organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(phenyl­sulfon­yl)piperazine-1-carboxyl­ate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 15 August 2011; accepted 16 August 2011; online 27 August 2011)

In the title compound, C13H18N2O4S, the piperazine ring adopts a chair conformation. The dihedral angle between the least-squares planes through the piperazine and benzene rings is 73.23 (10)°. In the crystal, there are no classical hydrogen bonds but stabilization is provided by weak C—H⋯π inter­actions.

Related literature

For the biological activity of piperazine derivatives, see: Emami et al. (2006[Emami, S., Shafiee, A. & Foroumadi, A. (2006). Mini Rev. Med. Chem. 6, 375-386.]); Foroumadi et al. (2007[Foroumadi, A., Emami, S., Mansouri, S., Javidnia, A., Saeid-Adeli, N., Shirazi, F. H. & Shafiee, A. (2007). Eur. J. Med. Chem. 42, 985-992.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2O4S

  • Mr = 298.35

  • Monoclinic, P 21 /c

  • a = 6.1433 (5) Å

  • b = 20.5966 (17) Å

  • c = 12.5626 (8) Å

  • β = 114.026 (3)°

  • V = 1451.84 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.58 × 0.38 × 0.17 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.875, Tmax = 0.961

  • 16507 measured reflections

  • 4255 independent reflections

  • 3400 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.158

  • S = 1.04

  • 4255 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13ACg1i 0.96 2.97 3.900 (4) 165
Symmetry code: (i) -x-1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperazine derivatives are used as antibiotic drugs, e.g. Norfloxacin, Ciprofloxacin, Enoxacin, Ofloxacin and Levofloxacine (Emami et al., 2006; Foroumadi et al., 2007). Due to the biological importance of piperazine, herein, we present the crystal and molecular structure of the title compound, (I).

The piperazine (N1–N2/C7–C10) ring in (I), Fig. 1, adopts a chair conformation [puckering parameters: Q = 0.5682 (18) Å, θ = 2.56 (17) ° and ϕ = 349 (4) ° (Cremer & Pople, 1975)] with atoms N1 and C9 deviating by 0.253 (1) and 0.223 (2) Å from the least-squares plane defined by the remaining atoms (N2/C7,C8/C10) in the ring. The dihedral angle between the piperazine (N1–N2/C7–C10) ring and the benzene (C1–C6) ring is 73.23 (10) °.

In the crystal structure (Fig. 2), there are no classical hydrogen bonds but stabilization is provided by weak C—H···π interactions (Table 1).

Related literature top

For the biological activity of piperazine derivatives, see: Emami et al. (2006); Foroumadi et al. (2007). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

In a round bottom flask, 25ml of toluene was mixed with benzenesulfonyl chloride (0.01 mol, 1.0 g) with stirring. Ethyl-1-piperazine-carboxylate (0.01 mol, 1.7ml) dissolved in toluene was then added drop wise. The reaction mixture was refluxed for 30 min. The yellow precipitate formed was washed with alkaline water. The precipitate was then dissolved in methanol at room temperature. After few days, yellow crystals were formed by slow evaporation.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom labelling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the crystal packing in (I).
Ethyl 4-(phenylsulfonyl)piperazine-1-carboxylate top
Crystal data top
C13H18N2O4SF(000) = 632
Mr = 298.35Dx = 1.365 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5957 reflections
a = 6.1433 (5) Åθ = 2.7–29.7°
b = 20.5966 (17) ŵ = 0.24 mm1
c = 12.5626 (8) ÅT = 296 K
β = 114.026 (3)°Block, yellow
V = 1451.84 (19) Å30.58 × 0.38 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4255 independent reflections
Radiation source: fine-focus sealed tube3400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.875, Tmax = 0.961k = 2924
16507 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0887P)2 + 0.3986P]
where P = (Fo2 + 2Fc2)/3
4255 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C13H18N2O4SV = 1451.84 (19) Å3
Mr = 298.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1433 (5) ŵ = 0.24 mm1
b = 20.5966 (17) ÅT = 296 K
c = 12.5626 (8) Å0.58 × 0.38 × 0.17 mm
β = 114.026 (3)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4255 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3400 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.961Rint = 0.023
16507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.04Δρmax = 0.60 e Å3
4255 reflectionsΔρmin = 0.30 e Å3
182 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36299 (7)0.120155 (19)0.94030 (3)0.03858 (14)
O10.3060 (3)0.12052 (6)1.04000 (10)0.0517 (3)
O20.6074 (2)0.12032 (7)0.95617 (12)0.0547 (3)
O30.1090 (3)0.07756 (8)0.52229 (12)0.0659 (4)
O40.3840 (2)0.07205 (8)0.59831 (12)0.0605 (4)
N10.2424 (2)0.05482 (6)0.86538 (10)0.0346 (3)
N20.0094 (2)0.04239 (7)0.70682 (12)0.0412 (3)
C10.0247 (4)0.21553 (9)0.86231 (18)0.0544 (4)
H1A0.03230.19990.91560.065*
C20.0839 (4)0.26783 (11)0.7902 (2)0.0749 (7)
H2A0.21490.28770.79570.090*
C30.0001 (5)0.29053 (11)0.7108 (2)0.0813 (8)
H3A0.07490.32550.66300.098*
C40.1924 (5)0.26197 (12)0.7021 (2)0.0785 (7)
H4A0.24770.27760.64820.094*
C50.3063 (4)0.20992 (11)0.77261 (18)0.0595 (5)
H5A0.43750.19050.76660.071*
C60.2208 (3)0.18732 (8)0.85247 (14)0.0421 (3)
C70.0086 (3)0.04191 (8)0.84341 (13)0.0376 (3)
H7A0.03400.05010.91350.045*
H7B0.11260.07040.78240.045*
C80.0652 (3)0.02844 (8)0.80650 (14)0.0406 (3)
H8A0.23280.03670.78620.049*
H8B0.02710.05670.87080.049*
C90.2364 (3)0.02842 (9)0.72652 (16)0.0472 (4)
H9A0.34310.05650.78730.057*
H9B0.25940.03670.65580.057*
C100.2931 (3)0.04207 (9)0.76225 (14)0.0423 (3)
H10A0.19690.07030.69870.051*
H10B0.45970.05080.78040.051*
C110.1625 (3)0.06530 (8)0.60275 (14)0.0436 (4)
C120.5669 (4)0.09306 (12)0.48616 (18)0.0637 (5)
H12A0.53000.07630.42330.076*
H12C0.72060.07590.47690.076*
C130.5775 (7)0.16308 (16)0.4804 (3)0.1174 (13)
H13A0.69710.17630.40640.176*
H13B0.42540.17990.48910.176*
H13C0.61700.17950.54180.176*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0397 (2)0.0421 (2)0.0286 (2)0.00210 (13)0.00853 (15)0.00111 (13)
O10.0710 (9)0.0526 (7)0.0297 (6)0.0009 (6)0.0187 (6)0.0025 (5)
O20.0368 (6)0.0628 (8)0.0521 (8)0.0056 (5)0.0053 (5)0.0070 (6)
O30.0668 (9)0.0926 (11)0.0443 (7)0.0176 (8)0.0288 (6)0.0217 (7)
O40.0449 (7)0.0863 (10)0.0481 (7)0.0147 (6)0.0167 (6)0.0204 (7)
N10.0342 (6)0.0394 (6)0.0305 (6)0.0018 (5)0.0136 (5)0.0023 (5)
N20.0382 (6)0.0502 (7)0.0376 (6)0.0057 (5)0.0179 (5)0.0107 (6)
C10.0568 (10)0.0465 (9)0.0550 (10)0.0022 (8)0.0178 (8)0.0017 (8)
C20.0690 (14)0.0462 (11)0.0853 (17)0.0098 (9)0.0065 (12)0.0024 (11)
C30.0979 (19)0.0399 (10)0.0691 (15)0.0061 (11)0.0039 (13)0.0143 (10)
C40.1010 (19)0.0625 (14)0.0608 (13)0.0193 (13)0.0213 (13)0.0212 (11)
C50.0699 (12)0.0580 (11)0.0521 (10)0.0106 (9)0.0262 (9)0.0092 (9)
C60.0470 (8)0.0366 (8)0.0374 (7)0.0065 (6)0.0119 (6)0.0000 (6)
C70.0366 (7)0.0439 (8)0.0364 (7)0.0003 (6)0.0192 (6)0.0037 (6)
C80.0435 (7)0.0449 (8)0.0373 (7)0.0074 (6)0.0205 (6)0.0040 (6)
C90.0376 (7)0.0587 (10)0.0494 (9)0.0020 (7)0.0220 (7)0.0164 (8)
C100.0380 (7)0.0556 (9)0.0386 (8)0.0075 (6)0.0210 (6)0.0076 (7)
C110.0455 (8)0.0477 (9)0.0375 (8)0.0038 (6)0.0169 (6)0.0053 (6)
C120.0510 (10)0.0811 (15)0.0494 (10)0.0032 (10)0.0104 (8)0.0043 (10)
C130.131 (3)0.077 (2)0.101 (2)0.0254 (18)0.003 (2)0.0136 (17)
Geometric parameters (Å, º) top
S1—O11.4312 (13)C4—H4A0.9300
S1—O21.4320 (14)C5—C61.389 (2)
S1—N11.6365 (13)C5—H5A0.9300
S1—C61.7634 (17)C7—C81.518 (2)
O3—C111.210 (2)C7—H7A0.9700
O4—C111.346 (2)C7—H7B0.9700
O4—C121.465 (2)C8—H8A0.9700
N1—C101.4745 (18)C8—H8B0.9700
N1—C71.4755 (18)C9—C101.518 (2)
N2—C111.347 (2)C9—H9A0.9700
N2—C81.4554 (19)C9—H9B0.9700
N2—C91.455 (2)C10—H10A0.9700
C1—C61.387 (3)C10—H10B0.9700
C1—C21.391 (3)C12—C131.444 (4)
C1—H1A0.9300C12—H12A0.9700
C2—C31.377 (4)C12—H12C0.9700
C2—H2A0.9300C13—H13A0.9600
C3—C41.365 (4)C13—H13B0.9600
C3—H3A0.9300C13—H13C0.9600
C4—C51.385 (3)
O1—S1—O2119.62 (9)C8—C7—H7B109.9
O1—S1—N1107.02 (7)H7A—C7—H7B108.3
O2—S1—N1106.60 (7)N2—C8—C7110.26 (12)
O1—S1—C6107.94 (8)N2—C8—H8A109.6
O2—S1—C6108.04 (8)C7—C8—H8A109.6
N1—S1—C6107.00 (7)N2—C8—H8B109.6
C11—O4—C12115.91 (15)C7—C8—H8B109.6
C10—N1—C7112.47 (11)H8A—C8—H8B108.1
C10—N1—S1116.33 (10)N2—C9—C10109.69 (13)
C7—N1—S1116.73 (10)N2—C9—H9A109.7
C11—N2—C8126.01 (13)C10—C9—H9A109.7
C11—N2—C9120.02 (13)N2—C9—H9B109.7
C8—N2—C9113.96 (12)C10—C9—H9B109.7
C6—C1—C2118.1 (2)H9A—C9—H9B108.2
C6—C1—H1A121.0N1—C10—C9108.96 (13)
C2—C1—H1A121.0N1—C10—H10A109.9
C3—C2—C1120.9 (2)C9—C10—H10A109.9
C3—C2—H2A119.6N1—C10—H10B109.9
C1—C2—H2A119.6C9—C10—H10B109.9
C4—C3—C2120.2 (2)H10A—C10—H10B108.3
C4—C3—H3A119.9O3—C11—O4123.90 (15)
C2—C3—H3A119.9O3—C11—N2124.31 (16)
C3—C4—C5120.7 (2)O4—C11—N2111.78 (14)
C3—C4—H4A119.6C13—C12—O4110.2 (2)
C5—C4—H4A119.6C13—C12—H12A109.6
C4—C5—C6118.7 (2)O4—C12—H12A109.6
C4—C5—H5A120.7C13—C12—H12C109.6
C6—C5—H5A120.7O4—C12—H12C109.6
C1—C6—C5121.44 (18)H12A—C12—H12C108.1
C1—C6—S1119.99 (14)C12—C13—H13A109.5
C5—C6—S1118.55 (15)C12—C13—H13B109.5
N1—C7—C8108.73 (12)H13A—C13—H13B109.5
N1—C7—H7A109.9C12—C13—H13C109.5
C8—C7—H7A109.9H13A—C13—H13C109.5
N1—C7—H7B109.9H13B—C13—H13C109.5
O1—S1—N1—C10175.82 (11)N1—S1—C6—C585.65 (15)
O2—S1—N1—C1046.71 (13)C10—N1—C7—C858.52 (17)
C6—S1—N1—C1068.69 (13)S1—N1—C7—C8163.26 (10)
O1—S1—N1—C747.57 (12)C11—N2—C8—C7122.68 (18)
O2—S1—N1—C7176.67 (11)C9—N2—C8—C756.43 (18)
C6—S1—N1—C767.92 (12)N1—C7—C8—N255.05 (16)
C6—C1—C2—C30.5 (3)C11—N2—C9—C10122.59 (17)
C1—C2—C3—C40.2 (4)C8—N2—C9—C1056.58 (19)
C2—C3—C4—C50.0 (4)C7—N1—C10—C959.10 (17)
C3—C4—C5—C60.0 (3)S1—N1—C10—C9162.49 (11)
C2—C1—C6—C50.5 (3)N2—C9—C10—N155.79 (18)
C2—C1—C6—S1179.12 (15)C12—O4—C11—O32.6 (3)
C4—C5—C6—C10.3 (3)C12—O4—C11—N2176.51 (17)
C4—C5—C6—S1178.91 (16)C8—N2—C11—O3178.53 (18)
O1—S1—C6—C121.89 (16)C9—N2—C11—O32.4 (3)
O2—S1—C6—C1152.57 (14)C8—N2—C11—O42.4 (2)
N1—S1—C6—C192.99 (15)C9—N2—C11—O4176.66 (15)
O1—S1—C6—C5159.47 (14)C11—O4—C12—C1388.6 (3)
O2—S1—C6—C528.79 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cg1i0.962.973.900 (4)165
Symmetry code: (i) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H18N2O4S
Mr298.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.1433 (5), 20.5966 (17), 12.5626 (8)
β (°) 114.026 (3)
V3)1451.84 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.58 × 0.38 × 0.17
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.875, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
16507, 4255, 3400
Rint0.023
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.158, 1.04
No. of reflections4255
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cg1i0.962.973.900 (4)165
Symmetry code: (i) x1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NM gratefully acknowledges funding from the Malaysian Ministry of Science, Technology and Innovation, through the Malaysian Institute of Pharmaceutical and Nutraceutical R&D Initiative Grant (grant No. 09-05-IFN-MEB 004 and 304/PFARMASI/650512/I121). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEmami, S., Shafiee, A. & Foroumadi, A. (2006). Mini Rev. Med. Chem. 6, 375–386.  Web of Science CrossRef PubMed CAS Google Scholar
First citationForoumadi, A., Emami, S., Mansouri, S., Javidnia, A., Saeid-Adeli, N., Shirazi, F. H. & Shafiee, A. (2007). Eur. J. Med. Chem. 42, 985–992.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds