organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-N-(2-hy­dr­oxy-5-methyl­phen­yl)-2-methyl­propanamide

aDepartamento de Química – Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bDepartamento de Química – Facultad de Ciencias, Universidad ICESI, Santiago de Cali, Colombia, and cWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

(Received 14 August 2011; accepted 16 August 2011; online 27 August 2011)

In the title mol­ecule, C11H14BrNO2, there is twist between the mean plane of the amide group and the benzene ring [the C—N—C—C torsion angle is −172.1 (2)°]. The amide H atom forms an intra­molecular hydrogen bond with the Br atom. In the crystal, inter­molecular O—H⋯O and weak C—H⋯O hydrogen bonds link mol­ecules into a chain along [100].

Related literature

For functional initiators in polymerization processes, see: Matyjaszewski & Xia (2001[Matyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921-2990.]); Kato et al. (1995[Kato, M., Kamigaito, M., Sawamoto, M. & Higashimura, T. (1995). Macromolecules, 28, 1721-1723.]). For related structures, see: Moreno-Fuquen et al. (2011a[Moreno-Fuquen, R., Quintero, D. E., Zuluaga, F., Haiduke, R. L. A. & Kennedy, A. R. (2011a). Acta Cryst. E67, o659.],b[Moreno-Fuquen, R., Quintero, D. E., Zuluaga, F., Kennedy, A. R. & De Almeida Santos, R. H. (2011b). Acta Cryst. E67, o1543.]). For hydrogen-bond graph-set motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14BrNO2

  • Mr = 272.14

  • Monoclinic, P 21 /c

  • a = 7.4510 (2) Å

  • b = 13.8498 (4) Å

  • c = 12.8646 (4) Å

  • β = 116.324 (2)°

  • V = 1189.89 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.44 mm−1

  • T = 123 K

  • 0.30 × 0.10 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.650, Tmax = 1.000

  • 5803 measured reflections

  • 2886 independent reflections

  • 2437 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.05

  • 2886 reflections

  • 147 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1H⋯O1i 0.85 (1) 1.81 (1) 2.659 (2) 179 (3)
C1—H1C⋯O2ii 0.98 2.53 3.445 (3) 156
N1—H1N⋯Br1 0.87 (3) 2.47 (3) 3.031 (2) 123 (2)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The title compound, (I), is part of a search for new functional initiators in polymerization processes (Matyjaszewski & Xia, 2001; Kato et al., 1995), which is carried out by the Polymer Group of Universidad del Valle (Moreno-Fuquen et al., 2011a; Moreno-Fuquen et al., 2011b). The molecular structure of (I) is shown in Fig. 1. There is a twist between the mean plane of the amide group and the benzene ring giving a C4—N1—C5—C6 torsion angle of -172.1 (2) °. This value is very different to that presented in other related systems: [12.7 (4) and -31.2 (5) °, respectively (Moreno-Fuquen et al., 2011a; Moreno-Fuquen et al., 2011b)]. The difference in the value of torsion angle with respect to other related systems, is probably due to the presence of the hydroxyl group in the benzene ring in (I). The crystal packing is stabilized by O—H···O and weak C—H···O intermolecular hydrogen bonds which link the molecules into one dimensional chains along [100] incorporating C(7) graphs motifs (Etter, 1990); see Table 1 and Fig. 2. Additionally, an intramolecular N—H···Br hydrogen bond is observed (Table 1).

Related literature top

For functional initiators in polymerization processes, see: Matyjaszewski & Xia (2001); Kato et al. (1995). For related structures, see: Moreno-Fuquen et al. (2011a,b). For hydrogen-bond graph-set motifs, see: Etter (1990).

Experimental top

2-Hydroxy-5-methyl aniline (3.512 mmol, 0.432 g), triethylamine (0.635 mmol, 0.064 g) were mixed in a 100 mL round bottom flask. Then, a solution of 2-bromo isobutryl bromide (0.807 g) in anhydrous THF (5 ml) was added drop wise, under an argon stream. The reaction was carried out in a dry bag overnight under magnetic stirring. The solid was filtered off and dichloromethane (20 ml) added to the organic phase which was washed with brine (50 ml) followed by water (10 ml). The solution was concentrated at low pressure affording colourless crystals and recrystallized from a solution of hexane and ethyl acetate (v/v 80:20). M.pt. 385 (1) K.

Refinement top

The H-atoms were positioned geometrically [C—H = 0.95 Å for aromatic-H and C—H = 0.98 Å for methyl-H, and with Uiso(H) = (1.2 and 1.5 times Ueq of the parent atom, respectively]. The hydroxyl-H1H and amide-H1N atoms were located in a difference Fourier map and were refined freely.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis CCD (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a one dimensional chain along [100]. Dashed lines indicate hydrogen bonds. Symmetry code: (i) 1 + x,+y, z.
2-Bromo-N-(2-hydroxy-5-methylphenyl)-2-methylpropanamide top
Crystal data top
C11H14BrNO2F(000) = 552
Mr = 272.14Dx = 1.519 Mg m3
Monoclinic, P21/cMelting point: 385(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.4510 (2) ÅCell parameters from 3082 reflections
b = 13.8498 (4) Åθ = 3.1–29.4°
c = 12.8646 (4) ŵ = 3.44 mm1
β = 116.324 (2)°T = 123 K
V = 1189.89 (6) Å3Tablet, colourless
Z = 40.30 × 0.10 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2886 independent reflections
Radiation source: fine-focus sealed tube2437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 29.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 810
Tmin = 0.650, Tmax = 1.000k = 1619
5803 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.2346P]
where P = (Fo2 + 2Fc2)/3
2886 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.73 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
C11H14BrNO2V = 1189.89 (6) Å3
Mr = 272.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4510 (2) ŵ = 3.44 mm1
b = 13.8498 (4) ÅT = 123 K
c = 12.8646 (4) Å0.30 × 0.10 × 0.08 mm
β = 116.324 (2)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2886 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2437 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 1.000Rint = 0.023
5803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.73 e Å3
2886 reflectionsΔρmin = 0.46 e Å3
147 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.10479 (3)0.358681 (19)0.14350 (2)0.02782 (10)
O10.0362 (3)0.54556 (15)0.34215 (18)0.0387 (5)
O20.5930 (2)0.53566 (12)0.32150 (14)0.0219 (4)
N10.2461 (3)0.51979 (14)0.32142 (17)0.0190 (4)
C10.1738 (4)0.35819 (19)0.2380 (3)0.0317 (6)
H1A0.07420.32090.30250.048*
H1B0.25250.31460.17390.048*
H1C0.26290.39160.26380.048*
C20.0677 (3)0.43204 (18)0.1973 (2)0.0227 (5)
C30.2146 (4)0.4905 (2)0.0933 (2)0.0375 (7)
H3A0.29350.44660.02960.056*
H3B0.13980.53520.06800.056*
H3C0.30430.52720.11580.056*
C40.0531 (3)0.50331 (18)0.2951 (2)0.0215 (5)
C50.3773 (3)0.58845 (16)0.39924 (19)0.0162 (4)
C60.5634 (3)0.59619 (17)0.39643 (19)0.0177 (4)
C70.7014 (3)0.66329 (17)0.4661 (2)0.0220 (5)
H70.82630.66960.46350.026*
C80.6582 (3)0.72175 (17)0.5400 (2)0.0220 (5)
H80.75380.76810.58700.026*
C90.4764 (3)0.71337 (16)0.54611 (19)0.0193 (5)
C100.3369 (3)0.64603 (15)0.4745 (2)0.0182 (5)
H100.21230.63960.47740.022*
C110.4344 (4)0.77409 (18)0.6301 (2)0.0261 (5)
H11A0.46970.73760.70190.039*
H11B0.29180.79070.59550.039*
H11C0.51440.83340.64760.039*
H1H0.711 (2)0.540 (2)0.328 (3)0.038 (8)*
H1N0.297 (4)0.4836 (19)0.286 (2)0.027 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02120 (15)0.03380 (17)0.02828 (15)0.00141 (11)0.01082 (11)0.01028 (10)
O10.0186 (9)0.0505 (13)0.0535 (12)0.0127 (9)0.0219 (9)0.0306 (10)
O20.0130 (8)0.0300 (9)0.0261 (9)0.0022 (7)0.0118 (7)0.0037 (7)
N10.0128 (9)0.0224 (10)0.0239 (10)0.0013 (8)0.0100 (8)0.0044 (8)
C10.0248 (13)0.0322 (15)0.0411 (16)0.0082 (11)0.0174 (12)0.0120 (12)
C20.0149 (11)0.0267 (13)0.0256 (12)0.0011 (10)0.0082 (9)0.0070 (10)
C30.0273 (14)0.0417 (17)0.0313 (15)0.0126 (13)0.0021 (11)0.0042 (13)
C40.0133 (11)0.0265 (12)0.0261 (12)0.0020 (10)0.0101 (9)0.0042 (10)
C50.0106 (10)0.0176 (11)0.0183 (10)0.0001 (9)0.0044 (8)0.0030 (8)
C60.0138 (11)0.0207 (12)0.0183 (11)0.0002 (9)0.0069 (9)0.0034 (9)
C70.0143 (11)0.0264 (13)0.0250 (12)0.0049 (10)0.0084 (9)0.0024 (10)
C80.0174 (11)0.0216 (12)0.0230 (12)0.0054 (10)0.0053 (9)0.0013 (9)
C90.0202 (11)0.0177 (11)0.0169 (11)0.0003 (10)0.0056 (9)0.0025 (9)
C100.0139 (11)0.0206 (12)0.0207 (11)0.0004 (9)0.0081 (9)0.0024 (9)
C110.0277 (13)0.0257 (13)0.0241 (12)0.0011 (11)0.0110 (10)0.0044 (10)
Geometric parameters (Å, º) top
Br1—C21.988 (2)C3—H3C0.9800
O1—C41.229 (3)C5—C101.387 (3)
O2—C61.367 (3)C5—C61.407 (3)
O2—H1H0.847 (10)C6—C71.381 (3)
N1—C41.343 (3)C7—C81.391 (3)
N1—C51.412 (3)C7—H70.9500
N1—H1N0.87 (3)C8—C91.396 (3)
C1—C21.520 (3)C8—H80.9500
C1—H1A0.9800C9—C101.396 (3)
C1—H1B0.9800C9—C111.508 (3)
C1—H1C0.9800C10—H100.9500
C2—C31.531 (4)C11—H11A0.9800
C2—C41.537 (3)C11—H11B0.9800
C3—H3A0.9800C11—H11C0.9800
C3—H3B0.9800
C6—O2—H1H112 (2)C10—C5—C6119.7 (2)
C4—N1—C5128.39 (19)C10—C5—N1125.84 (19)
C4—N1—H1N115.9 (18)C6—C5—N1114.43 (19)
C5—N1—H1N115.7 (18)O2—C6—C7124.29 (19)
C2—C1—H1A109.5O2—C6—C5116.13 (19)
C2—C1—H1B109.5C7—C6—C5119.6 (2)
H1A—C1—H1B109.5C6—C7—C8120.2 (2)
C2—C1—H1C109.5C6—C7—H7119.9
H1A—C1—H1C109.5C8—C7—H7119.9
H1B—C1—H1C109.5C7—C8—C9121.0 (2)
C1—C2—C3112.2 (2)C7—C8—H8119.5
C1—C2—C4110.8 (2)C9—C8—H8119.5
C3—C2—C4107.9 (2)C8—C9—C10118.4 (2)
C1—C2—Br1106.92 (16)C8—C9—C11120.6 (2)
C3—C2—Br1106.75 (16)C10—C9—C11121.0 (2)
C4—C2—Br1112.25 (14)C5—C10—C9121.1 (2)
C2—C3—H3A109.5C5—C10—H10119.5
C2—C3—H3B109.5C9—C10—H10119.5
H3A—C3—H3B109.5C9—C11—H11A109.5
C2—C3—H3C109.5C9—C11—H11B109.5
H3A—C3—H3C109.5H11A—C11—H11B109.5
H3B—C3—H3C109.5C9—C11—H11C109.5
O1—C4—N1123.2 (2)H11A—C11—H11C109.5
O1—C4—C2117.44 (19)H11B—C11—H11C109.5
N1—C4—C2119.26 (19)
C5—N1—C4—O13.6 (4)C10—C5—C6—C72.1 (3)
C5—N1—C4—C2173.2 (2)N1—C5—C6—C7177.9 (2)
C1—C2—C4—O153.7 (3)O2—C6—C7—C8179.8 (2)
C3—C2—C4—O169.5 (3)C5—C6—C7—C81.1 (3)
Br1—C2—C4—O1173.2 (2)C6—C7—C8—C90.5 (4)
C1—C2—C4—N1129.2 (2)C7—C8—C9—C101.2 (3)
C3—C2—C4—N1107.6 (3)C7—C8—C9—C11177.4 (2)
Br1—C2—C4—N19.8 (3)C6—C5—C10—C91.4 (3)
C4—N1—C5—C107.8 (4)N1—C5—C10—C9178.5 (2)
C4—N1—C5—C6172.1 (2)C8—C9—C10—C50.2 (3)
C10—C5—C6—O2178.8 (2)C11—C9—C10—C5178.4 (2)
N1—C5—C6—O21.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1H···O1i0.85 (1)1.81 (1)2.659 (2)179 (3)
C1—H1C···O2ii0.982.533.445 (3)156
N1—H1N···Br10.87 (3)2.47 (3)3.031 (2)123 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC11H14BrNO2
Mr272.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)7.4510 (2), 13.8498 (4), 12.8646 (4)
β (°) 116.324 (2)
V3)1189.89 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.44
Crystal size (mm)0.30 × 0.10 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur E
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.650, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5803, 2886, 2437
Rint0.023
(sin θ/λ)max1)0.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.05
No. of reflections2886
No. of parameters147
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.46

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1H···O1i0.847 (10)1.813 (10)2.659 (2)179 (3)
C1—H1C···O2ii0.982.533.445 (3)155.7
N1—H1N···Br10.87 (3)2.47 (3)3.031 (2)123 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF and FZ also thank the Universidad del Valle, Colombia, and CG thanks the Universidad ICESI for partial financial support.

References

First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKato, M., Kamigaito, M., Sawamoto, M. & Higashimura, T. (1995). Macromolecules, 28, 1721–1723.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921–2990.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoreno-Fuquen, R., Quintero, D. E., Zuluaga, F., Haiduke, R. L. A. & Kennedy, A. R. (2011a). Acta Cryst. E67, o659.  CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Quintero, D. E., Zuluaga, F., Kennedy, A. R. & De Almeida Santos, R. H. (2011b). Acta Cryst. E67, o1543.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds