.67606 (5)0.02089 (17)0.9180 (14)
N30.05600 (5)0.53695 (7)0.89063 (5)0.02081 (17)0.9180 (14)
H1N30.05690.54170.94270.031*0.9180 (14)
C10.12136 (6)0.35766 (10)0.73616 (6)0.01981 (19)0.9180 (14)
C20.11768 (7)0.24516 (11)0.74523 (7)0.0247 (2)0.9180 (14)
H2A0.10250.21280.79220.030*0.9180 (14)
C30.13738 (8)0.18239 (10)0.68194 (8)0.0260 (2)0.9180 (14)
H3A0.13540.10520.68550.031*0.9180 (14)
C40.16018 (8)0.23106 (12)0.61273 (6)0.0255 (2)0.9180 (14)
H4A0.17360.18580.57070.031*0.9180 (14)
C50.16364 (7)0.34331 (11)0.60427 (6)0.0238 (2)0.9180 (14)
H5A0.17870.37550.55720.029*0.9180 (14)
C60.14422 (6)0.40766 (9)0.66750 (6)0.02034 (19)0.9180 (14)
C70.12315 (7)0.53821 (11)0.74761 (7)0.01833 (19)0.9180 (14)
C80.11421 (6)0.64094 (9)0.78768 (6)0.01890 (18)0.9180 (14)
C90.13375 (7)0.74150 (10)0.75533 (6)0.0228 (2)0.9180 (14)
H9A0.15490.74410.70530.027*0.9180 (14)
C100.12243 (8)0.83764 (11)0.79570 (8)0.0267 (2)0.9180 (14)
H10A0.13560.90600.77360.032*0.9180 (14)
C110.09131 (8)0.83251 (12)0.86945 (7)0.0254 (2)0.9180 (14)
H11A0.08440.89790.89780.030*0.9180 (14)
C120.07047 (7)0.73363 (10)0.90174 (6)0.0229 (2)0.9180 (14)
H12A0.04840.73190.95140.027*0.9180 (14)
C130.08176 (6)0.63642 (9)0.86160 (6)0.01901 (18)0.9180 (14)
N1X0.1041 (7)0.5258 (8)0.8082 (6)0.028 (2)*0.0820 (14)
N2X0.1354 (7)0.6061 (8)0.6958 (6)0.029 (2)*0.0820 (14)
N3X0.0707 (8)0.3422 (9)0.8217 (6)0.034 (3)*0.0820 (14)
H3XB0.02860.30070.83750.040*0.0820 (14)
C1X0.1029 (6)0.6359 (7)0.8222 (6)0.0121 (17)*0.0820 (14)
C2X0.0875 (8)0.6912 (10)0.8879 (6)0.019 (2)*0.0820 (14)
H2XA0.07510.65390.93390.023*0.0820 (14)
C3X0.0905 (11)0.7992 (12)0.8855 (9)0.029 (4)*0.0820 (14)
H3XA0.07850.84130.92950.035*0.0820 (14)
C4X0.1115 (12)0.8496 (12)0.8177 (9)0.030 (4)*0.0820 (14)
H4XA0.11490.92690.81810.035*0.0820 (14)
C5X0.1276 (9)0.7977 (10)0.7500 (7)0.028 (3)*0.0820 (14)
H5XA0.14110.83520.70440.034*0.0820 (14)
C6X0.1223 (8)0.6841 (9)0.7548 (6)0.021 (2)*0.0820 (14)
C7X0.1253 (14)0.5126 (10)0.7308 (9)0.034 (5)*0.0820 (14)
C8X0.1320 (7)0.3976 (8)0.7053 (7)0.0171 (19)*0.0820 (14)
C9X0.1614 (7)0.3764 (9)0.6341 (7)0.017 (2)*0.0820 (14)
H9XA0.17650.43550.60250.021*0.0820 (14)
C10X0.1692 (11)0.2743 (12)0.6081 (8)0.029 (3)*0.0820 (14)
H10B0.19060.26060.55910.034*0.0820 (14)
C11X0.1456 (11)0.1902 (12)0.6538 (9)0.030 (4)*0.0820 (14)
H11B0.15100.11720.63650.036*0.0820 (14)
C12X0.1147 (9)0.2095 (10)0.7232 (8)0.025 (3)*0.0820 (14)
H12B0.09830.14930.75340.031*0.0820 (14)
C13X0.1062 (9)0.3127 (10)0.7517 (7)0.025 (2)*0.0820 (14)
H1O10.1244 (10)0.4082 (13)1.0822 (10)0.046 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0165 (3)0.0344 (4)0.0115 (3)0.0010 (2)0.0041 (2)0.0009 (2)
C140.0158 (4)0.0302 (4)0.0115 (3)0.0020 (3)0.0024 (3)0.0028 (3)
C150.0160 (4)0.0263 (4)0.0116 (3)0.0006 (3)0.0019 (3)0.0011 (3)
C160.0182 (4)0.0354 (5)0.0132 (4)0.0006 (3)0.0032 (3)0.0027 (3)
C170.0163 (4)0.0340 (5)0.0172 (4)0.0000 (3)0.0042 (3)0.0021 (3)
C180.0172 (4)0.0218 (4)0.0157 (4)0.0005 (3)0.0007 (3)0.0002 (3)
C190.0176 (4)0.0241 (4)0.0121 (3)0.0005 (3)0.0011 (3)0.0000 (3)
C200.0158 (3)0.0221 (4)0.0124 (3)0.0005 (3)0.0031 (3)0.0009 (3)
C210.0180 (4)0.0285 (4)0.0199 (4)0.0017 (3)0.0004 (3)0.0023 (3)
N10.0170 (3)0.0294 (4)0.0104 (3)0.0026 (3)0.0021 (2)0.0019 (3)
N20.0194 (4)0.0322 (4)0.0114 (3)0.0007 (3)0.0031 (3)0.0018 (3)
N30.0171 (4)0.0327 (4)0.0135 (3)0.0030 (3)0.0060 (3)0.0039 (3)
C10.0157 (4)0.0308 (5)0.0127 (4)0.0031 (4)0.0006 (3)0.0001 (4)
C20.0242 (5)0.0323 (6)0.0174 (5)0.0038 (4)0.0020 (4)0.0006 (4)
C30.0249 (5)0.0312 (6)0.0214 (6)0.0048 (4)0.0012 (4)0.0016 (4)
C40.0237 (5)0.0340 (7)0.0182 (5)0.0030 (5)0.0002 (3)0.0039 (4)
C50.0229 (5)0.0349 (6)0.0138 (4)0.0010 (4)0.0023 (3)0.0020 (4)
C60.0167 (4)0.0323 (5)0.0118 (4)0.0013 (4)0.0007 (3)0.0000 (4)
C70.0127 (4)0.0315 (5)0.0108 (4)0.0006 (4)0.0015 (3)0.0033 (4)
C80.0146 (4)0.0301 (5)0.0122 (4)0.0028 (3)0.0027 (3)0.0034 (3)
C90.0219 (5)0.0298 (6)0.0177 (4)0.0039 (4)0.0060 (3)0.0051 (4)
C100.0266 (6)0.0327 (6)0.0222 (6)0.0056 (4)0.0093 (4)0.0059 (5)
C110.0262 (5)0.0291 (6)0.0220 (5)0.0065 (5)0.0075 (4)0.0021 (5)
C120.0208 (4)0.0316 (5)0.0170 (4)0.0062 (4)0.0050 (3)0.0013 (4)
C130.0136 (4)0.0312 (5)0.0124 (4)0.0031 (3)0.0021 (3)0.0030 (3)
Geometric parameters (Å, º) top
O1—C201.3658 (10)C7—C81.4493 (18)
O1—H1O10.919 (16)C8—C91.3976 (15)
C14—N11.4534 (11)C8—C131.4122 (13)
C14—N31.4551 (13)C9—C101.3883 (19)
C14—N3X1.462 (12)C9—H9A0.9500
C14—N1X1.520 (10)C10—C111.4010 (17)
C14—C151.5230 (12)C10—H10A0.9500
C14—H14A1.0000C11—C121.3842 (17)
C14—H14B0.9600C11—H11A0.9500
C15—C161.3932 (12)C12—C131.3973 (15)
C15—C201.4003 (11)C12—H12A0.9500
C16—C171.3918 (13)N1X—C1X1.372 (11)
C16—H16A0.9500N1X—C7X1.411 (14)
C17—C181.3928 (12)N2X—C7X1.310 (14)
C17—H17A0.9500N2X—C6X1.424 (12)
C18—C191.3955 (12)N3X—C13X1.416 (13)
C18—C211.5052 (12)N3X—H3XB0.8800
C19—C201.3974 (11)C1X—C6X1.360 (13)
C19—H19A0.9500C1X—C2X1.360 (13)
C21—H21A0.9800C2X—C3X1.326 (14)
C21—H21B0.9800C2X—H2XA0.9500
C21—H21C0.9800C3X—C4X1.386 (15)
N1—C71.3752 (14)C3X—H3XA0.9500
N1—C11.3843 (13)C4X—C5X1.371 (14)
N2—C71.3236 (14)C4X—H4XA0.9500
N2—C61.3959 (14)C5X—C6X1.399 (14)
N3—C131.3898 (13)C5X—H5XA0.9500
N3—H14B1.0293C7X—C8X1.484 (13)
N3—H1N30.8957C8X—C9X1.372 (13)
C1—C21.3904 (17)C8X—C13X1.394 (14)
C1—C61.4063 (14)C9X—C10X1.339 (14)
C2—C31.3912 (17)C9X—H9XA0.9500
C2—H2A0.9500C10X—C11X1.367 (15)
C3—C41.4071 (17)C10X—H10B0.9500
C3—H3A0.9500C11X—C12X1.349 (14)
C4—C51.3860 (18)C11X—H11B0.9500
C4—H4A0.9500C12X—C13X1.368 (14)
C5—C61.3999 (14)C12X—H12B0.9500
C5—H5A0.9500
C20—O1—H1O1109.9 (10)N2—C6—C1110.13 (9)
N1—C14—N3106.92 (7)C5—C6—C1119.82 (10)
N1—C14—N3X62.4 (4)N2—C7—N1112.53 (12)
N3—C14—N3X134.1 (5)N2—C7—C8128.81 (10)
N3—C14—N1X68.1 (4)N1—C7—C8118.66 (10)
N3X—C14—N1X102.5 (6)C9—C8—C13120.12 (10)
N1—C14—C15111.57 (7)C9—C8—C7122.91 (10)
N3—C14—C15113.28 (7)C13—C8—C7116.94 (9)
N3X—C14—C15111.8 (5)C10—C9—C8120.51 (10)
N1X—C14—C15111.4 (4)C10—C9—H9A119.7
N1—C14—H14A108.3C8—C9—H9A119.7
N3—C14—H14A108.3C9—C10—C11119.08 (12)
N3X—C14—H14A48.1C9—C10—H10A120.5
N1X—C14—H14A137.8C11—C10—H10A120.5
C15—C14—H14A108.3C12—C11—C10121.04 (12)
N1—C14—H14B136.9C12—C11—H11A119.5
N3X—C14—H14B110.3C10—C11—H11A119.5
N1X—C14—H14B110.5C11—C12—C13120.28 (9)
C15—C14—H14B110.2C11—C12—H12A119.9
H14A—C14—H14B67.2C13—C12—H12A119.9
C16—C15—C20118.56 (8)N3—C13—C12121.17 (9)
C16—C15—C14122.77 (7)N3—C13—C8119.74 (9)
C20—C15—C14118.66 (7)C12—C13—C8118.94 (9)
C17—C16—C15121.26 (8)C1X—N1X—C7X106.7 (9)
C17—C16—H16A119.4C1X—N1X—C14125.5 (8)
C15—C16—H16A119.4C7X—N1X—C14127.1 (8)
C16—C17—C18120.23 (8)C7X—N2X—C6X103.3 (9)
C16—C17—H17A119.9C13X—N3X—C14124.2 (10)
C18—C17—H17A119.9C13X—N3X—H3XB117.9
C17—C18—C19118.96 (8)C14—N3X—H3XB117.9
C17—C18—C21120.15 (8)C6X—C1X—C2X124.2 (9)
C19—C18—C21120.85 (8)C6X—C1X—N1X105.7 (9)
C18—C19—C20120.79 (8)C2X—C1X—N1X130.1 (10)
C18—C19—H19A119.6C3X—C2X—C1X117.6 (10)
C20—C19—H19A119.6C3X—C2X—H2XA121.2
O1—C20—C19122.30 (7)C1X—C2X—H2XA121.2
O1—C20—C15117.50 (7)C2X—C3X—C4X118.9 (13)
C19—C20—C15120.19 (8)C2X—C3X—H3XA120.5
C18—C21—H21A109.5C4X—C3X—H3XA120.5
C18—C21—H21B109.5C5X—C4X—C3X125.8 (14)
H21A—C21—H21B109.5C5X—C4X—H4XA117.1
C18—C21—H21C109.5C3X—C4X—H4XA117.1
H21A—C21—H21C109.5C4X—C5X—C6X113.3 (12)
H21B—C21—H21C109.5C4X—C5X—H5XA123.4
C7—N1—C1107.34 (9)C6X—C5X—H5XA123.4
C7—N1—C14123.50 (9)C1X—C6X—C5X120.2 (9)
C1—N1—C14127.28 (9)C1X—C6X—N2X111.9 (9)
C7—N2—C6105.01 (9)C5X—C6X—N2X127.9 (10)
C13—N3—C14119.79 (8)N2X—C7X—N1X112.5 (10)
C13—N3—H14B160.6N2X—C7X—C8X132.9 (12)
C13—N3—H1N3109.1N1X—C7X—C8X114.6 (11)
C14—N3—H1N3110.4C9X—C8X—C13X120.4 (9)
H14B—N3—H1N381.0C9X—C8X—C7X118.9 (10)
N1—C1—C2132.12 (10)C13X—C8X—C7X120.6 (10)
N1—C1—C6104.97 (10)C10X—C9X—C8X121.7 (10)
C2—C1—C6122.91 (10)C10X—C9X—H9XA119.2
C1—C2—C3116.55 (10)C8X—C9X—H9XA119.2
C1—C2—H2A121.7C9X—C10X—C11X118.3 (12)
C3—C2—H2A121.7C9X—C10X—H10B120.8
C2—C3—C4121.30 (12)C11X—C10X—H10B120.8
C2—C3—H3A119.4C12X—C11X—C10X120.9 (13)
C4—C3—H3A119.4C12X—C11X—H11B119.5
C5—C4—C3121.71 (11)C10X—C11X—H11B119.5
C5—C4—H4A119.1C11X—C12X—C13X122.3 (12)
C3—C4—H4A119.1C11X—C12X—H12B118.8
C4—C5—C6117.71 (10)C13X—C12X—H12B118.8
C4—C5—H5A121.1C12X—C13X—C8X116.3 (10)
C6—C5—H5A121.1C12X—C13X—N3X126.9 (11)
N2—C6—C5130.04 (10)C8X—C13X—N3X116.8 (10)
N1—C14—C15—C166.57 (13)C9—C10—C11—C121.08 (18)
N3—C14—C15—C16114.14 (10)C10—C11—C12—C131.18 (17)
N3X—C14—C15—C1674.4 (5)C14—N3—C13—C12154.10 (9)
N1X—C14—C15—C1639.6 (4)C14—N3—C13—C830.38 (13)
N1—C14—C15—C20174.80 (8)C11—C12—C13—N3175.88 (10)
N3—C14—C15—C2064.49 (11)C11—C12—C13—C80.33 (15)
N3X—C14—C15—C20107.0 (5)C9—C8—C13—N3175.03 (9)
N1X—C14—C15—C20139.0 (4)C7—C8—C13—N33.20 (13)
C20—C15—C16—C171.02 (14)C9—C8—C13—C120.59 (14)
C14—C15—C16—C17177.62 (9)C7—C8—C13—C12178.82 (9)
C15—C16—C17—C180.38 (15)N1—C14—N1X—C1X179.2 (14)
C16—C17—C18—C190.31 (14)N3—C14—N1X—C1X27.4 (9)
C16—C17—C18—C21177.94 (9)N3X—C14—N1X—C1X160.2 (10)
C17—C18—C19—C200.36 (13)C15—C14—N1X—C1X80.1 (10)
C21—C18—C19—C20177.97 (8)N1—C14—N1X—C7X10.8 (12)
C18—C19—C20—O1179.97 (8)N3—C14—N1X—C7X164.3 (15)
C18—C19—C20—C150.29 (13)N3X—C14—N1X—C7X31.4 (15)
C16—C15—C20—O1179.28 (8)C15—C14—N1X—C7X88.3 (14)
C14—C15—C20—O12.03 (12)N1—C14—N3X—C13X28.9 (9)
C16—C15—C20—C190.97 (13)N3—C14—N3X—C13X116.0 (10)
C14—C15—C20—C19177.72 (8)N1X—C14—N3X—C13X44.5 (12)
N3—C14—N1—C736.05 (12)C15—C14—N3X—C13X74.9 (11)
N3X—C14—N1—C7167.5 (5)C7X—N1X—C1X—C6X0.4 (14)
N1X—C14—N1—C710.3 (6)C14—N1X—C1X—C6X170.7 (9)
C15—C14—N1—C788.30 (11)C7X—N1X—C1X—C2X178.8 (13)
N3—C14—N1—C1161.62 (9)C14—N1X—C1X—C2X8.5 (18)
N3X—C14—N1—C130.1 (5)C6X—C1X—C2X—C3X0.9 (18)
N1X—C14—N1—C1172.6 (6)N1X—C1X—C2X—C3X180.0 (13)
C15—C14—N1—C174.02 (11)C1X—C2X—C3X—C4X2 (2)
N1—C14—N3—C1343.94 (11)C2X—C3X—C4X—C5X2 (3)
N3X—C14—N3—C13111.7 (6)C3X—C4X—C5X—C6X1 (2)
N1X—C14—N3—C1325.4 (4)C2X—C1X—C6X—C5X0.1 (18)
C15—C14—N3—C1379.37 (10)N1X—C1X—C6X—C5X179.1 (11)
C7—N1—C1—C2177.61 (11)C2X—C1X—C6X—N2X179.9 (10)
C14—N1—C1—C212.99 (17)N1X—C1X—C6X—N2X0.6 (13)
C7—N1—C1—C61.60 (10)C4X—C5X—C6X—C1X0.2 (19)
C14—N1—C1—C6166.22 (8)C4X—C5X—C6X—N2X179.9 (13)
N1—C1—C2—C3179.53 (10)C7X—N2X—C6X—C1X1.4 (16)
C6—C1—C2—C30.44 (15)C7X—N2X—C6X—C5X178.3 (15)
C1—C2—C3—C40.29 (16)C6X—N2X—C7X—N1X1.6 (19)
C2—C3—C4—C50.32 (17)C6X—N2X—C7X—C8X178.1 (19)
C3—C4—C5—C60.48 (16)C1X—N1X—C7X—N2X1.4 (19)
C7—N2—C6—C5178.71 (10)C14—N1X—C7X—N2X171.5 (11)
C7—N2—C6—C10.18 (11)C1X—N1X—C7X—C8X178.5 (13)
C4—C5—C6—N2178.19 (10)C14—N1X—C7X—C8X8 (2)
C4—C5—C6—C10.61 (14)N2X—C7X—C8X—C9X6 (3)
N1—C1—C6—N20.90 (10)N1X—C7X—C8X—C9X173.3 (13)
C2—C1—C6—N2178.40 (9)N2X—C7X—C8X—C13X171.4 (19)
N1—C1—C6—C5179.92 (9)N1X—C7X—C8X—C13X9 (2)
C2—C1—C6—C50.62 (15)C13X—C8X—C9X—C10X2.4 (18)
C6—N2—C7—N11.25 (11)C7X—C8X—C9X—C10X179.7 (14)
C6—N2—C7—C8179.60 (10)C8X—C9X—C10X—C11X1 (2)
C1—N1—C7—N21.86 (12)C9X—C10X—C11X—C12X0 (2)
C14—N1—C7—N2167.20 (8)C10X—C11X—C12X—C13X1 (2)
C1—N1—C7—C8178.89 (9)C11X—C12X—C13X—C8X1 (2)
C14—N1—C7—C813.55 (14)C11X—C12X—C13X—N3X176.7 (14)
N2—C7—C8—C94.22 (17)C9X—C8X—C13X—C12X2.0 (18)
N1—C7—C8—C9176.67 (9)C7X—C8X—C13X—C12X179.9 (14)
N2—C7—C8—C13173.96 (10)C9X—C8X—C13X—N3X175.5 (11)
N1—C7—C8—C135.15 (14)C7X—C8X—C13X—N3X2.3 (19)
C13—C8—C9—C100.68 (15)C14—N3X—C13X—C12X148.8 (13)
C7—C8—C9—C10178.80 (10)C14—N3X—C13X—C8X33.9 (17)
C8—C9—C10—C110.14 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O10.902.392.9655 (11)123
O1—H1O1···N2i0.919 (16)1.830 (16)2.7038 (10)158.0 (15)
Symmetry code: (i) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H17N3O
Mr327.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)15.1292 (3), 12.2648 (2), 17.1909 (3)
β (°) 96.233 (1)
V3)3171.03 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.59 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.951, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
24277, 6164, 4808
Rint0.029
(sin θ/λ)max1)0.776
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.04
No. of reflections6164
No. of parameters296
No. of restraints44
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O10.902.392.9655 (11)123
O1—H1O1···N2i0.919 (16)1.830 (16)2.7038 (10)158.0 (15)
Symmetry code: (i) x, y+1, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NEE and SGT thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). NEE also thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing study leave. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks the Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, o4141–o4142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1721–o1722.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrell, C. C., Kohli, P., Siwy, Z. & Martin, C. R. (2004). J. Am. Chem. Soc. 126, 15646–15647.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, T., Li, K., Lai, Y., Chen, R. & Wu, H. (2010). Acta Cryst. E66, m1058.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2373-o2374
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds