organic compounds
2-[4-(2-Formylphenoxy)butoxy]benzaldehyde
aDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran, and bDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp
In the 18H18O4, the full molecule is generated by the application of an inversion centre. The molecule is essentially planar, with an r.m.s. deviation of 0.017 (1) Å for all non-H atoms. The molecules are linked through intermolecular C—H⋯O interactions to form a molecular sheet parallel to the (02) plane.
of the title compound, CRelated literature
For the synthesis and related structures, see: Hu et al. (2005); Aravindan et al. (2003). For related literature on and their transition metal complexes, see: Ilhan et al. (2009, 2010); Yilmaz et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811034210/tk2783sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811034210/tk2783Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811034210/tk2783Isup3.cml
The title compound was isolated from the reaction between salicylaldehyde and butane-1,4-diamine in the presence of K2CO3 at 85 °C for about 48 h according to the literature (Hu et al., 2005). A small amount of the precipitate was dissolved in a mixture of methanol-chloroform (1:1 v/v) to make a clear solution and kept at room temperature for 3 days to give single crystals suitable for X-ray diffraction.
All H atoms were positioned geometrically (C—H = 0.95 or 0.99 Å) and were refined as riding, with Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell
PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).C18H18O4 | F(000) = 316.00 |
Mr = 298.34 | Dx = 1.306 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2ybc | Cell parameters from 7072 reflections |
a = 8.0624 (7) Å | θ = 3.0–30.1° |
b = 14.5896 (7) Å | µ = 0.09 mm−1 |
c = 6.8003 (4) Å | T = 190 K |
β = 108.549 (4)° | Block, pale-yellow |
V = 758.35 (8) Å3 | 0.30 × 0.24 × 0.15 mm |
Z = 2 |
Rigaku R-AXIS RAPID II diffractometer | 1243 reflections with I > 2σ(I) |
Detector resolution: 10.00 pixels mm-1 | Rint = 0.041 |
ω scans | θmax = 30.0° |
Absorption correction: numerical (NUMABS; Higashi, 1999) | h = −11→11 |
Tmin = 0.980, Tmax = 0.986 | k = −20→20 |
12149 measured reflections | l = −9→9 |
2210 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0563P)2 + 0.0806P] where P = (Fo2 + 2Fc2)/3 |
2210 reflections | (Δ/σ)max = 0.0001 |
100 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C18H18O4 | V = 758.35 (8) Å3 |
Mr = 298.34 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.0624 (7) Å | µ = 0.09 mm−1 |
b = 14.5896 (7) Å | T = 190 K |
c = 6.8003 (4) Å | 0.30 × 0.24 × 0.15 mm |
β = 108.549 (4)° |
Rigaku R-AXIS RAPID II diffractometer | 2210 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 1243 reflections with I > 2σ(I) |
Tmin = 0.980, Tmax = 0.986 | Rint = 0.041 |
12149 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.29 e Å−3 |
2210 reflections | Δρmin = −0.24 e Å−3 |
100 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.18122 (15) | 0.33844 (8) | 0.1640 (2) | 0.0554 (4) | |
O2 | 0.69626 (12) | 0.36790 (7) | 0.37956 (16) | 0.0343 (3) | |
C1 | 0.45915 (17) | 0.26677 (9) | 0.2840 (2) | 0.0307 (3) | |
C2 | 0.64045 (18) | 0.27981 (9) | 0.3598 (2) | 0.0297 (3) | |
C3 | 0.75273 (18) | 0.20492 (10) | 0.4082 (2) | 0.0327 (3) | |
H3 | 0.8758 | 0.2135 | 0.4596 | 0.039* | |
C4 | 0.6825 (2) | 0.11807 (10) | 0.3803 (2) | 0.0380 (4) | |
H4 | 0.7586 | 0.0666 | 0.4134 | 0.046* | |
C5 | 0.5042 (2) | 0.10385 (11) | 0.3054 (3) | 0.0411 (4) | |
H5 | 0.4582 | 0.0434 | 0.2868 | 0.049* | |
C6 | 0.3940 (2) | 0.17801 (10) | 0.2582 (2) | 0.0380 (4) | |
H6 | 0.2712 | 0.1684 | 0.2071 | 0.046* | |
C7 | 0.3391 (2) | 0.34439 (11) | 0.2358 (3) | 0.0396 (4) | |
H7 | 0.3882 | 0.4041 | 0.2625 | 0.047* | |
C8 | 0.88087 (17) | 0.38476 (10) | 0.4570 (2) | 0.0333 (3) | |
H8A | 0.9405 | 0.3547 | 0.3674 | 0.040* | |
H8B | 0.9307 | 0.3604 | 0.5996 | 0.040* | |
C9 | 0.90444 (18) | 0.48669 (10) | 0.4558 (2) | 0.0350 (4) | |
H9A | 0.8379 | 0.5159 | 0.5387 | 0.042* | |
H9B | 0.8568 | 0.5096 | 0.3117 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0243 (6) | 0.0575 (8) | 0.0782 (9) | 0.0011 (5) | 0.0074 (6) | −0.0063 (6) |
O2 | 0.0210 (5) | 0.0285 (5) | 0.0497 (6) | −0.0040 (4) | 0.0060 (4) | −0.0021 (4) |
C1 | 0.0234 (7) | 0.0324 (8) | 0.0352 (7) | −0.0038 (5) | 0.0077 (6) | −0.0030 (6) |
C2 | 0.0268 (7) | 0.0287 (7) | 0.0333 (7) | −0.0051 (5) | 0.0092 (6) | −0.0032 (6) |
C3 | 0.0244 (7) | 0.0320 (8) | 0.0391 (8) | −0.0013 (6) | 0.0065 (6) | −0.0020 (6) |
C4 | 0.0358 (8) | 0.0316 (8) | 0.0447 (9) | 0.0011 (6) | 0.0102 (7) | 0.0001 (7) |
C5 | 0.0363 (8) | 0.0317 (8) | 0.0521 (9) | −0.0074 (6) | 0.0095 (7) | −0.0039 (7) |
C6 | 0.0286 (8) | 0.0388 (9) | 0.0441 (9) | −0.0085 (6) | 0.0081 (7) | −0.0055 (7) |
C7 | 0.0265 (8) | 0.0372 (9) | 0.0529 (10) | −0.0018 (6) | 0.0095 (7) | −0.0027 (7) |
C8 | 0.0206 (7) | 0.0313 (7) | 0.0453 (8) | −0.0026 (5) | 0.0068 (6) | −0.0035 (6) |
C9 | 0.0239 (7) | 0.0294 (7) | 0.0489 (9) | −0.0023 (6) | 0.0075 (6) | −0.0035 (6) |
O1—C7 | 1.2128 (18) | C5—C6 | 1.372 (2) |
O2—C2 | 1.3543 (16) | C5—H5 | 0.9500 |
O2—C8 | 1.4333 (16) | C6—H6 | 0.9500 |
C1—C6 | 1.3874 (19) | C7—H7 | 0.9500 |
C1—C2 | 1.3997 (19) | C8—C9 | 1.500 (2) |
C1—C7 | 1.458 (2) | C8—H8A | 0.9900 |
C2—C3 | 1.390 (2) | C8—H8B | 0.9900 |
C3—C4 | 1.376 (2) | C9—C9i | 1.516 (3) |
C3—H3 | 0.9500 | C9—H9A | 0.9900 |
C4—C5 | 1.379 (2) | C9—H9B | 0.9900 |
C4—H4 | 0.9500 | ||
C2—O2—C8 | 118.21 (11) | C5—C6—H6 | 119.5 |
C6—C1—C2 | 118.83 (13) | C1—C6—H6 | 119.5 |
C6—C1—C7 | 119.95 (13) | O1—C7—C1 | 124.87 (14) |
C2—C1—C7 | 121.21 (12) | O1—C7—H7 | 117.6 |
O2—C2—C3 | 123.48 (13) | C1—C7—H7 | 117.6 |
O2—C2—C1 | 116.14 (12) | O2—C8—C9 | 106.66 (11) |
C3—C2—C1 | 120.37 (12) | O2—C8—H8A | 110.4 |
C4—C3—C2 | 118.85 (13) | C9—C8—H8A | 110.4 |
C4—C3—H3 | 120.6 | O2—C8—H8B | 110.4 |
C2—C3—H3 | 120.6 | C9—C8—H8B | 110.4 |
C3—C4—C5 | 121.62 (14) | H8A—C8—H8B | 108.6 |
C3—C4—H4 | 119.2 | C8—C9—C9i | 111.50 (15) |
C5—C4—H4 | 119.2 | C8—C9—H9A | 109.3 |
C6—C5—C4 | 119.28 (14) | C9i—C9—H9A | 109.3 |
C6—C5—H5 | 120.4 | C8—C9—H9B | 109.3 |
C4—C5—H5 | 120.4 | C9i—C9—H9B | 109.3 |
C5—C6—C1 | 121.05 (14) | H9A—C9—H9B | 108.0 |
C8—O2—C2—C3 | −0.8 (2) | C3—C4—C5—C6 | −0.2 (2) |
C8—O2—C2—C1 | 179.88 (12) | C4—C5—C6—C1 | 0.2 (2) |
C6—C1—C2—O2 | 179.34 (12) | C2—C1—C6—C5 | −0.1 (2) |
C7—C1—C2—O2 | −1.8 (2) | C7—C1—C6—C5 | −179.02 (15) |
C6—C1—C2—C3 | 0.0 (2) | C6—C1—C7—O1 | −3.4 (3) |
C7—C1—C2—C3 | 178.91 (14) | C2—C1—C7—O1 | 177.73 (16) |
O2—C2—C3—C4 | −179.30 (13) | C2—O2—C8—C9 | 178.18 (12) |
C1—C2—C3—C4 | 0.0 (2) | O2—C8—C9—C9i | 177.46 (15) |
C2—C3—C4—C5 | 0.1 (2) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1ii | 0.95 | 2.53 | 3.397 (2) | 152 |
Symmetry code: (ii) x+1, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C18H18O4 |
Mr | 298.34 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 190 |
a, b, c (Å) | 8.0624 (7), 14.5896 (7), 6.8003 (4) |
β (°) | 108.549 (4) |
V (Å3) | 758.35 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.30 × 0.24 × 0.15 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID II diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.980, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12149, 2210, 1243 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.704 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.132, 1.13 |
No. of reflections | 2210 |
No. of parameters | 100 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.24 |
Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.95 | 2.53 | 3.397 (2) | 152 |
Symmetry code: (i) x+1, −y+1/2, z+1/2. |
Acknowledgements
This work was partly supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science. We also acknowledge Golestan University for partial support of this work.
References
Aravindan, P. G., Yogavel, M., Thirumavalavan, M., Akilan, P., Velmurugan, D., Kandaswamy, M., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o806–o807. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hu, P.-Z., Ma, L.-F., Wang, J.-G., Zhao, B.-T. & Wang, L.-Y. (2005). Acta Cryst. E61, o2775–o2777. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ilhan, S., Temel, H. & Pasa, S. (2009). Chin. Chem. Lett. 20, 339–343. CrossRef CAS Google Scholar
Ilhan, S., Temel, H., Pasa, S. & Tegin, I. (2010). Russ. J. Coord. Chem. 55, 1402–1409. CAS Google Scholar
Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yilmaz, I., Ilhan, S., Temel, H. & Kilic, A. (2009). J. Incl. Phenom. Macrocycl. Chem. 63, 163–169. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, much attention has been paid to the synthesis and coordination chemistry of salicylaldehyde, its Schiff base derivatives and transition metal complexes (Hu et al., 2005; Aravindan et al., 2003; Ilhan et al., 2009, 2010; Yilmaz et al., 2009). The two-arm aldehydes can be condensed with primary diamines to form macrocyclic Schiff base ligands (Ilhan et al., 2009, 2010; Yilmaz et al., 2009).
In the crystal structure, the title molecule, 2,2'-[butane-1,4-diylbis(oxy)]dibenzaldehyde (Fig. 1), lies on a crystallographic inversion center, thus indicating that one half the molecule comprises the asymmetric unit. The molecules are linked through intermolecular C3—H3···O1ii contacts (Table 1), resulting in a molecular sheet parallel to the (102) plane (Fig. 2).